

247

 American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers
http://asrjetsjournal.org/

A Review of Security Issues in SDLC

Nosheen Nazira*, Muhammad Kashif Nazirb

a,bRiphah College of Computing, Riphah International University, Faisalabad Campus, Punjab, Pakistan
aEmail: nosheennazir304@gmail.com

bEmail: kashifntuf@gmail.com

Abstract

Software Engineers do not implement security as a continuing process in software development; they give it

worth at the end of software development. Security implementation is an essential on-going routine in each

phase of the software development lifecycle. This quantitative type of research investigates the security factors

in different phases of Software Development Life Cycle (SDLC) and evaluates them from the research

community and software engineers. Results are analyzed by using a statistical tool (SPSS), and security rules are

proposed in each step of SDLC to assist software engineers and research community.

Keywords: Security in SDLC; Review of SDLC; Security Rules in Software Development.

1. Introduction

The use of Information Technology has been increased day by day in business organizations. E-Business is a

worthy way to compete with other organizations. The customers want to access the running applications in their

industry at any time and from anywhere [1]. To meet this vision, applications are created in such a way; as to

incorporate the necessary capability of ease in access as well as escorting multiple functionalities. Developers

develop the required applications with faster rate and value added functionalities to support ever increasing and

changing business needs to satisfy management. Therefore, the aspect of security implementation in all the

phases of SDLC cannot be excluded [2].A software development is an intricate process and it meets the success

criteria, if its intended purpose is achieved on a given platform by ensuring its requirement of security factors.

There is a captivating need to define how a Software can be ductile to different security flaws in distinctive

environments [1]. There can be many causes behind software security rifts, but most of the time, blame relies

on intrusion of virus, denial of service and spam in email etc [3]. But if intense deep analysis is carried down,

the fact undergo is a security breach that leads to defective, substandard and unreliable software which is

vulnerable to virus and malicious attacks [4].

--

* Corresponding author.

http://asrjetsjournal.org/

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

248

Conventional SDLC applications pay emphasis to security concerns in the phase of testing; resultantly flaws in

the system remain uncovered till its proper execution and use [5] It is an obligatory need to put our maximum

efforts for implementation of security measures in software’s each phase of Software Development Life Cycle

(SDLC). A more secure, robust, reliable and free of virus-attacks software can be developed by focusing on

security factors of SDLC that are discussed in this paper.

Why developers omit security measures in software development? The reason is, they give less importance to

security factors and focus on timely development and delivery of software. Because, for considering security

features in SDLC it takes time and leads to project delays [6, 7].

So, the designers themselves and instructed by Project managers, ignore the security features implementation

[7]. However, the implementation of security features in SDLC will increase the software life as much from

earlier and fulfills software’s non-functional requirement of reliability by providing protection of data against

losses due to security black holes and virus attacks etc. [8]Anyway, if virus attack is encountered in software,

the system should possess the capability to recover its loss components and formulate some mechanism to avoid

such kind of malicious attacks [3, 9].

Another group of researchers believe that security features have secondary importance; they consider it as a

non-functional requirement, and like other non-functional requirements i-e. reliability and performance etc. it

can be taken into consideration after the completion of development of software application[1, 10].

But security features have some contrariness from others they must be subscribed at initial of the project

requirements gathering and continues with all phases of SDLC till testing and maintenance [11].

There is need to encourage people with such thinking that should lay stress on better understanding towards

security policies, in the team from project manager to lower level developers to add security features at each

level of SDLC to increase security.

Security is the basic need of today’s software’s and it is not the factor that should be considered once.

Implementation of security should be taken into consideration from the very initial stages of software

development [4] It is a continuous process that is applicable to all stages of SDLC i-e.

 Requirement, Design, Development, and Testing to deal with vulnerabilities and malicious attacks [12]. By

adopting security policies, the system can be made robust to deal with uncertain situations in an adverse

environment and another non-functional requirement i-e.

Recoverability has roots in robust security [13]. A system is considered to be secure if its implementation is

wholly correlated to its defined security policies [10, 14] Software is regarded as secure if data loss in any

uncertain situation is recoverable and could be reported to deal with unusual situations[13, 15].

In this paper, the importance of security features has been discussed and deliberately taken into consideration

and provided a review of existing literature to take security measures and polices from its initial stages and

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

249

continue them till the completion of development.

Also, the state of the art measures are presented with respect to SDLC phases and a complete guideline is

suggested for the development of resilient software’s that performs efficiently in even adverse environments.

2. SDLC Security And Related Research

2.1. SDLC Enlargement

In the past, Developers focused on functionality related aspects of applications and intended to develop

applications without following accurate and standardized engineering principles.

 This was not a persuasive approach to develop large projects that need to be incorporated into significant

engineering principles[16]. The main objectives of these principles are discussed below:

• Well Formulated Requirement’s

• Well Oriented Software Development life cycle

• Well defined software development models

The organizations from several years manage SDLC documentation properly and the typical SDLC is as follows

Table 1: SDLC

Function Description
Conceptual Definition Understanding of proposed project and objectives
Functional Requirements and specifications List of business requirements
Technical Requirements and specifications Detailed description of technical requirements
Design Formal detailed design of the program developed
Coding Development phase
Test The testing phase of working product
Implementation Deployment of project

The last phase maintenance is omitted from the table because during the maintenance the whole Software

Development Life Cycle is repeated. The validation present in the first cycle is needed every time thereafter.

2.2. Security Incorporation in SDLC

Many researchers debate the importance of security factors in SDLC and result is the security features must be

incorporated in each phase of SDLC.

Reference [17] Proposed a tool for software security which includes four requirements. 1. Planner: that used in

analyzing software security and to investigate and analyze errors. 2.

Modeler: Framework demonstration 3. Prover: proficient thinking 4. Documenter: structural views and technical

document editing. Reference [3] incorporate security in the following steps

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

250

Table 2: Different Security Rules

Function Description
Awareness Update existing knowledge by accruing new information
Prevention It describes the security synchronization in software
Accountability Maintains a log file for all the tasks
Availability An unauthorized person cannot access information
Integrity An unauthorized person cannot alter the information
Availability The highly secure system should be available all the time
Non-Repudiation The transaction cannot be denied by any third party
Access Control Resources cannot be accessible without permission
Accuracy All tasks should be performed with 100 % accuracy.
Identification,
Authentication

An only authenticated person can be logged into the system.

Authorization What a subject can do on the system
Consistency All security features are consistent
Assessment, Evaluation Continuous assessment and evaluation of all software processes is necessary
Privacy Individuals should know what information is collected about them and for what

purpose
Flexibility Flexibility reduces the rigid boundaries of software processes
Excellence Security is a factor of quality
Unambiguity Detail about everything should be clear and persistent
Fortification Processes used in software should be secured individually and in totality
Auditability Auditability is to judge the security of software
Error Classification Errors should be classified as per schema containing a set of security rules
Interpretability All software’s must be secured by participating in any communication or

transaction

Security issues with respect to SDLC phases are discussed in Table 3:

Table 3: Security In SDLC

Function Description
Requirement Elicit requirements from all stakeholders that are involved in the project directly or

indirectly[18, 19]
Adopt international standards that fit into your organization [1]

Design Maintain a list of recommended software’s [2]
External review of the design [20]

Implementation Follow secure coding checklist [21]
Use language that is more immune [18]
Train developers to develop defensible applications [18]
Conduct secure code assessments [22]

Testing Test plan and development plan for the next test[23]
Security testing plan [24]
Conduct penetration testing [25]
Using statistical analysis tools [26]
Define the acceptable level of vulnerabilities [1]

3. Methodology

This is a quantitative type of research in which data is collected regarding different rules about the Software

Development Life Cycle in software (SPSS) from different resources of literature review discussed. Performed

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

251

cleansing, made questionnaire, evaluation of questionnaire from the research community, combined results, and

proposed rules to support research community and software engineers about security measures in SDLC.

3.1. Data Collection

Primarily, a collection of the rules is done that is presented in the literature review concerning security

incorporation in different phases of SDLC. These rules are presented in Table 1,2,3[2-4, 27, 28]

3.2. Data Cleansing

Data cleansing is the process of removing irrelevant attributes from the data collected from the literature review.

It eliminates all those extraneous values that cause no harm to the Software Development Life Cycle process.

Researchers proposed research, only those security measures that affect the security concerns in SDLC are 3.3.

presented in the questionnaire.

3.3. Prepare Questionnaire

After data cleansing step, a questionnaire is developed and is shown presented in Figure. This questionnaire put

forth light on those security rules that are necessarily concerned with security factors with respect to all the

phases of SDLC. Veritable and exact rules are depicted accompanying the true meaning of proposed rules is

explained as well as their incorporation into the SDLC phases is explained thoroughly.

3.4. Evaluation

Evaluation (Online + Hardcopy)

To evaluate this questionnaire, the following options were added to each question. 1. Strongly Agree 2. Agree 3.

Neutral 4. Disagree. The only one option as the answer could be selected by the respondents against each

question with a restriction of answering all the questions.

The gathered responses were collected through online google forms and through spreading hardcopy of these

forms among the targeted respondents.

This quantitative type data is accumulated from distinctive sources e.g. software houses, universities etc., as

they are located in geographically distinct places.

3.5. Analysis by SPSS

 SPSS Statistical tool is utilized for analysis in this research[29]. The collected responses from different

resources were inserted into the SPSS and graphs were generated and presented in the Results and Discussions

section below. Rules Generation for Security in SDLC

After doing this all research specify some rules presented in SDLC that have highest priority and likeness in

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

252

different software houses.

These rules incorporate the highest security in SDLC that will make the software resilient to face security

challenges from different intruders and attackers [29]

Data Collection

Evaluation (Online +
Hardcopy)

Analysis by SPSS

Make Rules for security
in SDLC

Data Cleansing

Prepare
Questionnaire

Figure 1: Methodology

4. Results and Discussions

After deep analysis of questionnaire (online+ hard copy), it was unearthed that only 5% respondents disagreed,

13% were just agreed, about 6% respondents were neutral, and approximately 70% of respondents strongly

agreed in favor of the proposition that element of security shall be considered as the paramount factor in each

phase of SDLC as shown in Figure 6.

Figure 2: Requirement Phase Acceptance

0
20
40
60
80

100

120

140

1 2 3 4 5

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

253

Table 4: Security Incorporation in SDLC

Phase Rule Rule Description

Requirement Stakeholders
identification

Proper stakeholder’s identification incorporates security in the initial
phase of requirement gathering. [3]

Requirement
Elicitation

Elicit requirement from all stakeholders with respect to their authorities
and responsibilities.[18]

Remove Conflicts A conflict may arise in some requirements. Assess the respective
stakeholder and priorities it on lower authority stakeholder.

Stakeholders
Satisfaction

Satisfy stakeholders whose requirements are satisfied on higher level
decisions.

International
Standards

Adopt international standards that fit into your organization. [1]

Threats
identification

Adopt this process to identify and remove threats in requirement phase.

Prevention Security synchronization in each phase of SDLC described in this phase.
[3]

Unambiguity Remove ambiguous requirements [3]

Design Recommended
Software’s

Maintain a list of recommended software’s framework [2]

Security Principles Explicitly apply security principles to the design. [30]

External Review External review of the design. [20, 24, 25]

Access Control Define access controls in design phase.

Development Check List Follow secure coding checklist. [31]

Language More immune language usage increase security. [18]

Defensible Train developers to produce defensible applications.[18]

Assessment Conduct source code assessment process. [26]

Pair Programming Use of pair programming reduces security risks.[32]

Flexibility Do not create rigid boundaries make it flexible to face security challenges
in the present and future.

Testing Testing plan Security testing plan.[1]

Analysis Tools By using static analysis tools. [26]

Acceptance Level Define the acceptance level of vulnerabilities within coding and testing
stages [1]

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

254

Table 5: Requirement Phase Acceptance

Requirement Phase
Rule Strongly Agree Agree Neutral Disagree Strongly Disagree Total
Stakeholder Identification 15 7 2 1 0 25
Requirement Elicitation 14 5 1 3 2 25
Remove Conflicts 18 5 2 0 0 25
Satisfy Stakeholders 20 2 2 1 0 25
International Standards 11 9 1 3 1 25
Threats Identification 16 1 2 2 4 25
Prevention 20 2 1 1 1 25
Unambiguity 23 0 1 1 0 25
Total 137 31 12 12 8 200
%age 68.5% 15.5% 6% 6% 4%

Table 6: Design Phase Acceptance

Design Phase

Rule Strongly Agree Agree Neutral Disagree Strongly Disagree Total

Recommended Software’s
15 7 2 1 0 25

Security Principles
14 5 1 3 2 25

External Review
18 5 2 0 0 25

Access Control
20 2 2 1 0 25

Total
67 19 7 5 2 100

%age
67% 19% 7% 5% 2%

Figure 3: Design Phase Acceptance

0

10

20

30

40

50

60

70

1 2 3 4 5

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

255

Table 7: Development Phase Acceptance

Development Phase

Rule Strongly Agree Agree Neutral Disagree Strongly Disagree Total

Check List 18 5 2 0 0 25

Language 20 2 2 1 0 25

Defensible 11 9 1 3 1 25

Assessment 16 1 2 2 4 25

Pair Programming 20 2 1 1 1 25

Flexible 23 1 1 0 25

Total 108 19 9 8 6 150

%age 72% 12.66% 6% 5.33% 4%

Figure 4: Development Phase Acceptance

Table 8: Testing Phase

Rule Strongly Agree Agree Neutral Disagree Strongly Disagree Total

Testing Plan
16 1 2 2 4 25

Analysis Tool
20 2 1 1 1 25

Acceptance Level
36 3 3 3 5 50

Total
72 6 6 6 10 100

72% 6% 6% 6% 10%

0

20

40

60

80

100

120

1 2 3 4 5

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

256

Figure 5: Testing phase Acceptance

Table 9: Overall SDLC Acceptance

SDLC Phases Strongly Agree Agree Neutral Disagree Strongly Disagree

Requirement
68.5% 15.5% 6% 6% 4%

Design
67% 19% 7% 5% 2%

Development
72% 12.66% 6% 5.33% 4%

Testing
72% 6% 6% 6% 10%

Total
69.87% 13.29% 6.25% 5.58% 5.00%

Figure 6: Overall SDLC Acceptance

0

10

20

30

40

50

60

70

80

1 2 3 4 5

70%

13%

6%
6% 5% 1

2

3

4

5

Strongly

Agree

Neutral

Disagree

 Strongly

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

257

By incorporation of security rules that are presented in this research (Table: 4) the imminent risk of a security

breach in applications can be avoided to a greater extent. The rules of Requirement Phase include stakeholder

identification, requirement elicitation, stakeholders satisfaction, removal of conflicts, compliance with

international standards, threats identification, prevention, unambiguity etc. Design Phase of SDLC includes

rules of following recommended development frameworks, security principles, external review, and access

control. Development phase should comprise rules of checklist, language, defensible, assessment, pair

programming, and flexibility. And Testing Phase of SDLC should embrace the testing plan, analysis tools, and

acceptance level.

5. Conclusion

We cannot eliminate the importance of security in a successful software. Most of the times peoples implement

after the development of software but it creates rigid boundaries and difficult to encourage security rules. This

research gives us a platform to develop secure software by implementing these rules in respective phases of

software development life cycle and this thing is validated by the research community and software engineers

busy in different software houses to develop applications. In the future, we implement these rules in the

development of different nature applications like web, desktop, cloud etc. and investigate the commonalities in

all.

References

[1] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, "The practice of secure software

development in SDLC: an investigation through existing model and a case study," Security and

Communication Networks, vol. 9, pp. 5333-5345, 2016.

[2] N. Haridas, "Software Engineering-Security as a Process in the SDLC," SANS Institute, p. 29, 2007.

[3] C. Banerjee and S. Pandey, "Software Security Rules, SDLC Perspective," arXiv preprint

arXiv:0911.0494, 2009.

[4] A. Sharma and P. K. Misra, "Aspects of Enhancing Security in Software Development Life Cycle,"

Advances in Computational Sciences and Technology, vol. 10, pp. 203-210, 2017.

[5] A. Batcheller, S. C. Fowler, R. Cunningham, D. Doyle, T. Jaeger, and U. Lindqvist, "Building on the

Success of Building Security In," IEEE Security & Privacy, vol. 15, pp. 85-87, 2017.

[6] N. Leicht, I. Blohm, and J. M. Leimeister, "Leveraging the Power of the Crowd for Software Testing,"

IEEE Software, vol. 34, pp. 62-69, 2017.

[7] C. Kumar and D. K. Yadav, "Software defects estimation using metrics of early phases of software

development life cycle," International Journal of System Assurance Engineering and Management, vol.

8, pp. 2109-2117, 2017.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

258

[8] S. A. Aljawarneh, A. Alawneh, and R. Jaradat, "Cloud security engineering: Early stages of SDLC,"

Future Generation Computer Systems, vol. 74, pp. 385-392, 2017.

[9] V. Tasril, M. B. Ginting, and A. P. U. S. Mardiana, "Threats of Computer System and its Prevention,"

International Journal of Scientific Research in Science and Technology, vol. 3, pp. 448-451, 2017.

[10] C. F.-G. R. Rios, and J. Lopez, "Modelling Privacy-Aware Trust Negotiations," Computers & Security,

2017.

[11] C. E. Landwehr and A. Valdes, "Building Code for Power System Software Security," Technical

Report. IEEE Computer Society, Mar2017.

[12] O. Tripp and O. Weisman, "Identifying stored security vulnerabilities in computer software

applications," ed: Google Patents, 2018.

[13] P. P. Choudhury, K. Dihidar, A. R. Khan, R. Verma, and P. Sarkar, "Software measurements and

metrics: Role in effective software testing," Data, in Brief, vol. 3, pp. 593-596, 2017.

[14] B. C. f. P. S. S. Security. (2017). Available:

https://smartgrid.ieee.org/images/files/pdf/building_code_for_power_system_software_security.pdf

[15] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, "Exploring software security approaches

in software development lifecycle: a systematic mapping study," Computer Standards & Interfaces,

vol. 50, pp. 107-115, 2017.

[16] S. Rajesh and A. Chandrasekar, "Esteemed software patterns for the banking system," Cluster

Computing, pp. 1-13, 2017.

[17] S. T. Siddiqui, "TSSR: a proposed tool for secure software requirement management," 2015.

[18] D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M. Bishop, "Software security checklist for the software

life cycle," in Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE

2003. Proceedings. Twelfth IEEE International Workshops on, 2003, pp. 243-248.

[19] R. A. Majid, N. L. M. Noor, W. A. W. Adnan, and S. Mansor, "A survey on user involvement in

software development life cycle from practitioner's perspectives," in Computer Sciences and

Convergence Information Technology (ICCIT), 2010 5th International Conference on, 2010, pp. 240-

243.

[20] G. McGraw, "Software Security," IEEE Security & Privacy, vol. 2, pp. 80-83, 2004.

[21] R. L. Krutz and R. D. Vines, Cloud security: A comprehensive guide to secure cloud computing: Wiley

Publishing, 2010.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No 1, pp 247-259

259

[22] G. Díaz and J. R. Bermejo, "Static analysis of source code security: Assessment of tools against

SAMATE tests," Information and software technology, vol. 55, pp. 1462-1476, 2013.

[23] K. Sahu, R. Shree, and R. Kumar, "Risk management perspective in SDLC," International Journal of

Advanced Research in Computer Science and Software Engineering, vol. 4, 2014.

[24] B. Potter and G. McGraw, "Software security testing," IEEE Security & Privacy, vol. 2, pp. 81-85,

2004.

[25] P. Hope, G. McGraw, and A. I. Antón, "Misuse and abuse cases: Getting past the positive," IEEE

Security & Privacy, vol. 2, pp. 90-92, 2004.

[26] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh, "Using static analysis to find

bugs," IEEE Software, vol. 25, 2008.

[27] S. Barnum and G. McGraw, "Knowledge for software security," IEEE Security & Privacy, vol. 3, pp.

74-78, 2005.

[28] N. S. A. Karim, T. Saba, and A. Albuolayan, "Analysis of software security model in the scenario of

Software Development Life Cycle (SDLC)," Journal of Engineering Technology (ISSN: 0747-9964),

vol. 6, pp. 304-316, 2017.

[29] J. Whitmore and W. Tobin, "Improving Attention to Security in Software Design with Analytics and

Cognitive Techniques," in Cybersecurity Development (SecDev), 2017 IEEE, 2017, pp. 16-21.

[30] S. Barnum and M. Gegick, "Build security in– Design principles, 2005," ed.

[31] N. Davis, "Secure software development lifecycle processes: A technology scouting report," Carnegie-

Mellon Univ Pittsburgh Pa Software Engineering Inst2005.

[32] C. G. Cobb, "Fundamental Principles behind SDLC Models," Making Sense of Agile Project

Management: Balancing Control and Agility, pp. 131-162, 2011.

