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Abstract 

The simulation of the natural background radiation dataset is research that implemented the application of 

machine learning in radiation physics. This is achieved by training natural background radiation datasets using 

different machine learning algorithms. The background radiation dataset is acquired from a field study carried 

out in the Gwagwalada Area, Abuja, Federal Capital Territory, Nigeria. The different machine learning 

algorithms applied are Random Forest, Naïve-Bayes, Support Vector Machine, and Kernel Support Vector 

Machine. Random Forest algorithms have the best test accuracy of 94.0%, a trained score of 98%, a K-fold 

cross validation score of 96.9%, and efficiently classify the effect of background radiation as harmful or 

harmless. This result established the integrated application of artificial intelligence and therefore indicates that 

machine learning has the ability to classify and categorize the effect of background radiation datasets.  

Keywords: Machine Learning (ML); Random Forest (RF); Naïve-Bayes (NB); Support Vector Machine (SVM); 

Kernel Support Vector Machine (KSVM). 
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1. Introduction 

In the field of science and engineering, simulation, modeling, and prediction are pertinent approaches to 

describing and understanding the dynamism of the real world. Some of the systems employed in making such 

decisions and predictions are artificial intelligence (AI) and machine learning (ML). Machine learning (ML) is a 

field of inquiring, learning, and interpreting, and it is the sole aim of the system (machine) being trained for. “It 

is a field of inquiry devoted to understanding and building methods, methods that model data to enhance 

performance on some set of tasks”[1].  

In some parts of the world, little attention or zero attention is given to background radiation, which is hazardous 

to life and our environment. Background radiation is the amount of ionizing radiation present in the environment 

at a particular location which is not due to the deliberate introduction of radiation sources. Background radiation 

is also the intensity of ionizing radiation in a particular area per unit of time (hour).   Background radiation 

originates from a variety of sources, both natural and artificial. These include cosmic radiation and 

environmental radioactivity such as naturally occurring radioactive materials (NORMs) including radon and 

radium, and man-made fallout from nuclear weapons testing and nuclear accidents.  

Radionuclides or radioisotopes are the main elements that cause ionizing radiation. These radioisotopes are 

heavy nuclei and unstable atoms that have high amounts of energy.  There are classes of nuclei which are 

numerous and unstable elements. They break up or disintegrate spontaneously by emitting some corpuscular or 

electromagnetic radiation of very high energy. In the first case, the atomic number Z or the mass number A or 

both, of the nucleus change, thereby producing an altogether new nucleus. In the second case, the nucleus makes 

a transition from a quantum state of higher energy to one of lower energy. This spontaneous transformation of a 

nucleus is known as radioactivity which was the first nuclear phenomenon to be discovered[2]. 

Radionuclides or radioisotopes are the main elements that cause ionizing radiation. These radioisotopes are 

heavy nucleus unstable atoms having high amounts of energy.  There are classes of nuclei which are numerous 

and unstable elements. They break up or disintegrate spontaneously with the emission of some corpuscular or 

electromagnetic radiation of very high energy. In the first case either, the atomic number Z or the mass number 

A or both, of the nucleus change, thereby producing an altogether new nucleus. In the second case, the nucleus 

makes a transition from a quantum state of higher energy to one of lower energy. This spontaneous 

transformation of a nucleus is known as radioactivity which was the first nuclear phenomenon to be 

discovered[2]. 

The content of radioactive material is found throughout nature and detectable amounts occur naturally in soil, 

rocks, water, air, and vegetation, from which it is inhaled and ingested into the body. Unknowingly, this is one 

of the major causes of medical complications and even radiation exposure to background radiation is another 

worse unknown case. In addition to this internal exposure which occurs due to ingestion and inhalation, humans 

also receive external exposure from radioactive materials that remain outside the body and from cosmic 

radiation from space.  The worldwide average natural dose to humans is about 2.4 mSv (240 mrem) per year[3]. 

This is four times the worldwide average artificial radiation exposure, which in 2008 amounted to about 0.6 
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millisieverts (60 mrem) per year. In some rich countries, like the US and Japan, artificial exposure is, on 

average, greater than natural exposure, due to greater access to medical imaging. In Europe, average natural 

background exposure by country ranges from under 2 mSv (200 mrem) annually in the United Kingdom to more 

than 7 mSv (700 mrem) annually for some groups of people in Finland [4].  

The simulation and training of a system that can selectively identify various background radiation have not been 

commonly studied. Therefore, the use of ML to correctly predict various background radiation, including alpha, 

beta, and gamma background radiation, is necessarily essential. This research aims to employ ML algorithms for 

the simulation and prediction of background radiation (alpha, beta, and gamma). This research focuses on 

exploratory data analysis of background radiation datasets through supervised learning.  

The objectives of the research were: 

 To survey and acquire sufficient background ionizing radiation data from the area of study. 

 To analyze and optimize the collected background ionizing radiation data. 

 To make a preprocessing algorithm for the simulation to be implemented. 

 To train the system that can recognize, and interpret the dataset of alpha, beta, or gamma radiation 

using machine learning. 

 To test and verify the system for simulation of different ionizing radiation. 

 To confirm and establish the standard operation of the system. 

1.1 Background Radiation 

All the background radiations are ionizing radiations, that is; they have non-zero rest energy, and the ability to 

ionize (electron transition) material or substance in their part of propagation. Mainly, background radiation is 

nuclear radiation (particle radiation: subatomic particle emission), while the minor ones are cosmic radiation 

(muons, positrons) [5]. The ionizing radiation consists of subatomic particles or electromagnetic waves that 

have quantifiable energy to ionize atoms or molecules by removing electrons from them. Typical ionizing 

subatomic radiation includes alpha-ray, beta-ray, and gamma-ray. These are naturally created by radioactive 

decay, and almost all are energetic enough to ionize.  

1.1.1 Alpha Background Radiation 

Alpha radiation is characterized by particles that are the same as helium-4 nuclei (two protons and two 

neutrons). They undergo interaction with matter strongly, due to their charge properties and mass number [5]. 

Their usual velocities only penetrate a few centimeters of air or a few millimeters of low degree of thickness of 

the material. This indicates that “alpha particles from ordinary alpha decay do not penetrate the outer layers of 

dead skin cells and cause no damage to the live tissues below”. Also, there are rare alpha particles that possess 

very high energy alpha particles that are composed of about “10% of cosmic rays” and these variants of alpha 

radiation are capable of damaging the body cells and tissues, especially to astronauts, and even penetrating thin 

metal plates [5]. However, they are deflected by the Earth's magnetic field and then shielded away by Earth’s 
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atmosphere. 

Moreover, alpha radiation is dangerous when alpha-emitting radioisotopes are ingested or inhaled into the body 

system. This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. 

Also, per unit of energy, alpha particles are at least 20 times more effective at cell damage as gamma rays and 

X-rays. Examples of highly poisonous alpha-emitters are all isotopes of radium, radon, and polonium. 

1.1.2 Beta Background Radiation 

Beta radiation has two forms namely beta-minus (electron) and beta-plus (positron). Beta-minus (β
−
) radiation is 

made up of an energetic electron [5]. It has more penetrating power than alpha radiation but a lesser one than 

gamma. Beta radiation from radioactive decay can be absorbed with a few centimeters of plastic or a few 

millimeters of metal. Beta radiation is emitted when a “neutron decays into a proton in a nucleus, releasing the 

beta particle and an antineutrino”. Also, there is a variant form of beta radiation from linac accelerators which is 

far more energetic and penetrating than natural beta radiation. This beta radiation is used therapeutically in 

radiotherapy to treat superficial tumors. 

Beta-plus (β
+
) radiation is the emission of positrons, which are distinctly the antimatter form of electrons. When 

a positron slows to speeds similar to those of electrons in the material, the positron will annihilate an electron, 

releasing two gamma photons of 511 keV in the process [6].  

1.1.3 Gamma Background Radiation 

Gamma (γ) radiation is made up of photons with a wavelength less than 3x10
−11

 meters, a frequency greater than 

10
19

 Hz, and an energy value greater than 41.4 keV). Gamma radiation emits radiation which is a nuclear 

process that occurs to eliminate an unstable nucleus of excess energy which involves nuclear reactions 

(production of a new nucleus, nuclear particles, and energy liberation[7]. Unlike alpha and beta particles that 

possess an electric charge and mass, gamma radiation is mainly composed of photons, which have neither mass 

nor electric charge and have a penetrating power that can pass through matter than either alpha or beta radiation.  

Gamma radiation is absorbed mainly by thick or dense layers of material, “where the stopping power of the 

material per given area depends mostly on the total mass along the path of the radiation, regardless of whether 

the material is of high or low density”[6]. All gamma Radiation that approaches the Earth through space is 

absorbed by the atmosphere. Air also can absorb gamma Radiation thereby reducing the energy passing through 

it by half, an average 500ft (150m).  

2.  Methods 

2.1 Description of the Study 

The location of the study was Abuja (9.0765° N, 7.3986° E), Federal Capital Territory, Nigeria. The city is the 

capital and eighth most populous city of Nigeria.[8] . The field study was carried out in the Gwagwalada area, 
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Abuja, Nigeria. Gwagwalada (8.9508° N, 7.0767° E) is a local government area and the main town in the 

Federal Capital Territory in Nigeria. Gwagwalada has an area of 1,043 km
2
 and a population of 157,770 at 

2006.[9] Although, Gwagwalada was more than a quarter of a million as total population in 2023. It is bordered 

by other local governments which are Abaji, Kuje and Kwali. 

This study covered a field study in Gwagwalada residential area. This area is highly populated with residents, 

landfills and dumpsites which are located in this vicinity quite a lot. This area is well polluted and this area is 

chosen due to the following activities: 

 Consumer items: air travel, cigarettes, building materials, hydrocarbon products, food materials etc. 

 Occupational exposure: people and residents that work and harbor around. 

 Inhalation of air: mainly from radon, depends on indoor accumulation from the dumpsite and landfill. 

 Terrestrial radiation from the ground: depends on soil and building materials  

 Cosmic radiation from space: depends on altitude  

The residential area was chosen to check and measure the background radiation dose rate that the resident could 

probably be exposed to due to the activities mentioned above.  

2.2 Design and Technique of the Study 

The study design was an experimental-based and field data collection design. The study involved the 

measurement of the amount of radiation per unit of time from naturally occurring radioactive materials (NORM) 

which are present in the surroundings. The radiation per unit of time is called a dose or dose rate which is based 

on radioactivity, a term used to describe the disintegration of atoms.[10] The unit of absorbed radiation dose is 

the sievert (Sv). Since one sievert is a large quantity, radiation doses normally encountered are expressed in 

millisievert (mSv) or microsievert (µSv).[10] The standard and average radiation exposure due to all-natural 

sources is 2.4 mSv (0.27µSv) a year as published by IAEA, reported by UNSCEAR and established by 

ICRP[11]. This established value was used to indicate and distinguish the measured to be either harmful or 

harmless. Any value less than or equal to 0.27µSv/hr was interpreted as harmless and any value greater than the 

standard is interpreted as harmful. Also, these radiations were categorically the three radiations, namely alpha, 

beta, and gamma. The quantification of these radiations and expression with time is the technique used to record 

the amount of radiation exposure or natural background radiation in an area 

2.3 Instrumentation of the Study 

1. Gamma Scout  

Gamma Scout (model GS2 with serial number A20) is a part of the Gamma Scout series which is a radiation 

measuring device that measures alpha, beta, gamma radiation and also x-rays.[12] The gamma senses ionizing 

radiation using a G-M (Geiger Muller) tube within a thin mica window. The window monitor is optimized to 

detect low and high levels of ionization. Gamma Scout has the following accessories: Cumulative dose function, 

two bytes data memory, audio warning alert, visual indicator of annual dose, audible pulse mode (total count 
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rate per second), dosage exposure chart, multi-functional keypad, digital LCD screen display, a reliable 9v 

battery, measures in mSv/hr or mRem/hr units, wide range temperature (-40 -700C), USB 2.0 data transfer port 

to connect to a personal computer (pc). The Gamma Scout sets a new standard in portable Geiger counter 

performance and functionality. This radioactivity meter has a wide measuring range and is used for diverse, 

long-lasting measurement types.[12] The radioactivity meter provides a certified measurement of the 

environmental radiation as well as of the radiation which is artificially increased up to 500 times over the limit 

value. This radioactivity meter has diverse applications.   

2. Timer and Stopwatch 

A timer and stopwatch were used to record the time when the measurement and recording were done. It is 

necessary to maintain steady and regular timing for the measurement and fixation of the device (Gamma Scout) 

at the point of reading the background radiation. 

3. Pegs 

Pegs are used as point indicators, used to mark out where point where measurement and reading were taken 

2.4 Software Toolkit of the Study 

1. Microsoft Excel  

Microsoft Excel 2016 is the spreadsheet application used for data entry, data sorting and data cleansing. This 

application is also used for formatting the dataset file in csv format. 

2. Python Programming Language 

Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code 

readability with the use of significant indentation[13]. This programming language is used to code, model, train 

and simulate the background radiation. 

2.4 Data Modelling 

Microsoft Excel application was used to optimize and format the natural background dataset for Python 

programming language Firstly, the library functions of the Python programming software were initialized and 

the dataset was imported. Secondly, the information and description of the dataset were computed and also, and 

the visualization of the dataset was performed to view the trend between harmfulness and harmlessness of the 

effect of the background radiation. Thirdly, the dataset was prepared for modelling, training and simulation. 

Recoding, categorization and other data manipulation include, the column for the effect of radiation is coded as 

a binary value (0 and 1), the radiation value categorized as the independent variable, and the summation and 

effect of radiation categorized as the dependent variable. Then, the dataset was trained using the library function 

of the science kit tool. Machine learning algorithms, namely random forest, Naive-Bayes, SVM, and kernel 
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SVM, were used in training and testing the model. A confusion matrix was also initialized for evaluating the 

model and assessing the performance metrics of each machine learning algorithm. Lastly, each algorithm was 

used to simulate the background radiation data in which the machine was trained using different algorithms, and 

each model was tested and evaluated and performance metrics were also computed. 

3. Results 

The dataset of the background radiation collected from the field consists of 1554 data each for alpha, beta and 

radiation. The dataset was used for modeling and training machine learning algorithms namely random forest, 

Naives-Bayes, SVM, and  

3.1 Data Visualization and Optimization 

The visualization of the background radiation dataset is essential because its easily reveals the trend and 

illustrates the variation between the harmfulness and harmlessness of the effect of the natural background 

radiation. “Input 1 is the code used to generate the count plot, which is a bar chart. 

  

Figure 1: Illustration of the effect of background radiation 

Input 2 was the code used to categorize the effect of background radiation namely harmful and harmless as a 

binary value, that is, “harmless = 0”, “harmful = 1”.  Input 1: Code for categorization of the effect of 

background radiation 

In [2]:  

dataset = dataset.replace(['HARMLESS','HARMFUL'],[0, 1]) 

dataset 

Figure 6 
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Out [1]:  

 

Alpha Beta Gamma Summation Effect 

0 0.03 0.005 0.189 0.224 0 

1 0.02 0.001 0.178 0.199 0 

2 0.05 0.078 0.177 0.305 1 

3 0.06 0.12 0.151 0.331 1 

4 0.04 0.011 0.158 0.209 0 

… … … … … … 

1539 0.063 0.007 0.199 0.269 0 

1540 0.085 0.015 0.219 0.319 1 

1541 0.08 0.01 0.226 0.316 1 

1542 0.084 0.01 0.23 0.324 1 

1543 0.086 0.012 0.234 0.332 1 

Figure 7 

3.2 Data Training 

The “sklearn library” in the Python program is a science kit tool, which is used to train and test datasets. The 

“sklearn library” also includes sub-libraries. These libraries were initialized to use machine learning algorithms 

for training the machine so that classification prediction was performed. Also, the confusion matrix is part of the 

library initialized to evaluate the performance of the classification model through the calculation of performance 

metrics. Inputs 3– 7 are Python codes and “sklearn library function” used for training and testing the modelling 

machine. 

In input 3, the “sklearn.model_selection” was used to split arrays or case matrices into random subsets for train 

and test data respectively. 

Input 3: Initialization of the library functions for training and testing 

In [3]:  

from sklearn.model_selection import train_test_split 

Thirty percent (30%) of the dataset was used for training the machine and the remaining 70% was reserved for 

testing and prediction purposes. 

Input 4: Selection and splitting of the background radiation dataset for training and testing 

In [4]:  
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) 

Input 5: Training of the data of the independent variables 

In [5]: 

X_train 

Output 2: Trained data of the independent variables 

Out [2]: 

 

Alpha Beta Gamma 

87 0.081 0.011 0.219 

845 0.076 0.016 0.188 

1063 0.055 0.039 0.18 

434 0.081 0.018 0.22 

1281 0.071 0.002 0.188 

... ... ... ... 

1206 0.081 0.018 0.22 

893 0.01 0.02 0.22 

278 0.086 0.012 0.234 

515 0.005 0.015 0.188 

91 0.072 0.025 0.179 

Figure 8 

Input 6: Training of the data of the dependent variable. 

In [6]: 

y_train 

Output 3: Trained data of the dependent variable 

Out [3]: 

87      1 

845     1 

1063    1 
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434     1 

1281    0 

       .. 

1206    1 

893     0 

278     1 

515     0 

91      1 

Name: Effect, Length: 1080, dtype: int64 

Figure 9 

Input 7: Testing of the data of the independent variables 

In [7]:  

X_test 

Output 4: Tested data of the independent variables 

Out [4]:  

 

Alpha Beta Gamma 

673 0.102 0.012 0.198 

1147 0.096 0.008 0.211 

527 0.01 0.001 0.179 

867 0.074 0.012 0.211 

1191 0.078 0.037 0.173 

... ... ... ... 

1149 0.089 0.02 0.22 

306 0.067 0.024 0.221 

1057 0.076 0.034 0.177 

842 0.075 0.027 0.178 

1189 0.081 0.003 0.231 

Figure 10 
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Input 8: Testing of the data of the dependent variable 

In [8]: 

y_test 

Output 5: Tested data of the dependent variable 

Out [5]: 

673     1 

1147    1 

527     0 

867     1 

1191    1 

       .. 

1149    1 

306     1 

1057    1 

842     1 

1189    1 

Name: Effect, Length: 464, dtype: int64 

Figure 11 

3.3 Random Forest Data Simulation 

Part of the sub-library functions of “sklearn”, which is “sklearn.ensemble”, is a module that includes two 

averaging algorithms based on randomized decision trees. The random forest classifier (RFC) was used to create 

a set of decision trees from a randomly selected subset of the training set.  

Input 9: Initialization of random forest algorithm for training the data 
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In [9}: 

from sklearn.ensemble import RandomForestClassifier 

 

RFC = RandomForestClassifier(n_estimators=100, criterion= 'entropy') 

RFC.fit(X_train, y_train) 

Figure 12 

Output 6: RFA classifier initialized 

Out [6]: 

RandomForestClassifier(criterion='entropy') 

Input 10: Code for prediction of the trained data 

In [10]: 

y_predict_train = RFC.predict(X_train) 

y_predict_train 

Figure 13 

Output 7: Prediction of the trained data, Out [7]: 

array([1, 1, 1, ..., 1, 0, 1], dtype=int64) 

Input 11: Code for computation of the confusion matrix of the trained data 

In [11]: 

from sklearn.metrics import classification_report ,confusion_matrix 

cm = confusion_matrix(y_train, y_predict_train) 

sns.heatmap(cm,annot = True) 

Figure 14 
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Output 8: Computation of the confusion matrix of the trained data 

Out [8]:  

<AxesSubplot:> 

   

Figure 2: Confusion matrix chart of trained data by RFA 

Input 12: Code to generate the performance metrics of the trained data 

In [12]:  

print(classification_report(y_train, y_predict_train)) 

Output 9: Performance metrics of the trained data 

Out [9]: 

              precision    recall   f1-score   support 

           0       1.00      1.00      1.00       289 

           1       1.00      1.00      1.00       791 

    accuracy                           1.00      1080 

   macro avg       1.00      1.00      1.00      1080 

weighted avg       1.00      1.00      1.00      1080 

Figure 15 
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Input 13: Initialization of random forest algorithm for testing the data 

In [13]:  

from sklearn.metrics import classification_report ,confusion_matrix 

y_predict_test = RFC.predict(X_test) 

cm = confusion_matrix(y_test, y_predict_test) 

sns.heatmap(cm,annot = True) 

Figure 16 

Output 10: Computation of the confusion matrix of the tested data 

Out [10]: 

<AxesSubplot:> 

 

Figure 3: Confusion matrix chart of tested data by RFA 

Input 14: Code to generate the performance metrics of the tested data 

In [14]:  

print(classification_report(y_test, y_predict_test)) 
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Output 11: Performance metrics of the tested data 

Out [11]:  

       precision    recall  f1-score   support 

 

           0       1.00      1.00      1.00       111 

           1       1.00      1.00      1.00       353 

 

    accuracy                           1.00       464 

   macro avg       1.00      1.00      1.00       464 

weighted avg       1.00      1.00      1.00       464 

Figure 17 

3.4 Naive-Bayes Data Simulation 

The Naïve-Bayes models are a group of extremely fast and simple classification algorithms that are often 

suitable for very high dimensional datasets. 

Input 15: Initialization of the Naïve-Bayes algorithm for training the data 

In [15]:  

from sklearn.naive_bayes import MultinomialNB 

NB_classifier = MultinomialNB() 

NB_classifier.fit(X_train, y_train) 

Figure 18 

Output 12: Initialized NBA classifier 

Out [12]: 

MultinomialNB() 
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Output 13: Code for prediction of the trained data 

In [16]:  

from sklearn.metrics import classification_report, confusion_matrix 

 

y_predict_train = NB_classifier.predict(X_train) 

y_predict_train 

Figure 19 

Output 14: Prediction of the trained data 

Out [14]:  

array([1, 1, 1, ..., 1, 1, 1], dtype=int64) 

Input 17: Code for computation of the confusion matrix of the trained data 

In [17]:  

cm = confusion_matrix(y_train,y_predict_train) 

sns.heatmap(cm,annot=True) 

Figure 20 

Output 15: Computation of the confusion matrix of the trained data 

Out [15]:  

<AxesSubplot:> 
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Figure 4: Confusion matrix chart of trained data by NBA 

Input 18: Code to generate the performance metrics of the trained data 

In [18]:  

print(classification_report(y_train, y_predict_train)) 

Output 16: Performance metrics of the trained data 

Out [16]: 

      precision    recall  f1-score   support 

 

           0       1.00      1.00      1.00       111 

           1       1.00      1.00      1.00       353 

 

    accuracy                           1.00       464 

   macro avg       1.00      1.00      1.00       464 

weighted avg       1.00      1.00      1.00       464 

Figure 21 

Input 19: Code for prediction of the tested data 
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In [19]:  

from sklearn.naive_bayes import MultinomialNB 

NB_classifier = MultinomialNB() 

NB_classifier.fit(X_test, y_test) 

Figure 22 

Output 17: NBA classifier initialized 

Out [17]:  

MultinomialNB() 

Input 19: Code for computation of the confusion matrix of the tested data 

In [19]: 

from sklearn.metrics import classification_report, confusion_matrix 

y_predict_test = NB_classifier.predict(X_test) 

cm = confusion_matrix(y_test,y_predict_test) 

sns.heatmap(cm,annot=True) 

Figure 23 

Output 18: Computation of the confusion matrix of the tested data 

Out [18]:  

<AxesSubplot:> 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 101, No  1, pp 71-96 

89 
 

 

Figure 5: Confusion matrix chart of tested data by NBA 

Input 20: Code to generate the performance metrics of the tested data 

In [20]:  

print(classification_report(y_test, y_predict_test)) 

Output 19: Performance metrics of the tested data 

Out [19]:  

          precision    recall f1-score   support 

 

           0       0.00      0.00    0.00      111 

           1       0.76      1.00    0.86      353 

 

    accuracy                    0.76       464 

   macro avg       0.38      0.50    0.43      464 

weighted avg       0.58      0.76    0.66      464 

Figure 24 
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3.5 Support Vector Machine Data Simulation 

The SVM algorithm is a supervised learning algorithm used for outlier detection, regression and classification 

that is both powerful and adaptable. 

Input 21: Initialization of the SVM algorithm for training the data 

In [21]:  

from sklearn.svm import SVC 

classifier = SVC(kernel = 'linear', random_state = 0) 

classifier.fit(X_train, y_train) 

Figure 25 

Output 20: SVMA classifier initialized 

Out [20]: 

SVC(kernel='linear', random_state=0) 

Input 22: Code for prediction of the tested data, In [22]:  

print(classifier.predict([[0.95,0.560,0.960]])) 

Output 21: Prediction of the tested data 

Out [21]: 

[1] 

Input 23: Code to generate the accuracy score of the tested data 

In [23]:  

from sklearn.metrics import accuracy_score 

print(accuracy_score(y_test, y_predict_test)*100) 

Figure 26 
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Output 22: Accuracy score of the tested data 

Out [22]:  

76.07758620689656 

Input 24: Code to generate the accuracy score of the trained data 

In [24]:  

from sklearn.metrics import confusion_matrix, accuracy_score 

cm = confusion_matrix(y_train,y_predict_train) 

print(cm) 

accuracy_score(y_train, y_predict_train)*100 

Figure 27 

Output 23: Accuracy score of the trained data 

Out [23]:  

[[  0 289] 

 [  0 791]] 

73.24074074074073 

Figure 28 

3.6 Kernel SVM Data Simulation 

The kernel SVM algorithm is a machine learning which transforms the data into the required form using the 

kernel trick. 

Input 25: Initialization of Kernel SVM algorithm for training the data 

In [25]:  

 

from sklearn.svm import SVC 
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classifier = SVC(kernel = 'rbf', random_state = 0) 

classifier.fit(X_train, y_train) 

Figure 29 

Output 24: Initialized KSVM algorithm 

Out [24]:  

SVC(random_state=0) 

Input 26: Code for prediction of the tested data 

In [26]:  

print(classifier.predict([[0.95,0.560,0.960]])) 

Output 25: Prediction of the tested data 

Out [25]: 

[1] 

Input 27: Code to generate the accuracy score of the tested data 

In [27]:  

from sklearn.metrics import accuracy_score 

print(accuracy_score(y_test, y_predict_test)*100) 

Figure 30 

Output 26: Accuracy test of the tested data 

Out [26]: 

76.07758620689656 

Input 28: Code to generate the accuracy score of the tested data 

In [28]: 
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from sklearn.metrics import confusion_matrix, accuracy_score 

cm = confusion_matrix(y_train,y_predict_train) 

print(cm) 

accuracy_score(y_train, y_predict_train)*100 

Figure 31 

Output 27: Accuracy test of the trained data 

Out [27]:  

[[  0 289] 

 [  0 791]] 

73.24074074074073 

Figure 32 

3.7 Retest of Random Forest Modeled Machine  

The RFA is once again used for retesting the trained data. Below is the successful operation of the random forest 

algorithm model in classifying the effect of natural background radiation. 

Input 29: Code to predict the effect of the natural background radiation 

In [29]:  

y_newpredict = RFC.predict([[0.95,0.560,0.960]]) 

y_newpredict 

Figure 33 

Output 28: Prediction of the effect of the natural background radiation 

Out [28]:  

array([1], dtype=int64) 

Input 30: Code to predict the effect of the natural background radiation 
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In [30]:  

y_newpredict = RFC.predict([[0.02,0.001,0.178]]) 

y_newpredict 

Figure 34 

Output 29: Prediction of the effect of the natural background radiation 

Out [29]:  

array([0], dtype=int64) 

4. Discussion 

The findings from this study using different machine learning algorithms for modelling and simulating 

background radiation datasets had made contributions as part of the widespread application of artificial 

intelligence and machine learning in the contemporary world. Using different machine algorithms which were 

random forest (RF), Navier-Bayes (NB), support vector machine (SVM) and kernel SVM (KSVM), the 

classification of the natural background radiation dataset was achieved and established at various accuracies. 

Each machine could identify and classify whether alpha, beta or gamma radiation was harmful or not.  RF had 

the best accuracy so far. The training accuracy of the random forest was 100%, while NBA was just 67%, SVM 

was 68%, and KSVM was also 68%. The testing accuracies for the machine learning algorithms were; RF 96%, 

NB 68%, SVM 67% and KSVM 67% also. The accuracies were based on the algorithm's other factors namely 

“recall”, “precision” and “F1 score”. The random forest machine algorithm had the best and most efficient 

result. According to Rigatti, the random forest algorithm can identify, classify and predict [14]. The machine 

can visualize and measure the trend of harmfulness and harmlessness of the background radiation dataset. The 

findings from this research revealed there was radiation exposure in the Gwagwalada area, Abuja, Nigeria which 

may be harmful. The study was able to establish the applicable use of machine learning in radiological studies, 

and medical physics. The applicability of machine learning is related to Guillaume and colleagues’ study in 

which a neural network was used in building a physics-constrained stable machine learning-based radiation 

emulator [15]. Sarrut and colleagues also used deep learning, another type of machine learning to model Monte 

Carlo simulation for particle transport [16]. Their study was able to achieve and theoretically establish a Monte 

Carlo Simulation called the Technique Variance Reduction Technique, used to accelerate the processes of dose 

estimation [16]. Additionally, Hafermann and his colleagues. (2022), made use of a random forest machine to 

create a simulation called plasmode simulation [17]. The plasmode simulation was a simulation based on 

subsampling a dataset of about 200,000 individuals from a pharmacoepidemiologic study, used to specify 

patient outcomes [17].  Ivan used ANN to label ionizing radiations [18]. AI and ML were used to optimized 

glioma systems in medical science by Zhang and his colleagues [19] and  Farouk and his colleagues also used 

machine learning for the enhancement of the accuracy of X-ray radiation [20]. Gachancipa used machine 
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learning to build a computational model to detect radiation [21]. 

5. Conclusion 

So far, each ML algorithm has demonstrated its capability and accuracy in classifying natural background 

radiation datasets as either harmful or harmless. In general, the training accuracy of random forest was 100% 

and had the most preferred result, while NBA was just 67%, SVM was also 68%, and KSVM was also 68%. 

Therefore, the testing accuracy for the machine learning algorithms are; RF was 96%, NB was 68%, SVM was 

67% and KSVM was 67% also. The accuracies are based on the algorithm's other factors namely “recall”, 

“precision” and “F1 score”. In conclusion, the random forest machine learning algorithm has the highest 

percentage testing accuracy out of the four machine learning algorithms used to build the model. Therefore, 

random forest is highly recommended for classification analysis modelling for background radiation.  This study 

is subjected to further studies in the area of prediction analysis, using the robust dataset, and future 

implementations. 
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