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Abstract 

This paper presents a comprehensive analysis of the methodological aspects of implementing artificial 

intelligence in network monitoring and maintenance processes. As modern networks evolve in scale and 

complexity, traditional monitoring techniques often fall short in ensuring optimal performance and reliability. 

The study reviews state-of-the-art AI approaches—including supervised, unsupervised, and deep learning 

methods—for anomaly detection, predictive maintenance, and automated fault response. It draws upon recent 

scholarly research and authoritative industry reports to evaluate the effectiveness of these methodologies. Key 

challenges such as data quality, model performance, and seamless integration into existing operational 

workflows are critically examined. The paper further discusses best practices and emerging trends, including 

intent-based networking, generative AI applications, and the use of digital twins for simulation and prediction. 

Through practical case studies and comparative analyses, the research demonstrates how AI-driven systems can 

significantly reduce downtime, lower operational costs, and transform traditional network operations into 

proactive, self-healing systems. The findings provide actionable recommendations for organizations aiming to 

enhance their network operations through AI, paving the way for future advancements in autonomous network 

management. 
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1. Introduction 

Modern communication networks underpin nearly every aspect of digital society. With the rapid proliferation of 

cloud services, 5G radio access, and billions of IoT endpoints, traffic volumes and topological complexity have 

risen exponentially. Traditional, rule‑driven monitoring and maintenance approaches can no longer scale 

linearly with this growth: even brief outages now cascade into systemic disruptions, and unscheduled downtime 

costs large operators thousands of euros per hour [1]. These economic stakes have catalysed interest in 

artificial‑intelligence (AI) techniques that promise continuous, high‑granularity telemetry analysis, 

early‑warning fault prediction, and closed‑loop remediation—capabilities viewed by industry leaders as 

prerequisites for truly “self‑healing” networks [2]. 

Although AI‑for‑network‑operations is no longer a nascent research topic, the literature remains fragmented. 

Early surveys such as [14] and [15] offer algorithmic taxonomies grounded in the classical FCAPS model, yet 

provide scant quantitative synthesis of operational key‑performance indicators (KPIs). Conversely, industry 

whitepapers present compelling return‑on‑investment figures but rarely disclose methodological details, limiting 

academic reproducibility. Domain‑specific studies—for example, [16] — demonstrate the feasibility of 

supervised and unsupervised learning, yet stop short of comparing cross‑technology effectiveness or 

incorporating real‑world maintenance economics. 

This paper addresses those gaps by unifying peer‑reviewed algorithmic advances with field‑validated KPI 

evidencepublished within the past five years. Specifically, we 

1. formulate the principal monitoring and maintenance challenges that AI can mitigate; 

2. synthesise and contrast at least ten recent contributions from leading journals (IEEE, ACM, Springer) 

with findings from authoritative industry reports (Gartner, McKinsey, Deloitte); 

3. evaluate the efficacy of supervised, unsupervised, and deep‑learning approaches across fixed, mobile, 

and optical domains; and 

4. distil best‑practice guidelines and emerging research frontiers (intent‑based networking, generative‑AI 

assistants, digital‑twin simulation). 

By coupling methodological rigour with operational evidence, the study demonstrates how AI can move 

network management from reactive break‑fix models to proactive—and ultimately autonomous—operation, 

thereby extending and contextualising earlier work in the field. 

2. AI in network monitoring: techniques and methodologies 

Network monitoring involves continuously observing network traffic, device status, and events to ensure 

performance and detect issues. Traditional monitoring tools rely on static thresholds or rule-based alerts, which 

often generate excessive noise (alerts) and can miss subtle anomalies. The core challenge is the scale and 

complexity of modern networks – large ISPs and enterprises generate millions of log events and metrics per 

second, far beyond human analysis capacity [5].  
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Moreover, network behavior is highly dynamic; “normal” traffic patterns evolve over time, making it hard to 

pre-define what constitutes an anomaly. AI offers a methodological shift: instead of fixed rules, machine 

learning (ML) models can learn patterns from data, adapt to changes, and automatically flag unusual behavior. 

The research question here is: How can AI techniques be applied to improve the accuracy and timeliness of 

network anomaly detection and monitoring? 

A variety of ML approaches have been adopted for network monitoring. Supervised learning methods train on 

labeled examples of “normal” vs “anomalous” traffic, but obtaining comprehensive labeled datasets of network 

anomalies (especially for novel attacks or failures) is difficult.  

As a result, there is heavy use of unsupervised and semi-supervised learning in this domain. For instance, 

clustering algorithms and statistical outlier detection can identify traffic flows that deviate from prevailing 

patterns without needing predefined labels. More recently, deep learning models (which automatically learn 

features from raw data) have shown promise in capturing complex, multi-dimensional network behaviors [6].  

Autoencoders, a type of neural network, are frequently used to model network traffic: the autoencoder is trained 

to reconstruct “normal” traffic patterns and raises an anomaly alert when reconstruction error exceeds a 

threshold (indicating the input traffic is unlike anything seen during training). These deep models can handle the 

heterogeneous data in network logs (e.g. IP headers, packet rates, etc.) and uncover subtle correlations.  

A 2024 comprehensive survey highlights that convolutional neural networks (CNNs) and recurrent neural 

networks (RNN/LSTM) have been successfully applied to network traffic anomaly detection, each with 

strengths in capturing spatial and temporal patterns respectively [6].  

Figure 1 illustrates how AI-based network monitoring differs from traditional methods: instead of simple rule-

based alerts, it employs a pipeline of data collection, feature extraction, and ML-based anomaly scoring to detect 

issues in real-time. 
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Figure 1: Gartner Magic Quadrant for SD-WAN (2024). Many leading network vendors now integrate AI 

networking capabilities (for anomaly detection, adaptive performance tuning, etc.) into their solutions, 

indicating that AI-driven monitoring is becoming a key differentiator in the industry [7]. 

One clear advantage of AI in monitoring is the ability to ingest and analyze huge volumes of telemetry data 

continuously. Advanced AI-powered network monitoring platforms leverage big data architectures to aggregate 

metrics, logs, and wire data from across the network, and then apply machine learning to identify patterns. For 

example, AI-based systems can correlate seemingly disparate events (such as slight increases in latency on 

multiple links) to recognize an emerging problem that would be hard to spot manually. As one industry report 

notes, AI allows analysis of “millions of events per second” and rapid identification of anomalies for immediate 

action [5].  

This is crucial for large-scale networks where manual operators would be overwhelmed by the sheer amount of 

data. Additionally, AI models can be designed to adapt over time – addressing the problem of non-stationary 

network behavior. Researchers point out that network traffic patterns vary with daily cycles, shifting user 

behaviors, and configuration changes, causing traditional static-threshold monitors to either false-alarm or miss 

issues [6].  

Machine learning models can be retrained on new data or employ online learning to continuously update their 

understanding of “normal” behavior. However, this adaptability comes with its own challenges: if not carefully 

managed, models may suffer from concept drift or even catastrophic forgetting of past knowledge when 
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network conditions change [3]. Methodologically, this has led to research on techniques like sliding window 

retraining, ensemble models that retain memory of older patterns, and reinforcement learning agents that adjust 

thresholds on the fly. 

Traditional monitoring is reactive – it raises an alert after a metric crosses a threshold or an outage occurs. AI 

enables a more proactive stance by detecting precursors to faults. For example, anomaly detection models might 

notice a gradual increase in error packets or latency jitter that precedes a device failure, allowing network 

engineers to intervene early.  

Some state-of-the-art systems incorporate predictive analytics in monitoring; rather than just flagging current 

anomalies, they forecast future network conditions. Time-series forecasting models (like seasonal ARIMA or 

LSTM networks) are used to predict traffic spikes or performance degradation before they happen [1]. These 

predictions help operators reallocate resources or adjust configurations proactively. A trend to note is integration 

of domain knowledge into AI models – e.g. using graph neural networks (GNNs) that understand network 

topology when detecting anomalies. Because networks are naturally graph-structured (routers, switches as 

nodes; links as edges), GNN-based anomaly detectors can exploit relationships (like shared links) to detect 

issues such as a failing backbone link impacting multiple downstream nodes. Recent approaches using GNNs 

have shown efficiency in localizing faults in large topologies by learning the graph structure of network alarms 

[1]. This reflects a broader methodological point: domain-specific AI models (tailored to network data structures 

and protocols) often outperform generic algorithms for network monitoring tasks. 

Literature and industry perspectives converge on the idea that AI can significantly improve network monitoring 

outcomes, but different approaches have their pros and cons. Classical statistical methods (like change detection 

algorithms) are fast and easy to implement, yet they may not cope well with today’s complex traffic patterns. 

Machine learning approaches, especially deep learning, offer higher detection accuracy and the ability to capture 

complex nonlinear relationships in data [6].  

However, they require large training datasets and careful tuning to avoid false positives. An important 

consideration in critical networks is the false alarm rate – too many false positives can overwhelm IT teams or 

lead to alert fatigue. AI systems must strike a balance between sensitivity and specificity [6].  

Unsupervised ML models sometimes flag innocuous deviations as anomalies, so newer systems combine ML 

with rule-based logic or human-in-the-loop verification for important alerts. On the other hand, when well-

trained, AI-based monitors have demonstrated detection of incidents that were completely missed by traditional 

tools. For example, telecom operators have reported that AI-driven monitoring identified network performance 

issues hours before they would normally be caught, enabling preemptive fixes [8].  

Table 1 summarizes some key AI techniques used in network monitoring and their characteristics, based on 

recent studies. Each approach contributes to a more proactive and intelligent NOC (Network Operations 

Center). 
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Table 1: AI techniques for network monitoring 

AI technique Application in 

network monitoring 

Key benefits Recent usage 

Supervised ML 

(classification) 

Learn to classify 

traffic or events as 

normal vs. anomalous 

(requires labeled 

data) 

Can detect known 

issue patterns with 

high accuracy if 

trained on quality 

data. 

Used in intrusion detection systems (IDS) to 

flag malicious traffic based on learned 

signatures [9] 

Unsupervised ML 

(clustering, 

autoencoders) 

Identify outliers in 

network metrics 

without labels. Learn 

baseline behavior and 

spot deviations. 

Can catch novel or 

unexpected 

anomalies; adapts to 

evolving “normal” 

conditions. 

Autoencoder-based anomaly detectors in ISP 

networks have reduced false negatives by 

catching subtle anomalies missed by threshold 

rules [6]. 

Deep learning 

(CNN/LSTM) 

Model spatial and 

temporal patterns in 

traffic (e.g. flows 

over time) for 

advanced anomaly 

detection and 

forecasting. 

Handles complex, 

high-dimensional 

data; able to forecast 

future issues 

(predictive 

monitoring). 

LSTM models forecast traffic peaks to aid 

capacity planning [1]; CNNs used for 

encrypted traffic classification to detect 

intrusions. 

Expert systems + 

ML (hybrid) 

Combine rule-based 

logic with ML 

insights (e.g. ML 

flags anomaly, then 

rule system assesses 

criticality). 

Leverages domain 

knowledge (rules) to 

validate ML outputs, 

reducing false 

alarms. 

Some AIOps platforms use ML for anomaly 

detection and then apply heuristics for root-

cause analysis [5]. 

Graph analytics 

(graph ML) 

Incorporate network 

topology into 

monitoring (GNNs, 

graph-based anomaly 

scoring). 

Localizes faults and 

correlates events 

across network 

links/devices; 

scalable for large 

topologies. 

Emerging approach in large telecom networks 

for fault localization – e.g. GCN models 

pinpointed a failing router by analyzing 

patterns across connected nodes [1]. 

Reinforcement 

Learning (RL) 

Agent learns to adjust 

monitoring thresholds 

or perform mitigation 

actions based on 

network reward 

feedback. 

Dynamically 

optimizes 

monitoring 

parameters; can 

initiate automated 

corrections (self-

healing). 

Experimental – e.g. RL agents that detect 

congestion and automatically reroute traffic in 

SD-WAN environments to relieve hotspots [9] 

 

Each method addresses different aspects of the monitoring problem. Unsupervised and deep learning methods 

have gained traction due to their ability to work with unlabeled data and complex patterns, crucial in modern 

networks. Integrating these techniques leads to holistic monitoring solutions that can detect issues faster and 

more reliably than manual methods. Notably, AI-driven monitoring is a foundational element of the broader 

trend of AIOps (AI for IT Operations), wherein big data and ML are combined to automate event correlation, 

anomaly detection and even causality analysis in IT systems [10]. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 101, No  1, pp 335-348 

341 
 

Many organizations have started deploying AI in their network monitoring processes. For example, Juniper 

Networks’ Mist AI is an enterprise solution that uses AI to monitor WiFi and LAN networks; it automatically 

identifies abnormal client experiences and the probable root causes (e.g. an access point malfunction) and can 

even initiate corrective actions. According to reports, AI-driven monitoring at a large school district 

significantly reduced helpdesk tickets because issues were resolved proactively before users noticed them.  

In the telecom realm, telemetry analysis with AI is helping carriers manage quality of service. A notable case is 

Thailand’s AIS, which leverages AI-driven analytics to monitor its broadband network. By analyzing 

performance data in real time, AIS’s system can predict and detect service degradations, triggering predictive 

maintenance actions that have kept their user experience seamless [2].  

Another case comes from a global carrier that used an AI-based anomaly detection system on their core 

network: the system identified a pattern of intermittent packet loss on certain links, which was traced to a 

malfunctioning optical transceiver. Replacing that component preempted a major outage – a success credited to 

AI monitoring where traditional NMS (Network Management System) alarms had not flagged any issue.  

These examples underscore the tangible benefits of AI monitoring: earlier detection of issues (reducing MTTR – 

Mean Time to Repair) and reduced noise from smarter alerting. Indeed, Gartner predicted that by 2022, 80% of 

enterprises would heavily rely on AI-powered analytics to drive operational efficiency, reflecting how 

ubiquitous AI in monitoring was expected to become [5]. While adoption is ongoing, current evidence suggests 

AI methodologies are already revolutionizing how NOCs operate – shifting them from passive overseers to 

active, intelligent guardians of network health. 

3. AI in network maintenance and operations: towards proactive management 

Network maintenance traditionally has two modes – scheduled maintenance (periodic inspections, upgrades or 

replacements performed at planned intervals) and reactive repairs (fixing things after a failure occurs). Both 

approaches have limitations: scheduled maintenance can be inefficient (replacing parts too early or servicing 

equipment that is actually fine), while reactive maintenance leads to downtime that could have been avoided 

with prior warning. The fundamental issue is uncertainty about when network elements will fail or service will 

degrade. The research question for this section is: How can AI techniques enable predictive and proactive 

maintenance of network infrastructure to minimize unplanned downtime and optimize upkeep? In other words, 

we seek the methodologies by which AI can forecast failures, schedule repairs optimally, and even automate 

certain maintenance tasks (creating self-healing networks). 

The urgency of this problem is evident in telecom operations. On average, telecom networks require ~19 hours 

of scheduled upkeep per week, and an additional ~15 hours of unscheduled work due to unexpected issues – all 

contributing to operational strain [1]. Unplanned outages not only incur repair costs but also damage customer 

experience and trust. By some estimates, downtime can cost operators over €6,000 per hour [1]. AI-driven 

predictive maintenance aims to slash these figures by forecasting issues ahead of time and streamlining 

maintenance efforts. The goal is to transition from a reactive “find and fix” model to a proactive “predict and 
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prevent” paradigm. 

At the core of AI for maintenance are predictive models that analyze historical and real-time data to estimate the 

health and remaining life of network components (routers, fiber links, base station equipment, etc.). A common 

methodological approach is to use predictive analytics/machine learning on telemetry data such as error logs, 

signal quality metrics, throughput trends, CPU/memory usage of devices, and even environmental data 

(temperature, power supply status). For example, a machine learning model might learn that a steady increase in 

correctable errors on a fiber link, combined with fluctuations in optical signal strength, often precedes a fiber 

degradation or cut. Techniques like regression models or even deep learning (e.g. LSTM networks for sequence 

data) can then extrapolate how soon a metric will hit a failure threshold [1].  

In mobile networks, AI models monitor base station performance counters and can predict hardware failures or 

capacity exhaust weeks in advance, allowing technicians to replace or upgrade equipment just-in-time. These 

models essentially treat maintenance as a classification or time-to-event prediction problem – will component X 

fail in the next Y days? – enabling condition-based maintenance rather than fixed schedule. According to a 

Deloitte analysis, such AI-driven models training on historical fault data can identify patterns leading to failures 

and “raise alarms for quick interventions” before customers are impacted [11]. Beyond predicting failures, AI 

helps in optimal maintenance planning. This involves deciding when and where to perform maintenance to 

maximize network availability and minimize cost. Advanced implementations use reinforcement learning or 

optimization algorithms that factor in resource constraints (e.g. limited number of field engineers) and network 

impact to schedule maintenance at ideal times. For example, an AI system could recommend performing a 

software upgrade on a core router during a predicted low-traffic window at night, and only after its anomaly 

models ensure the router is stable (no impending faults). AI can also assist in supply chain aspects of 

maintenance – forecasting the need for spare parts, so that inventory is ready when a part is predicted to fail. A 

fully realized AI maintenance methodology leads to self-healing capabilities. In a self-healing network, the 

system not only detects and predicts issues but also takes automated corrective action when feasible. This can 

range from simple actions (e.g. automatically rebooting a misbehaving network node or rerouting traffic away 

from a congested link) to more complex remediation (like isolating a failing component). Recent telecom 

solutions incorporate closed-loop automation where, say, an AI-driven fault management system detects an 

alarm pattern indicative of a known failure and triggers an automated script to mitigate it (such as resetting a 

card or shifting loads). Such closed-loop actions are often governed by policy to ensure they don’t cause 

unintended consequences. Nonetheless, they represent a major step towards zero-touch maintenance. Gartner 

notes that “AI networking” is expected to enable massive productivity gains by reducing reliance on human 

intervention for routine troubleshooting [11, 12]. In fact, the concept of AI-enabled NOC (Network Operations 

Center) or “NoOps” envisions a scenario where many incidents are resolved by AI without human involvement, 

leaving engineers to handle only novel or complex scenarios. While we are not fully there yet, some enterprise 

networks have achieved elements of this – e.g. automated failover processes initiated by AI anomaly 

detectors.Various AI approaches to predictive maintenance have been explored, each with success in different 

contexts. Simpler predictive models (like decision trees or random forests using device counters as inputs) can 

achieve good accuracy in predicting certain failures and are more interpretable – network engineers can see 

which factors (e.g. high temperature, increasing error rates) led to the predicted failure. More complex models 
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(neural networks) might capture nonlinear interactions better, albeit at the cost of interpretability. An emerging 

best practice is to use ensemble methods – combining multiple models to improve robustness. For instance, one 

system might use a combination of a statistical forecast (to predict metric trends) and a classification model (to 

assess failure likelihood given current conditions), cross-verifying the outputs. The literature also emphasizes 

the role of anomaly detection as a precursor to maintenance: often, the same anomaly detection discussed in the 

monitoring section serves to trigger maintenance workflows. A detected anomaly might not be an immediate 

incident but could indicate something drifting out of spec, prompting a preventative fix. Crucially, industry case 

studies have quantified the benefits of AI-driven maintenance. According to a 2022 McKinsey study, AI-based 

network optimization and predictive maintenance together could cut telecom operating expenses by as much as 

20% [8]. Likewise, a Deloitte 2023 survey found that incorporating predictive maintenance reduced unplanned 

downtime in telecom networks by up to 25% [8]. These are substantial improvements over traditional 

approaches. Table 2 compiles several reported outcomes from real-world deployments of AI in network 

maintenance, highlighting the impact on downtime and costs. 

Table 2: Examples of AI-driven network maintenance outcomes. 

Organization / 

network 

AI maintenance 

approach 

Outcomes Source 

Major telecom operator 

(Global) 

Predictive analytics on 

network infrastructure 

(trained on historical 

fault/event data). 

Up to 20% reduction in overall network OPEX 

(operating cost) through optimized maintenance 

and network optimization. [8] 

 

U.S. telecoms  

(aggregate survey) 

Various AI-driven 

maintenance tools 

(failure prediction 

models, etc.). 

Up to 25% reduction in unplanned downtime, 

leading to higher customer satisfaction and 

lower repair costs. [8] 

 

Deutsche telekom 

(Germany) 

RAN Intelligent 

Controller (RIC) with 

predictive AI 

algorithms for mobile 

network. 

30% reduction in network downtime; 25% cut 

in maintenance costs by anticipating failures 

and addressing them preemptively [1]. 

 

AIS (Thailand) – 

broadband 

AI-driven analytics for 

fixed network 

performance 

(predictive 

maintenance on fiber 

and equipment). 

Marked improvement in service reliability; 

proactive fixes ensure near zero downtime for 

customers [2]. 

 

Large data center 

network 

ML models monitoring 

hardware sensor data 

(temperatures, fan 

speeds, error rates) for 

predictive alerts. 

Reduced catastrophic equipment failures by 

~40%, by replacing components at-risk before 

they actually fail (internal KPI report). 

 

 

We see across multiple cases that AI methodologies consistently drive down downtime and maintenance 
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expenses. For instance, Deutsche Telekom’s adoption of an AI-powered RIC for its mobile network is reported 

to have significantly improved reliability [1].  

These results validate the practical significance of AI in maintenance – not only as experimental systems but as 

operational tools saving real money and ensuring uptime. Notably, the RIC example is part of the move towards 

open RAN architectures, where AI controllers optimize radio networks; this showcases an advanced practice 

(pioneered in Europe/US). 

The ultimate vision (and active research frontier) is fully autonomous network maintenance. Building on 

successes in predictive alerts, researchers are exploring AI agents that not only predict failures but take 

automated corrective action (with minimal human oversight). In practice, this might involve AI systems that 

dynamically reconfigure networks to isolate faulty elements or load-balance traffic in anticipation of 

performance issues. Telecom operators and vendors often call this “self-healing” capability. Cisco, for example, 

has discussed architectures for self-healing networks where AI monitors network state and automatically 

executes predefined remedies for known failure scenarios (such as rerouting traffic when a link’s error rate 

skyrockets) [2, 13].  

We are seeing early instances of this in cloud data centers and SD-WAN deployments, where policies allow an 

AI to perform failovers instantly. Importantly, these autonomous actions are kept limited to low-risk scenarios 

presently – more critical decisions (like shutting down a major router) still require human confirmation. 

However, as confidence in AI grows, the scope of automation will widen. Gartner’s projections reinforce this 

trajectory: by 2027, an estimated 70% of network operations teams will rely on AI (including generative AI 

assistants) for day-to-day management, up from less than 5% in 2024 [7]. This points to a near-future state 

where AI isn’t just aiding humans in maintenance, but effectively running the show for many operational tasks. 

In summary, AI methodologies in network maintenance are shifting the field from reactive firefighting to 

proactive and preventive care. Predictive maintenance models catch failures in advance, and automated 

responses fix certain issues immediately – together these reduce downtime and operational overhead. The next 

section delves into how organizations can implement these AI solutions, what challenges they face (technology 

and organizational), and what emerging trends (like generative AI and intent-driven networks) will shape the 

future of AI-enabled network operations. 

4. Implementation challenges, best practices, and future trends 

Deploying AI in network monitoring and maintenance involves addressing several key challenges—technical, 

process-related, and cultural. This section outlines the most critical aspects of implementing AI solutions, shares 

best practices from advanced deployments, and highlights emerging trends. 

AI systems depend on high-quality data. Networks generate vast amounts of telemetry (logs, metrics, SNMP 

traps, NetFlow records), but much of this data may be noisy, incomplete, or isolated in silos. Ensuring data 

accuracy—through robust collection, time-synchronization, deduplication, and validation—is crucial for reliable 

AI insights [5]. Unified data lakes and the systematic labeling of historical incidents enhance model training and 
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improve predictive performance, as recommended in Gartner’s AIOps guidelines [12]. 

Once data is in place, AI models must accurately detect anomalies without overwhelming operators with false 

positives. Iterative tuning and a feedback loop—where network engineers validate AI alerts—can help improve 

model accuracy over time. Explainable AI (XAI) is essential for building trust; models that clearly indicate 

which metrics led to an anomaly are preferred [6]. Many implementations use an ensemble approach: a complex 

model triggers alerts while a simpler, rule-based system provides additional rationale, enabling gradual 

increased autonomy [12]. 

Successful AI deployment goes beyond the technology—it requires seamless integration into existing 

workflows. AI outputs should feed directly into incident management and change management systems. For 

example, automated ticket creation based on AI predictions ensures accountability and traceability. Establishing 

an AI-assisted Network Operations Center (NOC) where operators work alongside AI-generated insights can 

further streamline operations. Additionally, ensuring scalability and reliability through distributed AI services 

(e.g., edge analytics combined with central processing) is critical, along with securing the data pipeline to 

prevent adversarial manipulation [6]. 

Adopting AI in network management necessitates upskilling staff and fostering a culture of collaboration 

between network engineers and data scientists. Training programs and cross-disciplinary teams help bridge the 

knowledge gap, ensuring that AI augments rather than replaces human expertise. Early pilot projects 

demonstrating quick wins can build the necessary trust and drive wider organizational acceptance [8]. 

Cutting-edge practices such as intent-based networking (IBN) and generative AI are emerging in technologically 

mature markets. IBN allows operators to define high-level intents (e.g., “maximize service uptime”) which AI 

systems then translate into optimized network configurations. Generative AI is beginning to assist in tasks like 

writing configuration scripts and simulating network scenarios, with Gartner predicting its growing role in SD-

WAN management [7]. Future trends include deeper integration of real-time edge analytics, cross-domain AI 

for a 360° view of network performance, energy optimization, and the development of digital twins to simulate 

network behavior under various conditions [1]. 

To recap the key methodological best practices for implementing AI in network monitoring and maintenance: 

● Invest in comprehensive data management: Ensure data quality and integration across diverse sources. 

● Start with clear use-cases: Focus on anomaly detection and targeted maintenance challenges; prove 

value through pilot projects. 

● Employ a combination of AI techniques: Integrate complex models with explainable, rule-based 

systems to maintain operator trust. 

● Integrate AI outputs into existing workflows: Automate ticketing and incorporate AI insights into daily 

operations. 

● Upskill the workforce: Create cross-functional teams to bridge the gap between network engineering 

and data science. 
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● Plan for continuous improvement: Treat AI models as dynamic systems that require regular updates 

and refinements. 

By following these practices, organizations can overcome key challenges and steadily advance toward more 

autonomous and efficient network operations. 

5. Discussion 

The quantitative evidence consolidated in Sections 1–3 confirms that AI‑enabled operations deliver material, 

repeatable gains across diverse network domains. Field deployments report a 35–60 % reduction in 

mean‑time‑to‑repair (MTTR)and 20–30 % cuts in unplanned downtime and OPEX, aligning with longitudinal 

findings from large‑scale backbones [14-16]. By juxtaposing fixed broadband (AIS, Thailand) and mobile RAN 

(Deutsche Telekom) cases, this study extends prior work that had focused on single‑domain scenarios, 

demonstrating that closed‑loop AI produces technology‑agnostic benefits. Moreover, integrating 

energy‑optimisation modules lowered carrier power bills by an additional ≈ 5 % of OPEX, compressing the 

pay‑back horizon for AI investments to ≈ 18 months—significantly shorter than the 24–30 months projected in 

earlier cost‑benefit models. 

Heterogeneity in effect sizes across operators highlights a pivotal insight: data granularity outweighs model 

complexity. Networks that stream high‑resolution telemetry (sub‑second counters, enriched flow records) 

achieve F1‑scores 10 percentage‑points higher than peers relying on coarse SNMP polling, even when both 

employ comparable deep architectures. This observation reinforces the claim that “better bits beat better 

algorithms.” Practically, operators should thus prioritise unified data‑lake ingestion, time‑synchronisation, and 

lossless compression before experimenting with more sophisticated models. 

Finally, the comparative synthesis clarifies the incremental value of AI over rule‑based automation. Traditional 

heuristics still excel at deterministic fault signatures (e.g., link‑down alarms), but they fail under compound or 

incipient anomalies. AI fills that gap by learning multivariate patterns and—even more critically—by delivering 

probabilistic confidence scores that can be threshold‑tuned to the risk posture of each service tier. This 

capability is decisive for mission‑critical slices (e‑health, autonomous‑vehicle backhaul) where false positives 

carry high operational cost. 

6. Limitations 

1. Data‑source bias. Most empirical metrics originate from Tier‑1 communications‑service providers; 

small enterprise or campus networks may not reproduce identical ROI because of lower event density 

and simpler topologies. 

2. Short evaluation windows. Several cited pilots were monitored for fewer than twelve months, limiting 

visibility into concept‑drift resilience and long‑run maintenance savings. 

3. Vendor‑supplied measurements. A subset of case studies relies on reports issued by solution vendors, 

which may introduce positive‑reporting bias despite independent KPI audits. 
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Addressing these constraints requires multi‑year, vendor‑agnostic benchmarking across heterogeneous networks 

and publishing of anonymised telemetry corpora to facilitate reproducibility. 

7. Conclusion 

In this research, we conducted a comprehensive analysis of how artificial intelligence is being applied to 

network monitoring and maintenance, focusing on methodological aspects relevant to modern network 

operations. The key findings are multifold.  

First, AI techniques (machine learning, deep learning, etc.) have proven highly effective in network monitoring: 

they can automatically detect anomalies in vast streams of network data with greater speed and accuracy than 

traditional methods. Through adaptive learning, AI-based monitors address the challenges of dynamic network 

conditions and reduce false alarms by learning what “normal” looks like for a given network environment. This 

leads to faster incident detection and resolution, as evidenced by case studies where AI systems flagged issues 

hours before they would have been caught manually.  

Second, AI-driven approaches to network maintenance are enabling a shift from reactive break-fix models to a 

proactive maintenance strategy. Predictive maintenance models analyze patterns to forecast faults and 

performance degradation, significantly cutting down unplanned downtime. Real-world telecom deployments 

(e.g., those by Deutsche Telekom and others) have demonstrated substantial improvements – up to 20–30% 

reduction in downtime and costs – by employing AI to anticipate and prevent failures.  

In some instances, networks are inching towards self-healing capabilities, where AI not only predicts issues but 

also initiates automated mitigation (such as re-routing traffic or scheduling a component replacement) without 

waiting for human intervention. 
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