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Abstract 

Recent advances in semiconductor technology have highlighted significant challenges in effectively testing 

modern integrated circuits (ICs). As device densities increase and defect mechanisms become more diverse, 

conventional Design for Testability (DFT) methodologies – while indispensable – must contend with 

exponential growth in test complexity. This paper reviews the essential DFT practices, including scan-based 

structures, boundary scan, and built-in self-test (BIST), and examines how these practices address a variety of 

logical fault models. It further explores machine learning (ML) techniques as valuable tools for enhancing 

defect detection and diagnosis. By leveraging classification algorithms such as support vector machines and 

neural networks, ML-driven approaches can reduce test pattern generation time, improve bridging-fault 

coverage, and streamline board- or wafer-level screening. Collectively, this paper underscores how strategic 

synergy between DFT and ML can raise fault coverage, improve diagnostic precision, and contain testing costs 

in the face of ongoing technology scaling. 

Keywords: Design for Testability (DFT); Machine Learning (ML); Scan Testing; Bridging Faults; Open/Short 

Defects; Built-In Self-Test (BIST); Automatic Test Pattern Generation (ATPG); Semiconductor Yield. 

1. Introduction 

Design for Testability (DFT) encompasses a suite of architectural enhancements and methodologies – such as 

scan chains, built‑in self‑test (BIST), and boundary scan – that simplify the testing of integrated circuits (ICs) by 

improving internal observability and controllability while reducing the number of required test patterns [1, 2]. 

As semiconductor technologies advance into deep‑ and sub‑nanometer nodes, modern SoCs now integrate 

billions of transistors, rendering conventional testing approaches (e.g., deterministic automatic test pattern 

generation, ATPG) increasingly intractable due to near‑exponential growth in pattern‑generation complexity and 

fault‑diagnosis overhead [3]. 
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Driven by Moore’s Law [4], device scaling has also introduced a proliferation of subtle defect modes: besides 

classic stuck‑at faults, advanced processes exhibit open/short bridging failures, parametric drifts, and 

intermittent anomalies that can evade standard test vectors [5]. While augmented DFT techniques – such as 

boundary scan at the board level or in‑field BIST – capture a broader fault spectrum, they add significant area 

and timing overhead, may obscure complex failure signatures, and still rely on robust diagnostic algorithms to 

resolve ambiguous symptoms. Moreover, random‑pattern‑resistant or hard‑to‑detect faults demand highly 

targeted ATPG strategies to achieve acceptable coverage [1, 6]. 

In parallel, machine learning (ML) has emerged as a powerful tool in electronic design automation and data 

analytics [7, 8]. Initial applications in IC testing demonstrate substantial benefits: Roy and his colleagues [11] 

reported a 20–30 % reduction in PODEM backtracks – equating to roughly 25 % faster test‑pattern generation – 

when using neural‑network–guided heuristics; Huang and his colleagues [5] achieved up to 92 % accuracy in 

scan‑chain defect classification via support vector machines and multi‑stage ANNs; Xanthopoulos and his 

colleagues [14] improved wafer‑map die inking precision by applying RBF‑SVM clustering; and Sun and his 

colleagues [10] nearly doubled diagnostic resolution in volume diagnosis by merging syndrome data with 

statistical learning. These successes, however, depend on large volumes of accurately labeled failure logs, 

sensitive feature engineering (e.g., SCOAP metrics, logic depth, adjacency indices), and careful integration with 

existing DFT and EDA toolchains – constraints that can limit practical adoption. 

Given this landscape, there is mounting interest in marrying data‑driven, statistical learning methods with 

established DFT flows to address soaring complexity and defect diversity without resorting to brute‑force 

pattern enumeration. By leveraging predictive models and adaptable classification algorithms, test engineers can 

focus physical failure analysis (PFA), accelerate test‑pattern generation, and reduce test escapes. The remainder 

of this paper provides (1) an overview of contemporary DFT strategies and their challenges; (2) a survey of 

ML’s role in enhancing test coverage and diagnosis; and (3) a conceptual, scalable pipeline for integrating 

SVMs, ANNs, and feature‑driven heuristics into structural test processes. 

2. Overview of contemporary DFT methods and the role of machine learning 

Design for Testability (DFT) refers to a suite of architectural and methodological enhancements integrated into 

an integrated circuit (IC) design with the primary goal of simplifying test generation, execution, and diagnosis 

[1, 2]. Among the principal DFT techniques are the following: 

1. Scan test and Automatic Test Pattern Generation (ATPG). In a scan-based design, most sequential 

elements (flip-flops or latches) are arranged into one or more shift-register chains, known as scan chains. 

During test mode, each chain shifts in test data and shifts out captured responses, enabling precise control and 

observation of internal circuit nodes [12]. This structural test approach largely relies on ATPG, which 

algorithmically generates input patterns to detect modeled faults (e.g., stuck-at, bridging) at high coverage. 

However, as circuit complexity soars, conventional ATPG must explore exponentially growing input spaces, 

often leading to significant computational burdens. 

2. Built-In Self-Test (BIST). BIST endows the chip with hardware to generate test stimuli and analyze 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 101, No  1, pp 325-334 

327 
 

outputs internally, thereby reducing reliance on external automated test equipment (ATE) [13]. Typical BIST 

logic includes a linear feedback shift register (LFSR) for pseudo-random pattern generation and a multiple-input 

signature register (MISR) for response compaction. By localizing the test generation and analysis on-chip, BIST 

enables at-speed testing and can detect delay faults missed by slower external testers. BIST is extensively 

employed in memory subsystems (self-repair strategies) and increasingly in high-speed SoC blocks. 

3. Boundary scan and board-level testing. The boundary scan standard (IEEE 1149.1) allows for a daisy-

chained control of IC I/Os via a Test Access Port (TAP), providing effective board-level diagnosis without 

physical probing. This methodology plays a crucial role in swiftly localizing interconnect defects on complex 

multi-layer printed circuit boards (PCBs), especially when physical access is limited [1]. 

4. Memory and Analog BIST. Memory BIST targets on-chip static RAM (SRAM), dynamic RAM 

(DRAM), or embedded flash arrays through specialized march algorithms and redundancy repair logics (Daher, 

Nassar, & Youssef, 2019). Similarly, for analog or mixed-signal blocks, a suite of alternate test or sensor-based 

BIST has emerged – though these test insertions often demand custom analog front-ends [9]. 

Incorporating these DFT structures provides strong observability and controllability essential for diagnosing 

faults, but it also introduces design overhead (area/time). As highlighted in [9], the continual rise in transistor 

count and advanced packaging (e.g., multi-die systems) prompts re-evaluation of classical DFT flows, 

particularly in the face of novel defect mechanisms and cost constraints. 

As illustrated in Thakur and his colleagues [9] (Fig. 1), one example of a bridging-defect classification flow 

under a structural test approach involves combining the structural netlist, simulation-based fault analysis, and 

dedicated DFT hooks (e.g., scan paths, controllability/observability points). This flow leads into a classification 

stage, which can be augmented by pattern recognition or machine learning subroutines. Such an approach 

underscores the central position of DFT-based instrumentation and data collection in modern test methodology. 

 

 

Figure 1: Flow for the classification of bridging defects [9, 15] 

In that figure 1 [9], logical and physical information about potential bridging paths is integrated with output 
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responses from scan-based tests, forming a more holistic framework for defect detection and resolution. 

Introducing machine learning can further refine the classification steps, especially under large-scale failure logs 

and diverse fault models. 

In the realm of semiconductor manufacturing, a “defect” generally refers to any physical fault in the silicon or 

interconnect layers – bridging shorts, open vias, gate oxide breakdowns, or parametric variations – that, at the 

logical level, manifest as anomalies (stuck-at faults, timing hazards, bridging errors, and so forth) [6, 9]. These 

logical fault models guide test generation and failure analysis, but the mapping from physical defect to logical 

symptom is often non-trivial. 

One widely used source of diagnostic information is the failure log, produced either by on-tester data collection 

(e.g., partial responses on a failing scan vector) or built-in test hardware. Diagnosticians may correlate repeated 

fail signatures to specific defect sites or defect classes [10]. Moreover, simulation-based fault injection (i.e., 

injecting hypothetical opens/bridges in a circuit netlist) allows engineers to cross-reference real failing patterns 

with precomputed signatures, thus forming the basis of volume diagnosis and yield learning [14]. 

Nevertheless, the major impediments in defect detection include: 

● Data Volume and Complexity. Modern SoCs produce vast logs (gigabytes) of test responses, 

exacerbating the time needed for offline analysis. 

● Diagnostic Ambiguity. Physical defects may create multiple symptom overlaps, and limited scan 

channels can obscure root causes, leading to suboptimal resolution [6]. 

● Lack of Definitive Fault Models. Variability, especially at advanced nodes (<7nm), spawns partial 

defects, intermittent behaviors, and soft failures that conventional stuck-at or bridging models do not 

fully capture [5]. 

● Localization vs. Repair. Identifying a single defect among billions of transistors is daunting, and post-

diagnosis steps (e.g., memory row/column redundancy, device-level reconfiguration) further elevate the 

engineering effort [6]. 

Such complexity calls for solutions transcending purely algorithmic or brute-force approaches. Here, learning-

based methods prove beneficial: they can extract patterns in fail logs, systematically rank suspicious regions, 

and adapt over time to new, emerging defect behaviors. 

Recent literature extensively documents a variety of machine learning (ML) models – such as Support Vector 

Machines (SVMs), Random Forests, Decision Trees, Artificial Neural Networks (ANNs), and Bayesian 

classifiers – employed for diverse testing tasks [6, 7]. Table 1 provides a concise mapping of common 

test/diagnosis objectives to corresponding ML algorithms, drawing upon both [6] and complementary reviews. 
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Table 1: Selected ML techniques and their typical applications in electronic testing [6, 7, 9]. 

Testing/diagnosis 

objective 

Representative 

ML method 

Advantages Potential limitations 

Board-level functional 

fault diagnosis 

Decision Trees, 

Random Forests 

Fast classification; handles 

missing syndromes 

Prone to overfitting if feature 

engineering is insufficient 

Wafer-level clustering 

& die inking 

K-means, SVM 

(with RBF kernel) 

Good at identifying defect 

groupings on wafer maps 

Sensitivity to kernel parameters; 

requires tuning 

Scan chain defect 

classification (logic 

level) 

Multi-stage ANN, 

Bayesian Inference 

High resolution for 

intermittent fault 

localization 

Complex training procedure; large 

dataset needed 

Test-cost optimization 

in scan compression 

Support Vector 

Regression (SVR) 

Reduces test time by 

modeling cost vs. 

compression 

Performance depends on accurate 

cost labeling; risk of local minima 

ML-based ATPG 

acceleration 

Neural Networks, 

PCA-driven search 

Fewer backtracks, 

improved coverage/time 

trade-off 

Must integrate with existing ATPG 

flow; overhead in building training 

set 

Systematic defect 

detection (volume 

diagnosis) 

Clustering + 

supervised 

classification 

Identifies yield-limiting 

root causes quickly 

May miss rare fault modes if 

underrepresented in training data 

 

Several practical applications highlight how machine learning (ML) can reinforce various aspects of test and 

diagnosis. At the board or wafer level, ML-based classification has been employed to automate die inking; for 

instance, Xanthopoulos and his colleagues [14] describe a pattern recognition-driven procedure that clusters and 

validates failing dies spatially. Moreover, both unsupervised and supervised methods have expedited physical 

failure analysis, as noted by Huang and his colleagues [5].  

With respect to accelerated ATPG, Roy and his colleagues [6] demonstrate that neural networks, trained on 

partial ATPG logs, can reduce the exponential search for test vectors by steering the backtracking algorithm 

toward more promising decisions. Additionally, principal component analysis (PCA) allows multiple testability 

metrics to be consolidated into a single guiding heuristic [11].  

In the context of built-in self-test (BIST), structural signatures gathered through on-chip compression – typically 

via multiple input signature registers (MISR) – may be fed into machine learning modules, which can detect 

subtle or parametric defects overlooked by random test sequences [13]. This last approach proves especially 
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effective for memory BIST, where the ML model rapidly isolates anomalies that arise in small-delay failure 

scenarios.  

Overall, these ML-driven strategies suggest that static, rule-based methods are frequently inadequate when 

confronted with dynamically shifting defect environments and massive test data. By contrast, machine 

learning’s ability to adapt and scale renders it as a vital component of emerging DFT solutions. 

3. Proposed ML-enhanced approach for defect detection 

In contemporary semiconductor manufacturing, bridging, open, and stuck-at defects frequently arise during 

scan-based structural testing at the wafer sort stage [9]. This phase of production typically yields detailed logs of 

passing and failing test patterns, partial debug outputs, and signature-based summaries, making it an 

advantageous point for early defect detection. Detecting defective dies at wafer sort reduces overall 

manufacturing costs by ensuring that inevitably failing chips do not advance further into packaging and final test 

[6]. 

The core data for such an approach usually incorporates failure logs associated with pass/fail outcomes of scan-

based tests, as well as test pattern information generated by Automatic Test Pattern Generation (ATPG) or built-

in self-test (BIST). Additional design context, which includes netlist structure, scan-chain parameters, and any 

specialized controllability/observability inserts, often complements these test logs [1]. Despite the utility of this 

data, its sheer scale and heterogeneous nature call for robust machine learning (ML) methods that can adapt to 

varying fault profiles. 

A dual or hybrid machine learning strategy can be valuable in these settings. One possibility involves Support 

Vector Machines (SVMs) for multi-class classification tasks, especially when distinguishing bridging or 

open/short faults in high-dimensional feature spaces [6]. Additionally, Artificial Neural Networks (ANNs) may 

refine scan-test pattern generation or localize subtle and intermittent defects more effectively. Certain prior 

works demonstrate that neural networks can guide or prioritize suspicious nodes for test generation, thereby 

reducing algorithmic search overhead [11]. While other algorithms (such as Decision Trees or Random Forests) 

remain viable, SVMs and ANNs show particular promise in bridging-fault detection, runtime improvements for 

ATPG, and incremental learning of new fail modes [9]. 

In practice, various authors [6] have proposed conceptual pipelines integrating machine learning with scan-

based DFT flows. Although specific implementation details vary, the sequence of steps follows a coherent flow 

from raw data collection and feature engineering to the development of machine learning models and 

subsequent integration with standard DFT. 

One essential starting point is data consolidation, where raw failure logs from automated test equipment (ATE) 

at wafer sort are collected. These logs often map pass/fail status to specific test patterns, but they can also be 

augmented with partial BIST readings or boundary scan data when available [13]. This consolidated dataset 

includes design metadata, such as scan-chain configurations or controllability/observability points, which are 

crucial for analyzing complex fault scenarios. 
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An equally important step is preprocessing and feature engineering, which involves parsing the fail logs to align 

them with relevant structural details, such as gate-level netlists or adjacency-based bridging indices [1]. 

Controllability/observability metrics, such as SCOAP values and logic depth, can be fused into numeric feature 

vectors that capture the relative difficulty of driving or observing certain nodes. In scenarios with large volumes 

of data, dimensionality reduction (for instance, principal component analysis) may be used to ensure that the 

final ML inputs remain tractable [7]. 

The model development process usually centers on configuring an SVM or ANN to detect or classify bridging 

versus open or stuck-at defects. SVM hyperparameters can be tuned using systematic search procedures, while 

neural networks are often optimized via standard backpropagation with one or more hidden layers [6]. The 

training/validation split can follow the familiar 70%–15%–15% (training–validation–test) approach, though it 

may shift depending on the size and uniformity of the dataset. Model adaptation over time is also possible when 

new fail signatures or updated logs become available. 

Finally, integration with DFT flows ensures that ML outcomes inform or improve the standard test process. For 

instance, an ANN might guide an ATPG engine by assigning higher priority to nodes suspected of harboring 

bridging faults [11]. Alternatively, a trained classifier can flag at-risk dies based on their compressed signatures, 

facilitating early wafer sort rejection or more detailed analysis. Table 2 summarizes key inputs, tasks, and 

outputs at each stage in this conceptual pipeline. 

Table 2: Overview of an ML-driven methodology integrated with standard DFT steps. 

Stage Input ML Task Output 

Data 

consolidation 

Raw fail logs, netlists, 

optional BIST 

– Unified dataset of test logs + 

design features 

Feature 

engineering 

SCOAP metrics, 

adjacency, logic depth 

– Cleaned feature vectors (per 

die/test pattern) 

Model 

development 

Training set of labeled 

defect samples 

SVM/ANN classification or 

regression 

Optimized model(s) for wafer-level 

defect detection 

DFT integration Fresh fail logs + model 

predictions 

ANN-based ATPG guidance, 

SVM tagging 

Refined test vectors, suspect dies 

for deeper analysis 

 

Previous reports have shown that bridging-fault detection often improves when adjacency-based features are 

included [6, 9]. SVM or ANN classifiers that incorporate net proximity indicators have demonstrated a higher 

recall of bridging defects. In addition, neural network models integrated into ATPG flows indicate that test-

pattern generation may be shortened by reducing unproductive backtracking, as highlighted by Roy, Millican, 
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and Agrawal [11]. Furthermore, classification-based analysis of scan-chain fail logs can improve resolution 

between bridging and open/short defects [5], thereby helping practitioners focus their physical failure analysis 

(PFA) resources. 

Recent work underlines the potential for incrementally boosting bridging-fault detection by leveraging ML 

enhancements, relative to baseline DFT approaches without such methods [6]. Although the scale of 

improvement may vary across designs, the consensus is that earlier identification of subtle defect modes, 

especially at wafer sort, is achievable. 

Moreover, combining SVMs, ANNs, or other ML models with scan-based data and structural insights can yield 

focused test strategies, accelerated pattern generation, and fewer test escapes. These conclusions, gleaned from 

multiple sources, underscore the growing preference for data-driven tactics in a domain constrained by tight cost 

margins, expansive fail logs, and complex defect behaviors [9]. The overall methodological outline described 

here provides a flexible blueprint for industrial implementations and further scholarly research into ML-based 

test optimizations. 

4. Discussion 

This work has synthesized insights from several key prior studies to outline a conceptual pipeline for integrating 

machine learning (ML) into Design for Testability (DFT) flows. Roy and his colleagues [11] demonstrated that 

artificial neural network (ANN)–guided heuristics can reduce PODEM backtracks by 20–30 %, corresponding 

to an approximate 25 % speed‑up in test‑pattern generation. Huang and his colleagues [5] reported up to 92 % 

accuracy in scan‑chain defect classification using support vector machines (SVM) and multi‑stage ANNs. 

Xanthopoulos and his colleagues [14] improved die‑inking precision by applying RBF‑SVM clustering to 

wafer‑map failure patterns, and Sun and his colleagues [10] achieved nearly a two‑fold increase in diagnostic 

resolution for volume diagnosis by merging syndrome data with statistical learning. 

Our proposed framework unites these advances by consolidating raw failure logs and DFT metadata, extracting 

predictive features (e.g., SCOAP values, logic depth, adjacency metrics), training SVM/ANN classifiers, and 

feeding their inferences back into scan‑based ATPG or yield‑management systems. In doing so, it offers a 

unified, scalable approach that can adapt to diverse fault models without exhaustive pattern enumeration – 

addressing the computational burdens of conventional ATPG [3]. 

However, several limitations and constraints warrant careful consideration: 

1. Conceptual Scope. The present work remains a high‑level framework without new empirical validation 

on industrial‑scale datasets. Its efficacy must be confirmed through pilot studies using real wafer‑sort 

logs and scan‑chain data. 

2. Data Availability and Label Scarcity. Robust ML training requires large volumes of accurately labeled 

failure logs. In many production environments, such labels may be sparse or inconsistently recorded, 

necessitating semi‑supervised or data‑augmentation techniques. 

3. Feature‑Engineering Sensitivity. The predictive power of SVM and ANN models depends critically on 
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quality features. While SCOAP, logic depth, and adjacency metrics are proven starting points [9], 

emerging defect modes at sub‑7 nm nodes may require novel topology‑ or layout‑based descriptors. 

4. Integration Overhead. Embedding ML modules into existing EDA toolchains and DFT architectures 

introduces both area and runtime costs. Real‑time or in‑field applications (e.g., BIST‑based anomaly 

detection) must balance model complexity against on‑chip resource constraints. 

5. Evolving Fault Signatures. Semiconductor processes continually evolve, producing new defect 

mechanisms. ML models must be periodically retrained or extended to accommodate emerging fault 

classes, which implies an ongoing maintenance effort. 

By candidly acknowledging these constraints, we aim to provide a realistic assessment of the path forward. Our 

survey of previous results demonstrates clear potential for ML‑augmented DFT, yet underscores the necessity of 

targeted validation, robust data pipelines, and tight integration with manufacturing test infrastructures. 

5. Conclusion & Future Work 

The relentless march of technology scaling and the resulting proliferation of intricate fault modes have outpaced 

the capabilities of purely heuristic‑based DFT methods. While scan chains, boundary scan, and BIST remain 

foundational, their efficacy can be substantially enhanced through data‑driven ML techniques. Prior studies – 

spanning ANN‑guided ATPG, high‑accuracy defect classification, wafer‑map clustering, and volume diagnosis 

improvements – validate the premise that learning‑based models can reduce test time by 20–30 %, achieve over 

90 % classification accuracy, and double diagnostic resolution. 

Our conceptual pipeline integrates these insights into a cohesive workflow: consolidating raw fail logs and DFT 

metadata; engineering features reflective of controllability, observability, and topology; training SVM and ANN 

classifiers; and leveraging their outputs to guide ATPG and yield‑management decisions. This framework 

promises more targeted test vectors, accelerated pattern generation, and fewer test escapes. 

Nevertheless, realizing this promise in production requires overcoming tangible challenges: securing sufficiently 

large and accurately labeled log datasets; engineering features attuned to novel nanoscale defect mechanisms; 

embedding ML modules within area‑ and power‑constrained environments; and establishing processes for 

ongoing model retraining as fault signatures evolve. 

Future research should therefore pursue: 

● Empirical Validation. Implement the pipeline on industrial test benches to quantify gains in test time, 

coverage, and diagnostic resolution. 

● Advanced Learning Architectures. Explore graph neural networks to natively capture circuit topology, 

and deep learning for end‑to‑end test optimization. 

● Cross‑Layer Co‑Optimization. Integrate physical‑layout awareness into ML features, enabling 

simultaneous optimization of design and test. 

● In‑Field Adaptation. Develop lightweight, on‑chip inference engines for continuous BIST‑driven 

monitoring and anomaly detection. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 101, No  1, pp 325-334 

334 
 

By addressing these directions, the ML‑guided DFT paradigm can mature into a robust, scalable solution – 

ensuring that test and diagnosis keep pace with the growing complexity of next‑generation semiconductor 

devices. 
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