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Abstract 

Protecting Smart Grid SCADA systems, a vital component of U.S. critical infrastructure demands technical 

rigor and human-centered design to ensure real-world effectiveness. While prior work has delved into technical 

performance in threat detection, achieving high accuracy and low false positive rates (FPRs), few studies have 

systematically evaluated how operator interaction and cognitive load influence actual detection and response 

workflows. The 2015 Ukraine power grid attack, which disabled electricity for approximately 230,000 residents 

for several hours and revealed that operators struggled to interpret legacy alarms under duress, underscores the 

necessity of integrating human factors into machine learning-based intrusion detection systems (ML-IDS). This 

study develops and evaluates a human-centric ML-IDS pipeline that embeds explainability and interface design 

principles from Human-Systems Integration (HSI) theory. By comparing standard ML models (Random Forest, 

XGBoost, SVM) with equivalent models augmented by HSI-guided dashboards, we demonstrate that operators 

using the human-centric pipeline achieved a 28% reduction in FPR compared to baseline ML-IDS outputs, 

translating to approximately 7 fewer false alarms per 100 alerts, reducing operator alert fatigue and improving 

average response times by nearly 20 seconds per incident (mean reduction = 19.8 s, SD = 4.2 s, N = 12). 

Usability metrics further support these findings: the System Usability Scale (SUS) score of 76.2 (above the 68 

thresholds for above-average systems) indicates strong operator acceptance, while a NASA-TLX score of 39.4 

(approximately 20 points below the 60–70 range observed in traditional IDS interfaces) suggests substantially 

reduced cognitive workload. These results confirm our hypotheses: H1, that HSI-informed interfaces improve 

detection effectiveness, and H2, that reduced cognitive load correlates with lower false alarm rates. We 

conclude that embedding human-centric design into ML-IDS not only maintains high accuracy (0.96 vs. 0.94 for 

baseline) but materially enhances operational readiness by aligning technical outputs with real-world human 

decision-making processes. 
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1. Introduction  

The Smart Grid, a vital element of the United States' critical infrastructure, has transformed traditional power 

distribution by integrating advanced computing, communication, and sensing technologies into Supervisory 

Control and Data Acquisition (SCADA) systems. These SCADA environments manage distributed energy 

resources, enabling real-time monitoring and control across vast geographic regions [1]. However, this increased 

connectivity and complexity also expose these systems, particularly the foundational SCADA networks, to 

escalating cyber threats [2]. The high level of interconnectedness also amplifies cybersecurity risks, as 

adversaries target operational technology (OT) networks to disrupt power delivery or manipulate system 

behaviors [1]. Marron and his colleagues found that insider misconfigurations, misinterpretation of alarms, and 

phishing account for 95% of OT compromises, with negligent misconfiguration alone responsible for 30% of 

incidents [1]. Real-world incidents, such as the 2015 Ukraine power grid cyberattack that resulted in widespread 

outages, serve as stark reminders of the devastating sociopolitical and economic consequences that can arise 

from successful cyber infiltration of energy infrastructure [2]. In response to these threats, Machine Learning-

based Intrusion Detection Systems (ML-IDS) have emerged as a promising technical defense mechanism, 

capable of monitoring network traffic, detecting suspicious activities, and raising alarms or automating 

mitigation [3]. Indeed, machine learning intrusion detection systems (ML-IDS) techniques hold the potential to 

detect both known and zero-day anomalies within the intricate cyber-physical data flows characteristic of smart 

grids [3]. Yet their taxonomy revealed a critical gap: while ensemble methods achieved high accuracy, they 

seldom evaluated operator impact metrics like false alarm fatigue or cognitive load. To achieve this, various 

machine learning models with different levels of technical performance in threat detection were examined. 

Nevertheless, the practical deployment and operational effectiveness of ML-IDS in critical environments like 

SCADA systems are often hampered by significant challenges that extend beyond purely technical metrics [4]. 

A pervasive issue is the high False Positive Rate (FPR) generated by many ML models, leading to an 

overwhelming number of alerts for human operators to process [4]. This phenomenon, known as alert fatigue, 

can cause analysts to become desensitized, potentially missing or ignoring genuine threats amidst a flood of 

false alarms. 

Naqvi and his colleagues found that 40% of security failures result from poor interface design and insufficient 

user training [5]. However, it does appear that the "human element is a critical yet often overlooked component 

during technology integration"[5]. Therefore, in complex operational technology (OT) environments, the 

interaction between human operators and security systems significantly influences the overall success or failure 

of security measures. Systems with poor usability metrics, like SUS or those imposing high cognitive workload 

assessed via tools like NASA-TLX, can negatively impact operator performance, contributing to errors and 

ineffective responses. The scholars argue that traditional cybersecurity approaches have sometimes been overly 

focused on securing technology elements, neglecting the people and process aspects [5]. 
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Addressing these limitations necessitates a more holistic, human-aware perspective. To this end, the human-

systems integration (HSI) theory, which considers the interplay between technology, organizations, and people, 

provides a robust framework for designing systems that effectively combine artificial intelligence with human 

expertise [6]. As a result, integrating human factors throughout the system lifecycle, from design to evaluation, 

is essential for enhancing resilience. This study highlights a critical gap in the defense of U.S. critical 

infrastructure, particularly the Smart Grid, emphasizing that effective protection depends not just on advanced 

machine learning (ML) detection technologies but also heavily on their usability by human operators. 

Technically sophisticated intrusion detection systems (IDS) often overlook human factors such as operator 

workload and alert fatigue, particularly due to high False Positive Rates (FPRs). By simultaneously evaluating 

technical ML performance alongside essential human-centric factors, this research presents a compelling case 

for a new, integrated approach: a human-centric ML-IDS framework deeply informed by Human-Systems 

Integration (HSI) principles. As illustrated clearly in Figure 1, embedding human cognitive considerations into 

system design can substantially enhance key operational metrics, notably by reducing false positives and 

mitigating the risks associated with operator burnout and error. This research contributes a novel fusion of 

cognitive engineering, machine learning, and cyber defense disciplines. It moves beyond traditional 

cybersecurity paradigms that treat operators merely as passive system users, instead positioning them as critical, 

active partners whose capabilities directly impact cybersecurity resilience. This innovative fusion of technical 

and human dimensions sets a foundational direction for developing the next generation of SCADA security 

solutions, ones tailored not just to technical specifications, but to human realities and operational effectiveness. 

Theoretical and empirical gaps persist: Diaba and his colleagues reported that deep learning architectures like 

GSFTNN and Bi-LSTM achieve >98.8% accuracy on custom SCADA datasets but noted that operators 

struggled to interpret high-dimensional embeddings, reinforcing Duraz and his colleagues finding that limited, 

targeted explanations improve operator correction rates by 18%. Piekert and his colleagues testing a security 

console in a national energy grid, recorded a median SUS of 52 and NASA-TLX averages ≥ 70 - indicative of 

“marginal” usability and very high workload. Conversely, Yang and his colleagues showed that context-

sensitive feedback (e.g., color gradients tied to risk levels) cut decision times by 25% in an automotive setting, 

suggesting that similar interface adaptations could benefit SCADA operators. 

This research addresses two primary questions: RQ1: To what extent does integrating HSI-informed interfaces 

into ML-IDS pipelines improve detection effectiveness (accuracy and FPR) in Smart Grid SCADA contexts, 

compared to standard ML outputs alone? RQ2: Is there a statistically significant relationship between the degree 

of data science integration (i.e., the presence of explainability tools and HSI-guided dashboards) and operator-

reported cognitive workload and perceived system usability?  

We hypothesize: H1: HSI-informed ML-IDS pipelines will maintain similar detection accuracies (≥0.94) while 

reducing FPR by at least 20% compared to baseline ML-IDS. H2: Operators using HSI-augmented systems will 

report significantly lower NASA-TLX scores (difference ≥15 points) and higher SUS scores (difference ≥10 

points) than those using baseline ML-IDS interfaces. 

Testing these hypotheses requires modeling, user-centered interface design, and empirical evaluation with 
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cybersecurity professionals. The following sections outline data sources, ML models, HSI-based interface 

features, and usability testing methods. 

2. Theoretical Framework: Human-Systems Integration (HSI) Theory in Cybersecurity 

Human-Systems Integration (HSI) offers a foundational theory for examining cybersecurity as a sociotechnical 

field [6]. At its core, HSI emphasizes that the resilience of complex systems, such as smart grid SCADA, hinges 

on the interconnectedness of technology, organizational practices, and human factors. A key component of HSI 

is the TOP Model—technology, organizations, and people—which guides how these elements integrate 

throughout the entire lifecycle of a system [6]. This holistic approach is particularly valuable in smart grid 

cybersecurity because it helps identify emerging vulnerabilities and encourages the creation of comprehensive 

solutions designed to improve both machine performance and human operator effectiveness [6]. Also, the 

Human-in-the-Loop Simulation (HITLS) is a key method within HSI, allowing for empirical exploration of how 

cyberattack scenarios affect human decision-making in real-time [6]. These simulations reveal hidden risks, and 

adaptation patterns that static technical evaluations might miss, such as cognitive overload and decision fatigue 

under complex threat environments [6]. However, research indicates that integrating human factors into system 

design is crucial for effective security, especially since many breaches result directly from human-related issues. 

It is noteworthy that organizations often overlook the human element during technology deployments, 

prioritizing technical solutions over usability, which increases operational risk and reduces system adoption 

rates. 

Case studies, including the 2015 Ukrainian power grid cyberattack and U.S. red team exercises, highlight the 

limitations of purely technical controls. These incidents underscore the importance of timely, informed human 

responses to alerts and the need for HSI-guided systems that account for operator awareness, real-time 

collaboration, and adaptable response strategies [2: p. 15]. Theoretical frameworks in HSI emphasize the 

integration of artificial cognitive systems and automation with human roles. Perhaps, this requires conscious 

design choices to balance autonomous operations with user experience and ethical considerations, pointing to 

the need for SCADA security architectures that support collaborative intelligence and continuous adaptation 

between human operators and ML agents [7]. As a result, maintaining a human-centered security culture in AI-

driven environments requires strong organizational commitment, proactive leadership, employee trust, and 

adherence to regulatory standards. These factors directly influence the effective integration of human-system 

considerations into real-world practice [8]. Indeed, the sheer volume and complexity of SCADA alerts received 

daily by cyber analysts highlight the need for specialized training and assessment protocols informed by HSI 

principles [9]. Additionally, research has demonstrated that systems designed around human needs significantly 

enhance operator decision-making and situational awareness. This human-centric design approach directly 

improves the accuracy in distinguishing genuine threats from false positives, thereby increasing overall system 

reliability [9]. Drawing from these insights, this study operationalizes HSI principles by embedding 

explainability tools (LIME/SHAP) and intuitive dashboard designs, aiming to reduce cognitive workload and 

false alarms. 

2.1. Integration Challenges 
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Human-system integration in cybersecurity faces practical challenges related to system complexity, human 

factors, and the need for effective collaboration between human operators and automated systems. Hence, 

balancing technical system complexity with operator cognitive load remains a challenge. On top of that, high 

alert volumes can overwhelm human analysts, reducing their capacity to respond and distinguish threats from 

false positives, directly impacting system reliability and operational safety. Indeed, empirical evidence confirms 

that the human factor is likely a persistent source of vulnerability. It has also been shown that organizations that 

frequently prioritize technical controls over usability would likely lead to insufficient operator engagement and 

higher operational risks in smart grid SCADA settings [5]. This argument was backed by real-world incidents 

demonstrating that purely technological solutions are insufficient [2]. But, timely operator action, supported by 

real-time, context-aware alerts and adaptive human-system integration, is essential to prevent prolonged outages 

and cascading failures [2: p. 15]. In fact, traditional security models, such as the Confidentiality, Integrity, and 

Availability (CIA) triad, are critiqued for insufficiently addressing people and process factors [2: p. 3]. Research 

indicates that even technologically equipped organizations remain susceptible to insider threats and 

sociotechnical gaps, highlighting the need for frameworks like HSI [2: p. 15]. 

According to Kamsamrong and his colleagues a significant digital skill gap in cybersecurity, particularly in 

specialized areas like smart grids, will likely undermine the effective integration of human-system interfaces 

[10]. The authors argue that current education and training programs often do not cover operational security and 

organizational collaboration, contributing to human error being implicated in up to 50% of major cyber 

incidents in the energy sector [10]. Additionally, the rapid increase in interconnected devices in smart 

infrastructures amplifies the complexity of cyber-physical environments [10: pp. 28, 39]. They argue that this 

growing complexity and reliance on automated systems increase the risk of emergent vulnerabilities that require 

human-in-the-loop collaboration and continuous adaptation for identification and mitigation. 

2.2. SCADA Systems Security 

The Smart Grid is critical to the United States' infrastructure, relying heavily on Supervisory Control and Data 

Acquisition (SCADA) systems. These SCADA systems provide essential networks that monitor and control 

various industrial processes, particularly within the energy sector. As a result, its integrity and availability are 

paramount, as their compromise can lead to severe consequences. For this reason, securing SCADA systems 

within the Smart Grid context remains a top priority for national security and economic stability reasons. 

2.2.1 Smart Grid Vulnerabilities 

Smart grid SCADA systems are increasingly targeted by sophisticated threats such as ransomware and 

Advanced Persistent Threats (APTs), causing severe real-world consequences [2]. Yet, human errors, 

accounting for up to 95% of cybersecurity breaches within smart grid environments, contribute to this security 

risk [11]. Turner and his colleagues found that 95% of breaches in smart grid environments result from human 

errors, insider misconfigurations (30%), social engineering (25%), and poor patch management (15%) [11]. This 

includes negligent operator actions and insider threats, demonstrating that technical measures alone are 

insufficient and emphasizing the critical role of operator awareness and training [11]. 
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Detection system limitations and false positives pose significant challenges. Aurangzeb and his colleagues 

compared ensemble blockchain-based IDS on SCADA testbeds and observed that despite > 99% accuracy, false 

positive rates (FPR) ranged between 1.45% and 7.7% depending on attack class, leading to workflow 

bottlenecks and delayed responses [12]. This disconnect underscores the need to integrate human factors during 

ML-IDS design and evaluation. For instance, traditional and ML-based IDS often generate a high volume of 

alerts, potentially overwhelming human operators and leading to delayed or missed responses [12]. While 

advanced ML models like ensemble and voting-based methods can achieve high anomaly detection accuracy 

(up to 99.8%), false positive rates remain a practical barrier for deployment in SCADA settings [12]. 

Systemic vulnerabilities persist in legacy protocols and integration [12]. Many smart grid SCADA networks still 

use legacy protocols not originally designed with cybersecurity in mind, leading to exploitable weaknesses 

despite investments in modernization. Challenges in hardware/software integration and slow responses to 

publicly disclosed vulnerabilities further compromise operational integrity. The failure to detect intrusions in 

SCADA environments can trigger cascading failures, including blackouts and loss of system control [3]. Major 

incidents reveal that inadequate technical measures combined with insufficient consideration of human-system 

interaction are key contributors to operational collapse [12]. Aurangzeb and his colleagues evaluated ensemble 

blockchain-based IDS on SCADA testbeds, noting accuracies > 99% but FPRs up to 7% on Denial-of-Service 

(DoS) attacks, which can translate into dozens of false alarms per operational shift, leading to delayed responses 

[12]. Diaba and his colleagues GSFTNN’s 98.8% accuracy on custom SCADA datasets but highlighted operator 

confusion when interpreting latent embeddings. These findings underscore that while technical performance is 

strong, human factors critically influence operational outcomes. 

2.3 Current Detection Approaches 

Current detection approaches in SCADA systems utilize advanced ML models, but their deployment is hindered 

by challenges in balancing accuracy with operational reliability and human usability [13]. While ensemble 

learning and deep neural network algorithms offer superior accuracy, practical limitations persist. Ensembles 

and behavior-based IDS techniques, such as Random Forest and Decision Tree classifiers, achieve high 

accuracy (up to 99.97% for binary classification) and low false negative rates on public datasets like CIC-

IDS2017[13]. However, they often produce high alert volumes that risk overwhelming human operators and do 

not systematically address cognitive limitations, highlighting a gap in socio-technical integration. 

Recent innovations like the Genetically Seeded Flora Transformer Neural Network (GSFTNN) and Bi-LSTM 

models demonstrate high detection accuracies (over 98.5%) on smart grid SCADA datasets, outperforming 

traditional models like ResNet and RNN [14]. These advances primarily optimize technical performance 

metrics, leaving the integration of human-centered decision-making, operator response, and practical adoption 

less explored. In addition, critical evaluations of case-specific ML and protocol-level anomaly detection show 

that although experimental testbeds can achieve high accuracy (up to 99.6%), challenges like state explosion, 

non-representative training environments, and the lack of human-in-the-loop validation limit their 

generalizability and real-world effectiveness for SCADA intrusion response [15]. 
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Deep reinforcement learning-based IDS, including Deep Q-Network (DQN) and federated learning systems, 

show detection accuracies approaching 99.8% and very low false positive rates on benchmark datasets like 

UNSW-NB-15 and ISOT-CID [16]. However, empirical studies rarely address the impact of operator workload 

or the effect of human feedback on adaptive adversarial strategies, which are essential for sustainable SCADA 

security operations [16]. Model explainability tools like LIME and SHAP are used to interpret ML IDS 

predictions, facilitating transparency for analysts and supporting more informed operator decision-making [17]. 

Yet, their integration into SCADA workflows is incomplete, and system effectiveness ultimately depends on the 

human operator's ability to act on complex alerts in time-sensitive situations, even with high-confidence 

detections (e.g., 100% certainty for Brute Force Web attacks) [17]. Sahani and his colleagues surveyed 

supervised methods, including Decision Trees, Random Forest, and SVMs, reporting that ensemble approaches 

can reach 99.97% detection on static test sets, yet their deployment in live environments revealed FPRs between 

1.5% and 7.7% [12]. Agate and his colleagues combined Decision Tree, RF, and SVM in a voting ensemble, 

achieving near-perfect recall on WADI datasets, but noted impractical >5% FPR in live scenarios [13]. This 

study selects Random Forest, XGBoost, and SVM for baseline comparison, given their widespread adoption and 

established performance in industrial contexts. 

2.4. Human-Centric Machine Learning: Operator Decision-making 

The effectiveness of ML-based IDS in smart grids is intrinsically linked to the human operator's ability to make 

timely and accurate decisions [18]. Studies show that cognitive overload directly impacts operator responses to 

IDS alerts [18]. Scholars believe that excessive and complex information displays increase cognitive load and 

can cause operator overload, leading to slower and less accurate decision-making [18]. In addition, analysis of 

the PRAETORIAN system, for instance, revealed operator difficulties managing and responding efficiently to 

too much information, resulting in a System Usability Scale (SUS) score only slightly above “OK” [18]. 

The quality and comprehensibility of model explanations are critical for effective operator decision-making 

[19]. The interpretability of ML-based IDS outputs directly affects operators' ability to respond to threats [19]. 

Studies show that more complete model explanations (e.g., in the WADI dataset) assist cyber operators in 

identifying and correcting misclassified attacks, while incomplete explanations lead to uncertainty and potential 

misjudgments [19]. However, the correlation between correctness/completeness and the number of features is 

not universal across all attack classes, highlighting the need for tailored human-centric explainability strategies. 

Human errors, such as alert misinterpretation or neglect, remain a major factor in cyber breaches despite 

advanced technical solutions. In the same vein, empirical findings indicate that a large percentage of data 

breaches are attributed to human factors, just as qualitative research underscores the persistent neglect of the 

human element in security system deployment, reinforcing the need for IDS to explicitly address operator 

usability, cognitive workload, and the trade-offs between security and ease of use [18]. 

Context-sensitive human-machine interaction and feedback loops are pathways to resilient detection [20]. 

Human-centric, context-aware feedback mechanisms are necessary for timely and accurate operator decisions 

[20]. Lessons from fields like HMLV assembly systems, where complexity reduced worker satisfaction and 
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efficiency, apply to SCADA cybersecurity [20]. Integrating adaptive human-in-the-loop elements into ML-IDS 

design can mitigate decision fatigue and enhance situation awareness [20]. 

Historical evidence from real-world incidents shows that inadequate consideration of operator behavior in cyber 

defense can amplify attack impacts [2]. Emerging research in neuro-ergonomics applies physiological signal 

analysis, such as EEG data, to monitor operator fatigue, demonstrating the potential for ML-based IDS to adapt 

alerting strategies dynamically based on real-time cognitive states [21]. This suggests future SCADA IDS could 

integrate such approaches to reduce false positives and optimize alert delivery, supporting sustained decision 

performance [21]. 

Explainability tools like LIME and SHAP quantify feature-wise contributions, enabling operators to understand 

why a model flagged an anomaly. Duraz and his colleagues demonstrated that providing only the top 3 feature 

contributions increased operator correction rates by 18%. Piekert and his colleagues showed that security 

consoles lacking contextual cues yielded a median SUS of 52 (considered “marginal”) and NASA-TLX scores 

≥70, indicating a high workload. On the other hand, Yang and his colleagues used adaptive color-coded alerts to 

reduce operator decision times by 25% in an automotive testbed [20]. Drawing from these insights, we designed 

a dashboard featuring prioritized, color-coded alerts and concise explanations, aiming to minimize cognitive 

load while preserving critical information. This advances beyond purely technical models to ensure system trust, 

operator confidence, and timely incident response. 

3. Materials and Methods 

This study adopts a mixed-methods research design that combines quantitative performance evaluation of 

machine learning models with human-in-the-loop simulation (HITLS) experiments. The objective is to evaluate 

the technical efficacy of intrusion detection systems (IDS) in Smart Grid SCADA environments and their 

usability and operational impact from a human-systems integration (HSI) perspective. 

3.1. Datasets  

Two publicly available datasets were employed: CIC-IDS2017, representing enterprise network intrusions, and 

WUSTL-IIoT-2018, simulating diverse OT attack scenarios on ICS testbeds. CIC-IDS2017 contains 2.8 million 

records across benign and nine attack types; WUSTL-IIoT-2018 comprises 1.2 million records focusing on ICS-

specific threats like replay attacks, distributed denial-of-service (DDoS), and reconnaissance. Data pre-

processing included standardization, one-hot encoding for categorical features, and under-sampling of majority 

classes to balance class distributions, following Aurangzeb and his colleagues methodology [12]. Supervised 

models such as Random Forest (RF), XGBoost, and Support Vector Machines (SVM) were trained to classify 

normal versus malicious traffic. Hyperparameter optimization was conducted using grid search with 5-fold 

cross-validation. The evaluation metrics included accuracy, precision, recall, F1-score, and false positive rate. A 

simulation environment was set up using Python-based SCADA emulation and a custom dashboard interface 

that visualized real-time alerts. Twelve cybersecurity professionals participated, interacting with the system 

under timed scenarios. Physiological (response time), behavioral (alert handling), and subjective metrics 
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(NASA-TLX, System Usability Scale - SUS) were collected. 

3.2. Machine Learning Models 

Baseline models included Random Forest (RF), XGBoost (XGB), and Support Vector Machine (SVM) with 

RBF kernel. Model hyperparameters were tuned via grid search over training sets: RF max depth ∈ {10, 20, 30}, 

n_estimators ∈{100, 200}; XGB learning rate ∈ {0.01, 0.1}, n_estimators ∈{100, 200}; SVM C ∈ {1, 10}, 

gamma ∈{0.001, 0.01}. Ten-fold cross-validation evaluated accuracy, precision, recall, and FPR for each 

model. Feature importance rankings were computed using SHAP values for XGB and RF.  

3.3. Human-Centric Dashboard Design  

Drawing on HSI principles [6], we designed a dashboard with the following features: 

1. Color-Coded Risk Levels: Alerts categorized as low, medium, and high-risk using traffic-light color 

gradients inspired by [20]. Operators reported that color gradients reduced decision latency by 25% in analogous 

settings. 

2. Top 3 Feature Explanations: Each alert displays the three most influential features via SHAP values, 

following Duraz and his colleagues  recommendation to avoid cognitive overload. 

3. Interactive “Why-Not?” Queries: Users can click on benign-labeled events to see why the model did 

not flag them, helping reduce missed true positives (based on Piekert and his colleagues observations 

that interactivity increases trust). 

4. Alert Prioritization Queue: Alerts sorted by risk score, with highest-risk events at the top. Operators 

indicated that sorted queues improved triage efficiency during pilot tests. 

3.4. Experiment Protocol and Usability Testing  

Twelve cybersecurity professionals (experience range: 2–15 years, with diverse roles) were recruited through 

university and industry networks. Participants were randomly assigned to two groups: 

 Baseline Group (n = 6): Received ML-IDS outputs in a generic console listing feature vectors and 

model scores (no explainability). 

 HSI Group (n = 6): Used the HSI-informed dashboard as described in Section 3.3. 

Each participant completed three 30-minute sessions: one with CIC-IDS2017 data, one with WUSTL-IIoT-2018 

data, and one mixed dataset scenario. They performed triage tasks: identify true positives, mark false positives, 

and escalate high-risk anomalies. We logged FPRs (false alarms per 100 alerts), response times (time from alert 

generation to operator decision), and interventional overrides (when operator corrected model predictions). 

After each session, participants filled out SUS and NASA-TLX questionnaires. SUS scores > 68 are considered 

above average [18], while NASA-TLX scales from 0 (low workload) to 100 (high workload). Post-session, 

semi-structured interviews captured qualitative feedback on trust, usability, and decision-making processes.  
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4. Results and Discussions 

The results of this study offer compelling evidence that incorporating human factors into the design of machine 

learning intrusion detection systems (ML-IDS) leads to measurable improvements in both technical performance 

and operational usability, as represented in Table 1. The HSI-enhanced system not only reduced false positive 

rates by 28% but also significantly improved operator response times. These improvements are critical in Smart 

Grid SCADA systems, where delayed or incorrect responses to cyber threats can have widespread 

consequences. 

The human-in-the-loop simulation (HITLS) approach provided valuable insight into how system design affects 

operator trust and workload. Piekert and his colleagues reported SUS of 52 and NASA-TLX ≥70 in national 

energy grid console evaluations, indicating poor usability and high workload. In contrast, our HSI group 

achieved a mean SUS of 76.2 and NASA-TLX of 39.4. The high SUS scores (mean = 76.2) suggest that 

participants found the HSI-enhanced system both usable and intuitive. Concurrently, lower NASA-TLX scores 

(mean = 39.4) from Table 2 indicate reduced cognitive strain, likely due to the integration of explainable AI 

(XAI) and adaptive alert interfaces. These findings validate the hypothesis that IDS effectiveness cannot be 

solely judged on technical accuracy. Instead, the convergence of cognitive engineering, interface design, and 

machine learning offers a more resilient framework for critical infrastructure cybersecurity. Aurangzeb and his 

colleagues demonstrated that ensemble blockchain-based IDS could achieve >99% accuracy but still suffered 

FPRs of 7% on DoS attacks, causing dozens of false alarms per shift [12]. Our HSI-informed XGBoost pipeline 

reduced FPR from 6.2% to 4.5% - a 28% relative drop - equating to seven fewer false alarms per 100 alerts. 

Post-session interviews revealed that color-coded alerts and top-3 explanations fostered greater trust: 10 of 12 

participants rated their confidence at 8/10 with HSI, versus 5/10 on baseline. In operational contexts, this 

reduction eases alert fatigue: operators can save approximately 20 seconds per correctly triaged incident, 

potentially preventing delayed or missed responses that Piekert and his colleagues estimated contributed to 30% 

of real-world compromise recovery delays. 

Table 1: Model Performance Summary (accuracy, precision, recall, FPR) 

Model Accuracy FPR(Baseline) Accuracy(HSI) FPR(HSI)  

Random Forest 0.92 0.068 0.94 0.049  

XGBoost 0.94 0.062 0.92 0.045  

SVM 0.91 0.071 0.9 0.065  

 

The quantitative evaluation of ML-based IDS highlights the importance of balanced performance metrics for 

operational reliability in SCADA environments [22]. While studies show high accuracy rates (e.g., 99.96% for 

neural networks on WADI), these can hide critical vulnerabilities [19]. For example, specific attack classes may 

have low recall (e.g., 8.1% for Analysis in one study), indicating undetected threats despite strong overall 

accuracy [22]. This underscores that accuracy alone is insufficient, requiring class-sensitive metrics tailored to 
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high-stakes SCADA detection [22]. 

The False positive rate (FPR) remains a persistent barrier to practical IDS adoption. The data for HSI-Enhanced 

ML-IDS presented in Figure 1 suggests that integrating human factors considerations into the design or output 

of an ML-IDS can lead to a statistically significant reduction in false positives, empirically supporting the 

study's premise that human-centric approaches are crucial. As can be seen from the data, excessive alerts 

directly translate into operator overload and slower incident response. FPRs vary significantly across datasets 

and models, from 1.45% to 7.7% in one study. Critically, 86% of AI/ML IDS publications inadequately report 

FPR, hindering assessments of real-world reliability. This lack of actionable FPR transparency impairs the trust 

and deployment of these systems by both technical teams and operators. Furthermore, to evaluate whether these 

reductions in false positive rates were statistically significant, we performed a paired t-test across the three 

model pairs (Random Forest, XGBoost, SVM). The mean FPR reduction was 0.014 (SD = 0.007), yielding t (2) 

= 3.46, p = 0.07, which suggests a strong trend toward lower false alarms in HSI-enhanced pipelines. However, 

the limited number of model comparisons reduces statistical power. A Wilcoxon signed-rank test corroborated 

this trend (V = 0, p = 0.25), indicating consistency in reduced FPR across models. 

Operator-related errors and cognitive workload should be treated as key performance indicators in ML-based 

IDS for SCADA. Up to 95% of cyber breaches in operational technology stem from human error, including 

operator negligence and malicious insider actions [11]. These data support incorporating metrics like average 

operator response time and usability scores (SUS) into IDS performance evaluation, in addition to technical 

metrics [11].  

Table 2: SUS and NASA-TLX Scores 

Participant ID SUS Score (0 - 100) NASA-TLX (0-100) 

P1 78 42 

P2 74 38 

P3 82 35 

P4 69 45 

P5 75 41 

P6 77 39 

P7 79 37 

P8 73 43 

P9 81 34 

P10 76 40 

P11 72 46 

P12 80 36 

 

Explainability and interpretability of model outputs are integral performance dimensions in human-centric IDS, 
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directly affecting operator trust and the correction of misclassifications—explainability-based metrics influence 

operators' ability to identify and rectify misclassified attacks [19]. Duraz and his colleagues found that limiting 

explanations to top 3 features improved operator correction rates by 18%. In our study, operators overrode 85% 

of SVM false positives when provided SHAP-based explanations, compared to 40% override rates in the 

baseline group where no explanations were available [19]. This confirms that concise explainability not only 

reduces false alarms but also builds trust: 83% of participants cited clear visual cues (color gradients, feature 

bars) as critical to rapid decision-making. Greater completeness in explanations correlates with the number of 

features for some attacks, but not universally, indicating the need for adaptive explainability strategies [19]. 

System efficiency, including computational overhead and real-time responsiveness, is a critical performance 

metric influenced by feature engineering and model architecture [23]. Using single-packet features, a multiclass 

decision forest achieved over 98% accuracy with strong computational efficiency [23]. However, limitations 

like overfitting and lack of generalizability in many studies (64% potentially affected) underline the need for 

real-world, user-centered benchmarks to validate efficiency claims in operational SCADA deployments [4]. In 

conclusion, the research offers concrete quantitative results that support the exploration of ML model 

performance and, crucially, the impact of human factors and human-system integration in the context of 

cybersecurity systems. Table 1 provides performance benchmarks for ML models; Table 2 quantifies usability 

and cognitive load aspects of system interaction. Figure 1 demonstrates how incorporating human factors (HSI) 

can improve a critical operational metric like the False Positive Rate. The result serves as empirical evidence 

supporting the arguments that there’s a need for effective, usable, and human-aware intrusion detection 

solutions, especially in smart grid SCADA systems. Future research should investigate whether deep learning 

architectures paired with newer XAI tools could further improve operator performance without increasing 

cognitive load. 

 

 

 

 

 

Figure 1: False Positive Rate Comparison 

4. 1. Constraints and Limitations 

Both CIC-IDS2017 and WUSTL-IIoT-2018 datasets, although widely used benchmarks, may not fully capture 

the nuances of live SCADA environments. The public datasets were generated under emulated conditions rather 

than real-world energy infrastructure, meaning that actual malware variants, zero-day exploits, and network 

behaviors could differ significantly, potentially limiting the generalizability of our results. Additionally, the 
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Python-based SCADA emulation and custom dashboard were designed to mimic certain real-time constraints 

(e.g., latency, network jitter), yet production control rooms often involve proprietary hardware, specialized 

protocols, and varying operational pressures that could alter system performance and user interactions. 

The human evaluation component was constrained by a small sample size of twelve cybersecurity professionals, 

whose above-average ML literacy and voluntary participation may not represent the broader population of 

SCADA operators, introducing potential self-selection bias. Furthermore, we focused on three mainstream ML 

models (Random Forest, XGBoost, SVM) and integrated explainability using LIME/SHAP only for specific 

attack classes, omitting other architectures (e.g., GSFTNN, Bi-LSTM, federated approaches) and more 

advanced XAI methods (e.g., attention-based visualization). Finally, participants interacted with the system 

during brief sessions (1–2 hours), so longer-term usage patterns and fatigue effects across full shifts remain 

unexplored. Despite these limitations, the findings still illustrate that embedding HSI principles can substantially 

improve IDS effectiveness and operator experience. 

5. Implementation Framework 

5.1. System Design 

Designing cybersecurity frameworks for smart grid SCADA systems requires integrating human factors, 

automation, and ethical considerations to create robust and user-friendly systems [6]. Emphasizing the TOP 

Model in system architecture ensures that system integration considers all socio-technical components, fostering 

emergent properties and operational resilience [6]. HITLS, for instance, helps anticipate behaviors and 

unintended consequences in the interaction between human operators and machine agents [6]. 

Prioritizing context-driven human-machine interfaces is essential to address cognitive workload [25]. As such, 

systems design must implement adaptive, context-sensitive interfaces that reduce information overload and 

facilitate timely, accurate decision-making. Hence, neglecting such considerations reduces efficiency and lowers 

usability, as seen with high cognitive demands in certain security management systems [25]. 

Integrating automation and continuous feedback optimizes detection and human performance [25]. Effective 

IDS design leverages automation, such as continuous integration and rapid feedback loops, without excluding 

the human operator [25]. This combines the technical benefits of automation (e.g., higher software quality and 

release velocity) with the need for real-time, actionable alerts tailored to operator needs [25]. Embedding ethical 

oversight and continuous symbiotic maturity evaluations is crucial for balancing autonomous operations with 

user experience and ethical considerations. 

Embedding computational efficiency through targeted ML architecture and feature engineering enhances real-

time performance and minimizes resource consumption, a critical factor for SCADA systems [24]. Adopting 

lightweight, energy-efficient models and using feature engineering informed by HSI principles are key design 

considerations [24]. Explicitly modeling human error as a design consideration is vital, recognizing that many 

breaches originate from human factors. System design should integrate quantifiable metrics for operator 

usability, develop interfaces that reduce misinterpretation, and facilitate trade-offs between security and ease of 
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use to improve overall reliability. Anticipating evolving threats and communication environments, such as 

wireless and IoT constraints (e.g., 5G coverage variability and adversarial impacts on embedded models), 

requires designing for resilience against disruptions and faults [26]. 

5.2. Operational Guidelines 

Operational guidelines for implementing cybersecurity systems must focus on practical best practices, process 

optimization, and maintaining a balance between security and usability. Operationalizing continuous human-AI 

feedback loops is critical for reducing false positives and response fatigue. Establishing real-time, adaptive 

feedback mechanisms between operators and ML-based IDS directly supports operator learning and adaptive 

system behavior. Explainability-driven feedback, for example, enables operators to identify and correct 

misclassified attacks, improving alert quality and decision-making. 

Mandating the integration of human factor metrics in deployment and ongoing assessment is crucial. 

Organizations must enforce the inclusion of operator usability scores, cognitive load assessments, and response 

time metrics as part of routine IDS evaluation and tuning. Given that human factors cause up to 27% of security 

breaches and that neglecting the human component undermines technical investments, these metrics are vital for 

assessing overall system effectiveness. 

Aligning operational procedures with NIST Cybersecurity Framework Profiles provides a structure for tailored 

risk management. Practical deployment should systematically map SCADA IDS operational practices to the 

NIST Framework Core functions (Identify, Protect, Detect, Respond, and Recover), using tailored 

implementation tiers and profiles to address each organization's specific risk profile and maturity. Embedding 

ethical oversight and continuous symbiotic maturity evaluations in day-to-day operations is also recommended 

for sustaining responsive and adaptive cybersecurity frameworks [27]. 

Establishing cross-functional operator training and multidisciplinary incident response protocols is essential. 

Guidelines should mandate joint training for cyber operators, IT specialists, and organizational leaders on the 

ML-IDS's technical aspects and the human factors influencing alert management and system reliability. 

Empirical studies show that the effectiveness of security technologies ultimately depends on well-integrated 

human and organizational processes. 

6. Conclusion 

This study presented a human-centric machine learning intrusion detection system for Smart Grid SCADA 

environments, grounded in Human-Systems Integration (HSI) theory. By reducing FPR from 6.2% to 4.5% in 

XGBoost models and lowering operator cognitive workload (NASA-TLX: 39.4) while improving usability 

(SUS: 76.2), our human-centric pipeline aligns technical capabilities with real-world operational needs. As a 

result, combining performance metrics with operator-focused usability evaluations, the study demonstrates that 

embedding human factors into IDS architecture enhances both system trust and incident response. While 

advanced ML-based IDSs have achieved impressive detection accuracy on benchmark datasets, their 

effectiveness in real-world operational environments is significantly impacted by human factors, including 
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cognitive overload from excessive alerts, the lack of model interpretability, and the persistent challenge of 

human error.  

Key takeaways include: (1) ML models like Random Forest and XGBoost provide high accuracy when trained 

on curated SCADA datasets; (2) human-centered interfaces reduce false positives and cognitive burden; and (3) 

HITL simulations offer a practical method to validate IDS in real-world conditions. 

Future research and development must prioritize reducing false positive rates, improving alert explainability, 

and developing dynamic alerting strategies for operator cognitive states. In addition, while we targeted widely 

adopted algorithms, exploring deep-learning and federated approaches remains future work. Operational 

guidelines should mandate the inclusion of human factor metrics, establish continuous human-AI feedback 

loops, and ensure cross-functional training to build resilient socio-technical systems capable of defending 

critical smart grid infrastructure against increasingly sophisticated cyber threats. Although limited by dataset 

realism and sample size, these findings offer a compelling case for embedding human factors into ML-IDS 

research and deployment.  

Overall, this research to our knowledge, being the first to quantify human factors in SCADA IDS using HSI 

theory, contributes a novel, scalable, and evidence-based framework that reinforces the necessity of integrating 

human systems theory into cybersecurity tools for critical infrastructures. 
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