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Abstract 

 The search for habitable planets beyond our solar system has long captivated the scientific community and 

remains one of the foremost pursuits in modern astronomy. With the advent of space-based missions, such as 

NASA’s Kepler telescope, our observational capabilities have expanded significantly, resulting in vast volumes 

of high-quality astronomical data. This data deluge necessitates the development of scalable, automated methods 

to support astronomers in efficiently analyzing and interpreting these observations. In recent years, machine 

learning has emerged as a powerful paradigm for automating complex, human-intensive tasks. This study 

investigates the application of supervised machine learning techniques to the detection of exoplanets using data 

from NASA’s Kepler mission. The data set comprises Kepler Objects of Interest (KOIs), including both physical 

and orbital parameters, along with their confirmed classification. We evaluate a range of supervised classifiers, 

spanning probabilistic, decision tree-based, and neural network models. Our best-performing model, Histogram 

Gradient Boosting, achieves a precision of 94.6% and a recall of 94.1% on a held-out test set. These results 

underscore the promise of machine learning in advancing exoplanet detection and offer a pathway toward 

automating the discovery of planetary systems beyond our own. 

Keywords: Exoplanet Detection; Supervised Learning; Kepler Mission; Machine Learning; Astronomical Data 

Analysis. 

1. Introduction  

  An exoplanet is a planet that orbits a star beyond our solar system. The discovery of exoplanets has long been a 

significant focus of astronomical research, offering profound insights into the diversity and structure of planetary 

systems across the universe [1]. Since the first confirmed detections in 1992, astronomers have identified 

approximately 5,000 exoplanets, a number that continues to grow with advances in observational technologies 

and detection methods.  
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As detection techniques have evolved, ranging from radial velocity measurements to transit photometry, our 

ability to identify and characterize these distant worlds has dramatically improved. Exoplanet detection not only 

deepens our understanding of stellar systems but also opens up the possibility of identifying Earth-like planets 

with potentially habitable conditions. This, in turn, raises one of the most compelling scientific questions of our 

time: Are we alone in the universe? 

 

Figure 1: Pipeline of our approach 

 The field of exoplanet discovery has advanced significantly over the past few decades. To support ground-based 

telescopes and improve detection capabilities, the National Aeronautics and Space Administration (NASA) has 

deployed space-based observatories dedicated to this mission. One of the most impactful missions was the launch 

of the Kepler space telescope in 2009, designed specifically to identify Earth-like planets in distant solar systems. 

While traditional detection methods, such as observing Doppler shifts due to stellar wobble, remain valuable, 

Kepler’s primary contribution lies in its precise photometric observations. It monitored the slight dimming of 

starlight caused by planets transiting in front of their host stars, enabling the identification of thousands of 

potential exoplanets. Interpreting Kepler’s data involves careful analysis of stellar light curves, where 

astronomers must distinguish genuine planetary transits from false positives caused by phenomena such as 

eclipsing binary stars, instrumental noise, or background objects. As the volume of astronomical data continues 

to increase with new missions, manually analyzing every candidate becomes infeasible. This data deluge 

underscores the growing need for scalable, automated techniques. Machine learning (ML) offers a compelling 

solution by automating key stages of the exoplanet detection pipeline. ML models can be trained to classify 

candidate signals based on transit and stellar parameters, enabling astronomers to prioritize the most promising 

cases for further investigation. In this study, we propose a machine learning-based approach that uses light curve 

features and stellar characteristics to classify Kepler Objects of Interest (KOIs). We evaluate the performance of 

several supervised classification models using data obtained from the NASA Exoplanet Archive. 

              The remainder of this paper is organized as follows: 

● Section II reviews related work, 

● Section III describes the dataset, data preparation, and the machine learning models employed. 

● Section IV presents experimental results and discussion, 

● Section V concludes with a summary of findings and directions for future research. 
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2. Related Works  

 Malik and his colleagues [2] applied machine learning techniques for exoplanet detection, utilizing an 

alternative approach based on the transit method. Their methodology involved analyzing stellar light curves 

using time series libraries to extract meaningful features for classification. The most closely related studies to our 

work are presented in [3,4], where machine learning models are also employed to classify exoplanets using data 

from NASA’s Kepler mission. These studies explore a range of classifiers and incorporate domain-specific 

insights derived from astronomer analyses, particularly in identifying and filtering out false positives. For 

instance, features such as koi_fpflag_co, which indicate whether a detected signal may originate from a nearby 

star, are used in their models. In contrast, our approach is intentionally designed to be fully data-driven and 

independent of human-labeled diagnostic fields. We exclude all such interpretive columns and rely solely on 

physical and orbital features, including light curve characteristics, transit properties, and stellar parameters. This 

distinction allows us to evaluate the performance of machine learning models when trained exclusively on 

measurable astrophysical features, offering a more generalizable and scalable detection pipeline. 

3. Materials  

 For our experiment, we use the pipeline shown in Figure 1. Our methodology follows a three-stage pipeline. 

First, we collect and preprocess the data to ensure it is suitable for machine learning applications. In the second 

stage, we train multiple classification models using the curated dataset. Finally, we evaluate the performance of 

the trained models on a held-out test set to assess their generalization capabilities. Each stage is described in 

detail in the following sections. 

 In 2009, NASA launched the Kepler space telescope with the primary objective of identifying Earth-sized 

exoplanets and locating potentially habitable environments beyond our solar system [5]. In this study, we utilize 

the observational data collected by the Kepler mission to support our machine learning-based exoplanet detection 

framework. We retrieved the dataset from the NASA Exoplanet Archive [6] on August 2, 2024, specifically 

selecting the “KOI Table (Cumulative List)” from the archive’s data repository. This table contains observational 

data on 9,564 Kepler Objects of Interest (KOIs), each characterized by 141 features. These features include a 

range of astrophysical, transit-related, and stellar parameters associated with potential exoplanet candidates.  
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Table 1: The final list of columns used by Model 

 

 We performed comprehensive data cleaning and preprocessing to prepare the dataset for machine learning. Out 

of the original 141 features, we retained only those related to transit properties, threshold crossing event (TCE) 

information, and stellar parameters, as these provide physically meaningful characteristics relevant to exoplanet 

detection. The selected features are listed in Table 1 . Columns with missing values across all rows or containing 

constant values were removed. For columns with partial missing data, we imputed missing values with zero. No 

additional columns contained NaN values after this cleaning process. For supervised learning, we used the 

koi_disposition column as the ground truth label. This column includes three values: CONFIRMED, FALSE 

POSITIVE, and CANDIDATE. We treated CONFIRMED entries as positive examples (exoplanets) and FALSE 

POSITIVE entries as negative examples. Rows labeled as CANDIDATE were excluded, as they represent 

uncertain classifications and could introduce noise during training. After preprocessing, the dataset was reduced 

from 9,564 to 7,099 rows and from 141 to 54 columns, including the target label. 

 To facilitate model training and evaluation, we randomly partitioned the preprocessed dataset of 7,099 rows into 

training and test sets. We allocated 30% of the data for testing to assess the generalization performance of our 

models. This resulted in 4,969 samples in the training set and 2,130 samples in the test set. The split was 

performed using a fixed random seed to ensure reproducibility. 

4.  Methods  

 We evaluated a range of classification models with varying levels of complexity, including both traditional 

machine learning algorithms and neural network-based approaches. This diversity allowed us to compare the 

effectiveness of simple, interpretable models against more sophisticated, non-linear methods. The following 

sections provide a brief overview of each model employed in our experiments. Naive Bayes is a probabilistic 

classification algorithm based on Bayes' theorem, which assumes strong independence between input features. 

Despite this simplifying assumption, the model is computationally efficient and often performs well in high-

dimensional feature spaces. Its simplicity and speed make it a useful baseline for classification tasks. 
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             Predicted        

       ----------------------- 

              | ◯ Positive | ✖ Negative | 

                   ---------------------------------------- 

                          Ground | ◯ Positive | ✔ TP      | ✘ FN       | 

                        Truth    | ✖ Negative | ✘ FP      | ✔ TN      

                                  Figure 2: Definition of True Positive, False Positive, True Negative, and False Negative  

 

a) Classification 

 

● Decision Trees are non-parametric models that classify data by recursively partitioning the feature space 

based on thresholds derived from input values. One of their key advantages is interpretability; each decision path 

can be visualized, making the model's predictions transparent and easy to understand. However, standalone 

decision trees often suffer from overfitting and limited generalization. To address these limitations, ensemble 

methods such as random forests and gradient boosting have been developed to enhance predictive performance 

and robustness. 

● Logistic Regression is a widely used linear classification algorithm that models the probability of a 

binary outcome using the logistic (sigmoid) function. It estimates the log-odds of the target variable as a linear 

combination of the input features. Due to its simplicity, interpretability, and efficiency, logistic regression is 

commonly applied in real-world classification tasks, particularly when the underlying decision boundary is 

approximately linear. 

● The Perceptron is one of the earliest and simplest neural network-based classifiers, designed to perform 

binary classification by learning a linear decision boundary. It updates its weights iteratively using a basic 

learning rule driven by prediction errors. While limited to linearly separable data and lacking hidden layers, the 

Perceptron serves as a foundational model in neural network theory and provides a useful baseline for 

comparison in classification tasks. 

● The Multilayer Perceptron (MLP) is a feedforward neural network architecture that extends the basic 

Perceptron by incorporating one or more hidden layers composed of non-linear activation functions. This 

structure enables the model to learn complex, non-linear decision boundaries. MLPs are trained using the 

backpropagation algorithm, which computes gradients for all weights in the network and updates them through 

gradient descent. Due to their flexibility and expressive power, MLPs are effective for a wide range of 
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classification tasks involving intricate patterns in data. 

● Histogram Gradient Boosting is an advanced ensemble learning method that constructs a sequence of 

decision trees, where each successive tree is trained to correct the errors of its predecessor. To improve 

computational efficiency, continuous features are discretized into histograms, significantly accelerating the 

training process without compromising accuracy. This technique is well-suited for large-scale datasets and is 

robust to overfitting due to its use of regularization and staged learning. Its ability to model complex, non-linear 

relationships makes it one of the most powerful algorithms for structured data classification tasks. 

b) Evaluation metrics  

● We evaluate model performance using standard classification metrics, including accuracy, precision, 

recall, F1 score, and the Precision-Recall (PR) curve. Among these, the F1 score, which balances precision and 

recall, is used as the primary criterion for identifying the best-performing model. These evaluation metrics are 

computed using the four fundamental components of a confusion matrix: True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN), as illustrated in Figure 2. Their definitions are as follows: 

                                                            

● The Histogram Gradient Boosting model emerged as the top-performing classifier, achieving the highest 

scores across key evaluation metrics, accuracy (95.5%), precision (94.6%), and F1 score (94.4%). Its strong and 

well-balanced performance demonstrates a high capacity to correctly identify exoplanets while effectively 

minimizing false positives. These results underscore the model’s suitability for handling complex, high-

dimensional astronomical data reliably and efficiently. 

Table 2: Quantitative Performance 
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● The Precision-Recall (PR) curve is a graphical evaluation tool commonly used to assess the 

performance of classification models, particularly in scenarios with class imbalance. It plots precision (y-axis) 

against recall (x-axis) across a range of classification thresholds, providing a comprehensive view of the trade-off 

between these two metrics. To summarize the curve into a single quantitative value, we use Average Precision 

(AP), which represents the weighted mean of precision values at different recall levels. The weights are defined 

by the increase in recall from the previous threshold, capturing the area under the PR curve and offering a robust 

measure of a model’s ability to maintain high precision while improving recall. 

5. Results And Discussion   

a) Experimental setting  

 All experiments were conducted using Python 3.8, along with the NumPy [7] and Scikit-learn [8] libraries. The 

models were trained and tested on a machine with an Intel i7 CPU and 16GB RAM. To ensure convergence in 

complex, high-dimensional feature space, the maximum number of iterations for Logistic Regression, Histogram 

Gradient Boosting, and Perceptron was set to 50,000. Logistic Regression used L2 regularization with the C 

parameter tuned via a held-out validation set. The Multilayer Perceptron (MLP) model employed two hidden 

layers with 5 neurons each, using ReLU activation. Training was done with a batch size of 32 using the Adam 

optimizer. A maximum of 1,000,000 iterations was allowed to accommodate the dataset's complexity. Early 

stopping was applied based on validation loss. Hyperparameters for all models were optimized through grid 

search using 5-fold cross-validation. A validation split (20%) from the training set was used for tuning to avoid 

data leakage. To ensure reproducibility, the random seed was fixed at 42 for all random processes, including data 

splitting and model initialization. Each model was trained three times, and the results were averaged to account 

for variance in training. This setup ensured consistent and reliable comparisons across model architectures. 

b) Quantitative results  

 Table II summarizes the performance of the machine learning models across various evaluation metrics: 

precision, recall, F1 score, and accuracy. Among all models tested, the Histogram Gradient Boosting classifier 

stood out with the highest overall performance, achieving a near-optimal balance between precision and recall, 

and leading in F1 score and accuracy. Specifically, it captured subtle patterns in the high-dimensional exoplanet 

dataset, demonstrating strong generalization capabilities across both majority and minority classes. The 

Multilayer Perceptron (MLP) also performed competitively, achieving a recall of 95.0%, indicating high 

sensitivity in detecting true positives. Its neural architecture enabled it to model complex, non-linear 

relationships, though it showed slightly more variability in precision. Logistic Regression achieved an F1 score 

of 91.2%, demonstrating a reliable trade-off between false positives and false negatives. While not as powerful 

as ensemble methods, it maintained robustness across metrics and served as a strong classical benchmark. In 

contrast, the Naive Bayes model, despite its simplicity, achieved the highest recall of 98.0%, but suffered from 

low precision (68.1%), resulting in a higher number of false positives. Decision Tree and Perceptron models 

showed moderate performance, highlighting their limitations in capturing intricate feature interactions. Overall, 

ensemble-based and deep learning approaches proved most effective in addressing the complexity of exoplanet 
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classification. 

c) Precision-recall curve  

 The Precision-Recall (PR) curve offers a deeper evaluation of the four best-performing models: Logistic 

Regression, Naive Bayes, Multilayer Perceptron (MLP), and Histogram Gradient Boosting (HGBoost). Figure 3 

illustrates the relationship between precision and recall across varying classification thresholds for each model. 

Among them, Histogram Gradient Boosting achieved the highest average precision (AP) of 0.98, maintaining 

strong precision across a wide range of recall values. Logistic Regression was closely followed with an AP of 

0.97, demonstrating robust and balanced performance. The MLP model also performed well, achieving an AP of 

0.96, though it exhibited slightly greater variability in precision at lower recall levels. In contrast, Naive Bayes, 

despite its high recall, lagged with a significantly lower AP of 0.70, indicating its limited ability to maintain 

precision as recall increases. This visualization underscores the superior performance of ensemble and deep 

learning models in achieving a favorable precision-recall trade-off, particularly in the context of imbalanced 

datasets such as exoplanet detection. 

 

Figure 3: Precision-Recall Curve(HGBoost =  Histogram Gradient Boosting, MLP=Multi-layer 

Perceptron, AP=Average Precision 

 The Histogram Gradient Boosting model achieved the highest Average Precision (AP) of 0.98, maintaining 

consistently high precision across a broad spectrum of recall values. Logistic Regression followed closely with 

an AP of 0.97, reflecting similarly robust performance. The Multilayer Perceptron (MLP) attained an AP of 0.96, 

although it showed greater variability in precision, particularly at lower recall thresholds, compared to HGBoost 

and Logistic Regression. In contrast, the Naive Bayes model significantly underperformed in this metric, with an 

AP of 0.70. Its precision remained relatively constant regardless of the recall level, underscoring its limitations in 

managing the trade-off between precision and recall effectively. This analysis highlights the clear advantage of 

ensemble-based and neural network models, particularly Histogram Gradient Boosting, Logistic Regression, and 

MLP, over simpler approaches like Naive Bayes. It underscores the importance of model selection in optimizing 
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performance for imbalanced classification tasks such as exoplanet detection. 

6. Constraints and Limitations 

  Despite the promising results, this study has several limitations that must be acknowledged. First, the models 

were trained and evaluated on a relatively small and imbalanced dataset, which may not fully represent the 

diversity of exoplanetary signals in real-world observations. While techniques like random seeding and held-out 

validation were used to promote consistency and generalizability, performance metrics may still be sensitive to 

dataset shifts. The Multilayer Perceptron (MLP) was limited to a shallow architecture with only two hidden 

layers and five neurons each. More complex architectures might have captured deeper relationships in the data, 

but were constrained by computational resources and the risk of overfitting due to the limited dataset size. All 

models were implemented using Scikit-learn, which, while excellent for rapid prototyping, restricts 

customization of certain model internals—particularly for neural networks and boosting algorithms. 

Furthermore, hyperparameter tuning was performed using only a basic validation set without an extensive grid or 

randomized search, potentially leaving performance gains unexplored. Lastly, this study focused solely on 

classical evaluation metrics. Incorporating domain-specific constraints, such as astrophysical false positive costs 

or planetary classification thresholds, could offer a more realistic picture of model utility for exoplanet detection 

in practice. 

7. Conclusion  

  In this study, we present a machine learning-based framework for classifying exoplanets using cumulative 

Kepler Objects of Interest (KOI) data obtained from NASA. Our approach involved comprehensive data 

preprocessing and feature selection, followed by systematic experimentation with a range of state-of-the-art 

classification models. The best-performing model, Histogram Gradient Boosting, achieved a precision of 94.6% 

and a recall of 94.1%, demonstrating the strong potential of machine learning to automate the exoplanet detection 

process with high accuracy. Despite these promising results, our analysis is limited to data from the Kepler 

mission, which focuses on a specific region of the sky. As such, it may not fully capture the diversity of 

planetary systems across the broader universe. Future research could expand upon this work by integrating data 

from other space missions (e.g., TESS, Gaia) and ground-based observatories to enhance coverage and 

generalizability. Additionally, larger and more diverse datasets would allow for the exploration of advanced 

machine learning architectures, such as transformer models [9], which leverage self-attention mechanisms to 

uncover complex feature interactions. In summary, this work illustrates the transformative potential of machine 

learning in modern astronomy. By automating critical aspects of exoplanet detection, ML techniques can 

significantly accelerate scientific discovery and contribute to answering one of humanity’s most profound 

questions: Are we alone in the universe? 
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