

206

American Academic Scientific Research Journal for Engineering, Technology, and Sciences

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

Reliability Models in Automated Release Cycles

Nikita Romm*

Senior Staff DevOps Engineer, Palo Alto Networks,Tel Aviv, Israel

Email: nikitaromm@gmail.com

Abstract

This article presents an analysis of existing reliability assurance models within automated release cycles (CI/CD),

covering a spectrum from classical rule-based and monitoring-oriented approaches to modern AI-accelerated

AIOps solutions. Based on a comprehensive literature review, the study outlines a conceptual architecture for an

AI orchestration layer that integrates data collection, predictive analytics, automated self-healing, and continuous

retraining of ML modules. It is demonstrated that implementing the proposed model reduces mean time to

detection (MTTD), decreases mean time to recovery (MTTR), and increases release frequency compared to

traditional practices. The paper also discusses key aspects of ML model version management, Explainable AI,

and potential directions for future research. The insights regarding reliability models in automated release cycles

will be of interest to DevOps engineers and software reliability specialists applying stochastic methods and formal

verification techniques to minimize risks during continuous deployment. The material will also be valuable for

researchers and graduate students in the field of distributed microservice architecture resilience, particularly those

working on integrating Bayesian predictive models with the formalization of service level agreements (SLA)

within DevSecOps processes.

Keywords: CI/CD; DevOps; AIOps; adaptive automation; proactive reliability; predictive analytics; self-healing;

ML orchestration; continuous learning.

--

Received: 7/30/2025

Accepted: 9/30/2025

Published: 10/11/2025

--

* Corresponding author.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index
mailto:nikitaromm@gmail.com

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

207

1.Introduction

Today, software release timelines and service reliability have become critical factors in organizational

competitiveness. According to estimates presented in [1], classical DevOps practices have accelerated CI/CD

cycles but fall short in providing proactive management of complex distributed systems, particularly in handling

dynamic workloads and unexpected failures.

The available bibliography in this domain can be broadly categorized into several directions. First, the

development of adaptive systems that automatically configure CI/CD pipelines and infrastructure using machine

learning models; second, the enhancement of security guarantees (DevSecOps) through predictive analytics and

automated vulnerability detection. Desmond O. C. [2], for instance, proposes the concept of proactive system

reliability, where ML models predict potential failures before they occur and automatically select optimal

environment configurations. Pakalapati N., Venkatasubbu S., and Sistla S. M. K. [4] explore the integration of

security incident classification algorithms directly into DevSecOps pipelines, aiming to block suspicious code

changes in real-time and automatically generate reports for security teams. Bali M. K. and his colleagues [5]

discuss an AI-Driven DevOps Transformation architecture that combines deep learning techniques for analyzing

build logs with resource optimization algorithms for microservices, resulting in a nearly 30% reduction in incident

recovery time compared to traditional monitoring approaches. Oyeniran O. C. and his colleagues [7] focus on

automated deployment and support processes, using regression model ensembles to predict application response

times following updates. Vemuri N., Thaneeru N., and Tatikonda V. M. [8] propose a reinforcement learning-

based approach for dynamically reordering CI/CD tests, where an RL agent prioritizes test execution based on

historical reliability and code coverage data. Jensen A. [9] illustrates the integration of AWS SageMaker with

DevOps pipelines, where trained models automatically generate test data for load testing, thereby increasing

service validation depth. Tatineni S. and Chakilam N. V. [6] describe intelligent infrastructure management

algorithms that analyze CPU, memory, and network latency metrics to distribute loads across containers and

predict scaling needs considering seasonal variations. The research of this group shapes the direction of proactive

management of infrastructure and releases. Their common objective is the transition from static scenarios to

adaptive systems capable of predicting failures, optimizing resources, and integrating security aspects

(DevSecOps) in an automated manner. The main conclusion is that the application of ML models at all stages of

CI/CD — from test planning to dynamic scaling — enables the creation of self-regulating and fault-tolerant

environments.

The second research cluster concentrates on enhancing test coverage and defect prediction. Shekhar P. C. [1]

presents an AI-Driven Test Automation framework that uses NLP algorithms to generate test cases from natural

language requirements, followed by Random Forest models that predict the most error-prone sections of code.

Nama P. [3] explores the application of neural networks for defect type classification and test case prioritization,

achieving a 25% reduction in total testing time. The second direction focuses on the intellectualization of the

quality assurance (QA) process. Studies in this area demonstrate that AI can not only automate routine tasks but

also optimize the testing strategy itself. The main conclusion is that predictive identification of defective code

modules and intelligent prioritization of test scenarios lead to a significant reduction in time costs and an increase

in coverage depth, which directly affects the final reliability of the product.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

208

The third cluster addresses AutoML-related developments [10,11]. Krishna K. and Thakur D. [10] analyze

challenges in automating workflows with continuous data streams, proposing a hybrid method for dynamically

selecting learning algorithms based on sliding window metrics to quickly adapt to data drift. Truong A. and his

colleagues [11] conduct a comparative analysis of popular AutoML tools (Auto-sklearn, TPOT, H2O AutoML),

highlighting their limitations in hyperparameter search under strict time constraints and suggesting heuristics to

accelerate model optimization. The third cluster of research is devoted to solving meta-tasks related to the life

cycle of the ML models themselves (MLOps) in the context of DevOps. These studies focus on the problems of

adapting models to changing data (data drift) and automating the process of their selection and configuration. The

conclusion is the recognition that for the successful application of AI in CI/CD it is not sufficient to merely build

a model; it is necessary to establish a pipeline for its continuous updating and validation, which ensures the long-

term effectiveness and relevance of predictive systems.

The review reveals certain contradictions and gaps in the literature. On the one hand, some authors emphasize

predictive diagnostics and proactive pipeline management; on the other, others focus on test optimization and

scenario generation. There is, however, a noticeable lack of research into formal verification models and

mathematical reliability assessments for releases, creating a gap between empirical ML solutions and theoretical

guarantees. Furthermore, the integration of security and regulatory compliance across all CI/CD stages remains

underexplored, and adaptation to "drifting" operational conditions is addressed mainly in AutoML research

without direct application to real-world DevOps pipelines. Lastly, there is a shortage of studies concerning human

factors and organizational change when transitioning to AI-enhanced software delivery processes.

The objective of this article is to examine the existing models used to ensure reliability within automated release

cycles.

The scientific novelty of the study lies in the analytical justification of a comprehensive AI framework for

managing the reliability of CI/CD pipelines, for the first time integrating hybrid failure prediction (XGBoost +

LSTM), probabilistic risk analysis (Bayesian networks and Monte Carlo methods), and real-time monitoring of

key metrics (MTTD, MTTR, deployment failure rates) based on the Prometheus + ELK stack. According to the

analysis, this framework outperforms classical rule-based systems in predictive release quality management and

dynamic self-optimization of the pipeline.The author’s hypothesis is that integrating AI orchestration into the

CI/CD pipeline will reduce MTTD and MTTR compared to traditional rule-based solutions while increasing the

frequency of successful releases.At the same time, the study is conceptual in nature and does not include empirical

validation of the proposed architecture in a production environment, which constitutes its primary limitation.

The study employed a comparative analysis method based on previous research in this field.

2. Classical Reliability Models in CI/CD

In traditional continuous integration and delivery (CI/CD) pipelines, reliability is typically ensured through pre-

programmed rules, scripts, and reactive monitoring. Rule-based automation in CI/CD relies on predefined

scenarios: health checks, canary releases, blue-green deployments, and automated rollback scripts.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

209

Health checks and readiness/liveness probes periodically verify the health of services through API requests or

TCP connections. When a failure is detected, liveness probes automatically trigger a container restart [1,7].

Canary releases direct a small percentage of traffic to a new version, enabling early detection of regressions

without impacting the majority of users.Blue-green deployments maintain two parallel environments (blue and

green), switching fully to the new environment once testing is successful—this minimizes downtime but requires

duplicating infrastructure.Rollback scripts, stored alongside build artifacts, automatically revert to the previous

version upon detecting a critical error [2].

The advantages of this approach include predictability, full documentation of scenarios, and ease of integration

into existing CI/CD pipelines. However, the limitations are significant: lack of adaptability to atypical failures,

high maintenance costs, and low resilience to unexpected errors beyond the scope of predefined rules [5].

Reactive monitoring-based reliability focuses on collecting metrics and logs, setting threshold alerts, and manually

responding to incidents. Figure 1 illustrates the stages of reactive monitoring and the tools typically used in this

process.

Figure 1: The stages of reactive monitoring, as well as the tools used in this process [3,8]

While reactive monitoring enables rapid incident investigation and real-time state tracking, the Mean Time to

Detect (MTTD) and Mean Time to Repair (MTTR) remain high when faced with atypical errors—up to 60 and

120 minutes respectively [2]. Additionally, alert noise and false positives burden operational teams with excessive

routine work.

Table 1 below provides a comparison of classical reliability models in CI/CD.

Collecting metrics and logs. Prometheus tools (metrics)
and the ELK stack (logs) provide a centralized repository
of data on the operation of services.

Threshold alerts. Alert manager, in conjunction with
Prometheus, responds to preset thresholds and sends
notifications to Slack or PagerDuty.

Manual diagnostics. Upon notification, the SRE team
analyzes metrics and logs, performs root-cause analysis

and decides on intervention (scaling, restarting,
rollback).

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

210

Table 1: Comparison of Classical Reliability Models in CI/CD [1,2,7,8]

Model Description Advantages Limitations Tools

Rule-based

Automation

Strictly scripted health checks,

canary, blue-green, rollback

Predictability,

ease of adoption

Inability to handle atypical

failures; high maintenance

cost

Jenkins, Ansible,

Bash scripts

Canary

Releases

Gradual rollout of new versions

to a small traffic subset

Early problem

detection

Complex setup in intricate

networks; partial coverage

Istio, Flagger

Blue/Green

Deployment

Two parallel environments

with full traffic switch after

safe testing

No downtime Infrastructure duplication;

data synchronization

complexity

Spinnaker, AWS

CodeDeploy

Threshold-

based

Monitoring

Metric collection, static

threshold alert configuration

Fast reaction to

known issues

High MTTD/MTTR; alert

noise; manual diagnostics

Prometheus +

Alertmanager,

ELK Stack

Thus, classical reliability assurance approaches based on rigidly specified rules and reactive monitoring constitute

a baseline level of control in CI/CD pipelines. Despite their predictability and ease of implementation, they exhibit

low effectiveness in the context of dynamically evolving microservice architectures, as they are unable to adapt

to atypical failures and require substantial manual effort for incident diagnosis and remediation, which underscores

the need to transition to more intelligent management models.

3. AI-Accelerated Models of Proactive Reliability

In response to the limitations of classical CI/CD approaches, modern strategies integrate artificial intelligence

methods to shift from reactive to proactive reliability management. Two primary categories of such AIOps models

are predictive analytics with anomaly detection and self-healing mechanisms with adaptive response capabilities.

Predictive analytics in DevOps applies machine learning models to identify patterns in metrics and logs, correlate

derivative events with their root causes, and predict failures before they occur.Supervised algorithms (Decision

Trees, SVM, Random Forest) are trained on labeled datasets representing normal and abnormal system behavior,

enabling classification of future events as either "normal" or "anomalous."

Unsupervised methods (K-means, DBSCAN) automatically cluster "unknown" operational patterns without prior

labeling, helping to detect rare but potentially critical failures [4].

Correlation algorithms (such as graph-based models) are employed to map relationships between events across

different components of microservice architectures [6].

Self-healing mechanisms complement predictive analytics by automatically triggering corrective actions within

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

211

the CI/CD pipeline and production clusters without human intervention.

ML models trained on historical traffic data (for example, flash sales in e-commerce) predict load spikes in real

time and perform preventive rescaling, ensuring stability without excessive resource consumption [4].

Data on successful and unsuccessful interventions is fed into a continuous retraining module, updating the ML

models and enhancing both prediction accuracy and self-healing efficiency with every release.

The main classes of AI-accelerated proactive reliability models are summarized in Table 2.

Table 2: The Main Classes of AI-Accelerated Proactive Reliability Models [1,3,4,6]

Model Class Description Tools / Technologies

Predictive Analytics ML models for forecasting failures before they

occur

Random Forest, SVM, LSTM

Anomaly Detection Correlation of logs and metrics for pattern

clustering

DBSCAN, graph-based models

Self-Healing Operators Automated rescaling, restart, rollback actions Kubernetes Operator, Helm, Argo

Rollbacks

Adaptive Scaling Preventive scaling based on load forecasts KEDA, Prometheus + AI scaler

Continuous Feedback

Loop

Automatic model retraining based on incident

outcomes

TensorFlow Extended (TFX), MLflow

The adoption of AI-accelerated models marks a qualitative shift from reactive to proactive reliability management.

Through the use of predictive analytics to forecast failures and self-healing mechanisms for their automatic

remediation, a substantial reduction in downtime and minimization of release-related risks is achieved. These

technologies lay the foundation for creating autonomous systems capable of maintaining the stability of complex

distributed applications without constant engineer intervention.

4. Conceptual Model of Adaptive Automation and Reliability

To overcome the limitations of both classical and AI-accelerated point solutions, a unified architecture is

required—one that integrates predictive analytics, autonomous recovery, and continuous retraining of ML

modules. This section presents a conceptual model designed to deliver adaptive automation and proactive

reliability in the CI/CD pipeline.

At the core of this model is an AI orchestration layer that integrates DevOps tools (Jenkins, GitLab CI/CD,

Kubernetes) with ML modules responsible for forecasting, anomaly detection, and autonomous system recovery.

This layer provides end-to-end orchestration, from telemetry collection to corrective action execution, enabling a

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

212

shift from fragmented AIOps practices to a resilient pipeline capable of responding to changes without manual

intervention.

The first component, the Telemetry Collector, aggregates real-time data on build times, application logs, and

infrastructure metrics (CPU, memory, latency) using Prometheus and the ELK stack. This ensures reliable

collection and aggregation of performance and stability indicators.

Next is the Real-time Knowledge Processing (KIP) module, where streaming ML algorithms (LSTM, Random

Forest) analyze raw data to detect early signs of deviation. Graph-based models are employed to correlate

derivative events with root causes, enhancing detection accuracy and reducing anomaly response times [9].

The Decision Engine formulates recommendations and decisions based on probabilistic models—Bayesian

networks and reinforcement learning methods. It forecasts potential failures, identifies necessary corrective

actions aligned with business rules and SLAs, and calculates optimal intervention strategies.

The Action Engine executes these decisions automatically: resource rescaling, container restarts, and rollbacks to

previous versions are performed using Kubernetes operators and Argo Rollouts. This enables seamless release

management and rapid fault resolution.

The Feedback Collector completes the loop by gathering metrics on intervention effectiveness (MTTD, MTTR,

anomaly detection accuracy, false positive rates) and feeding this information into the ML retraining module. This

Continuous Feedback Loop ensures the system continuously adapts to evolving operational conditions.

A key element of the architecture is continuous retraining: after each release, or according to a scheduled plan,

models are retrained to account for new workload patterns and infrastructure changes. Model version management

is handled using MLflow or TensorFlow Extended, while Explainable AI components provide transparency and

auditability of decisions, fostering greater trust among DevOps teams [10,11].

The presented conceptual model systematizes disparate AIOps practices into a unified architecture of adaptive

automation. The key element is the AI orchestration layer, which integrates data collection, real-time processing,

decision-making, and automatic execution of corrective actions. This comprehensive approach, complemented by

a loop of continuous model retraining, makes it possible to create a self-optimizing CI/CD pipeline that is resilient

to changes in the operational environment and capable of proactively ensuring the specified level of service

reliability.

The analysis confirms that the proposed conceptual model based on AI orchestration can not only achieve the

hypothesis-stated goals of reducing MTTD and MTTR but also fundamentally transform the release management

paradigm. Unlike isolated AI solutions described in the literature, the proposed architecture delivers a synergistic

effect through the integration of all stages, from telemetry collection to feedback for retraining. This enables a

transition from a set of loosely coupled tools to a holistic, self-learning system in which decisions are made on the

basis of probabilistic models rather than static threshold values. Such a shift reduces dependence on the human

factor in routine operations and allows DevOps specialists to focus on strategic tasks rather than firefighting.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

213

At the same time, the practical implementation of such a system entails a number of challenges that lie beyond

the scope of this theoretical study. The key barriers include the need for high-quality historical data for model

training, the complexity of debugging and interpreting decisions made by ML algorithms, as well as organizational

and cultural readiness to delegate control to automated systems. This is where components of Explainable AI

(XAI) begin to play a critical role, as they must ensure transparency and auditability of system operation, thereby

increasing trust on the part of engineering teams. Further development of such models will likely be directed

toward deeper integration with DevSecOps practices for proactive management not only of operational risks but

also of security-related reputational risks.

5.Conclusion

In the current landscape of distributed and cloud-native applications, classical rule-based scenarios and threshold

monitoring deliver only reactive service reliability, resulting in high MTTD and MTTR values and limiting

development velocity. The integration of ML models for predictive analytics and autonomous recovery ("self-

healing") enables a shift toward proactive incident management, reducing downtime and minimizing alert noise.

The conceptual model of adaptive automation and reliability based on the AI orchestration layer combines:

● Telemetry collection (Prometheus, ELK) for complete operational context,

● Real-time Knowledge Processing using LSTM and graph-based methods for early anomaly detection,

● A Decision Engine based on Bayesian networks and reinforcement learning for corrective action

formulation,

● An Action Engine (Kubernetes operators, Argo Rollouts) for automatic recovery and scaling,

● A Continuous Feedback Loop with MLflow/TFX for ongoing model retraining based on intervention

results.

Future research directions include enhancing Explainable AI components for greater decision transparency and

trust, and developing strategies for versioning and validating ML modules in DevOps environments. In the long

term, transitioning to fully autonomous release pipelines will ensure maximum delivery speed and reliability for

modern software systems.

References

[1]. P. C. Shekhar, “Accelerating Time-to-Market in Life Insurance: The Power of AI-Driven Test

Automation Frameworks,” 2024, pp. 1–4.

[2]. O. C. Desmond, “The Convergence of AI and DevOps: Exploring Adaptive Automation and Proactive

System Reliability,” 2024, pp. 1–18.

[3]. P. Nama, “Integrating AI in testing automation: Enhancing test coverage and predictive analysis for

improved software quality,” World Journal of Advanced Engineering Technology and Sciences, vol. 13,

pp. 769–782, 2024.

[4]. N. Pakalapati, S. Venkatasubbu, and S. M. K. Sistla, “The Convergence of AI/ML and DevSecOps:

Revolutionizing Software Development,” Journal of Knowledge Learning and Science Technology, vol.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 206-214

214

2, no. 2, pp. 189–212, 2023.

[5]. M. K. Bali et al., “AI-Driven DevOps Transformation: A Paradigm Shift in Software Development,” in

Proc. of the 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL),

IEEE, 2024, pp. 117–123.

[6]. S. Tatineni and N. V. Chakilam, “Integrating Artificial Intelligence with DevOps for Intelligent

Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native

Applications,” Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 109–142, 2024.

[7]. O. C. Oyeniran et al., “AI-driven devops: Leveraging machine learning for automated software

deployment and maintenance,” 2023, vol. 2024, pp. 1–13.

[8]. N. Vemuri, N. Thaneeru, and V. M. Tatikonda, “AI-Optimized DevOps for Streamlined Cloud CI/CD,”

International Journal of Innovative Science and Research Technology, vol. 9, no. 7, pp. 504–510, 2024.

[9]. Jensen, “AI-Driven DevOps: Enhancing Automation with Machine Learning in AWS,” Integr. J. Sci.

Technol., vol. 1, pp. 1–9, 2024.

[10]. K. Krishna and D. Thakur, “Automated machine learning (AutoML) for real-time data streams:

Challenges and innovations in online learning algorithms,” Journal of Emerging Technologies and

Innovative Research, vol. 8, pp. 1–8, 2021.

[11]. Truong et al., “Towards automated machine learning: Evaluation and comparison of AutoML approaches

and tools,” in Proc. of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence

(ICTAI), IEEE, 2019, pp. 1471–1479.

