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Abstract 

Brain tumor diagnosis using magnetic resonance imaging (MRI) is essential for timely intervention and treatment 

planning, yet manual interpretation is often time-consuming and subject to observer variability. Deep learning, 

particularly convolutional neural networks (CNNs), has shown considerable promise in automating tumor 

classification with high accuracy. This study developed and evaluated a LightBT-CNN model using the Brain 

Tumor MRI dataset, consisting of 7,023 images categorized into glioma, meningioma, pituitary tumor, and no 

tumor classes. The model was trained, validated, and tested using Python and TensorFlow, with performance 

evaluated through classification metrics and Gradient-weighted Class Activation Mapping (Grad-CAM) for 

interpretability. The LightBT-CNN model achieved an overall classification accuracy of 98% accuracy, with 

strong precision, recall, and F1-scores across tumor types. Grad-CAM visualizations confirmed that the model 

focused on tumor-specific regions, strengthened the reliability of predictions, and enhanced clinical 

interpretability.  
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These findings align with existing research, such as Ait Amou and his colleagues (2022), who reported 98.70% 

accuracy with CNN and Bayesian optimization, Haq and his colleagues (2023), who achieved 99.89% with a 

multi-level CNN, and Sun (2021), whose customized CNN attained 96% accuracy with an AUC of 0.99. The 

results demonstrate the feasibility of integrating CNN-based approaches into brain tumor diagnostics, with 

explainable AI tools like Grad-CAM further supporting clinical accuracy and adoption.  

Keywords: Brain tumor; Convolutional Neural Network (CNN); LightBT-CNN Model; MRI; Grad-CAM. 

1.Introduction 

Brain cancer is one of the rare types of cancer and one of the most aggressive, which are primary malignant brain 

tumors and other central nervous system (CNS) tumors[1, 2].According to GLOBOCAN, brain cancer accounted 

for about 1.6% of all cancers worldwide, with an estimated 308,102 new cases and 251,329 deaths annually[3].In 

the United States, the American Cancer Society (2024) reported that brain and spinal cord tumors represent about 

1.3% of all new cancer diagnoses, with glioblastoma being the most common and aggressive subtype, comprising 

nearly 47% of malignant brain tumors, characterized by rapid progression and poor prognosis[4]. Diagnosis relies 

heavily on neuroimaging techniques, such as magnetic resonance imaging (MRI) and computed tomography (CT) 

scans, often supplemented by biopsy for histopathological confirmation[5].The safest approach in magnetic 

resonance imaging (MRI) which is the clinical standard for detecting and characterizing brain tumors.  Despite 

advances in diagnosis, surgery, radiotherapy, and chemotherapy, brain cancer remains difficult to treat due to the 

complexity of the brain, the invasive nature of many tumors, and the protective blood–brain barrier that limits 

drug delivery[6, 7]. As a result, survival rates are often low for aggressive types, highlighting the urgent need for 

improved diagnostic and therapeutic strategies, including molecular profiling, immunotherapy, and artificial 

intelligence–assisted imaging analysis[2].Convolutional neural networks (CNNs) are an impactful technology for 

providing solutions in medical diagnostics and have achieved state-of-the-art performance in medical image 

classification[8].CNNs have revolutionized brain cancer diagnostics by enabling highly accurate, automated 

analysis of medical imaging, particularly MRI scans[2, 9].These deep learning models excel at detecting tumors, 

classifying their types, such as gliomas, meningiomas, and pituitary tumors, and segmenting tumor regions to 

assist in surgical planning[2, 10].Recent advancements in CNN architecture and hyperparameter optimization 

have led to diagnostic accuracies exceeding 95%, with models like ResNet-18 outperforming deeper networks 

while maintaining computational efficiency[2, 11].Moreover, the integration of explainable AI techniques, such 

as LIME, into CNN-based systems like CNN-TumorNet has enhanced transparency, allowing clinicians to better 

understand and trust the model’s decisions[12]. Despite these breakthroughs, challenges persist, including limited 

data diversity, concerns over interpretability, and the need for seamless integration into clinical workflows. Hence, 

this research aims to design a “LightBT-CNN Model” brain classification model using standardized MRI datasets 

and compare the findings with other CNN architectures. 

2.  Methods 

This study adopted a practical, design-based approach through the development of a “DIY Convolutional Neural 

Network (LightBT-CNN) Model” aimed at detecting, identifying, and interpreting MRI clinical data for brain 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 147-163 

 

149 
 

cancer diagnosis. The model was trained and tested on secondary data obtained from Kaggle, titled Brain Tumor 

MRI Dataset by Masoud Nickparvar, last updated four years ago, and rated 8.75 in usability as of August 15, 

2025[13].The dataset comprises 7,023 MRI images categorized into four classes: glioma, meningioma, pituitary 

tumor, and no tumor[13]. 

Model development and testing were conducted using Python programming, with essential libraries including 

NumPy, Pandas, Matplotlib, Seaborn, and TensorFlow. Before model training, exploratory data analysis was 

performed to summarize dataset characteristics and generate visualizations for quality control. Low-quality or 

unreadable scans were identified and excluded to ensure reliability. Data preprocessing involved recoding, 

categorizing, and restructuring the dataset to standardize inputs for CNN processing. 

The LightBT CNN model was a Sequential Convolutional Neural Network (CNN), which was built within 

TensorFlow and trained using convolutional, pooling, and fully connected layers optimized for multi-class 

classification. Training and validation subsets were generated from the dataset to minimize bias and overfitting[8]. 

Each model iteration was trained, simulated, and evaluated using standard performance metrics, including 

accuracy, sensitivity, specificity, precision, F1-score, and area under the receiver operating characteristic curve 

(AUC-ROC). Comparative analysis was conducted against established CNN architectures to benchmark the 

diagnostic performance of the DIY model. 

3. Results 

3.1 Data Preprocessing and Visualization 

The CNN model was initiated by preprocessing the data. The path and directory were assigned for testing and 

training, followed by the iteration of directions for the training path (Figures 1 &2), and a data frame was also 

created. 

 

Figure 1: Creation of training dataframe 
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Figure 2: Creation of testing dataframe 

The data, training and testing data was visualized as shown in Figure 3. 

Figure 3: Countplot of the dataset 

The MRI dataset was preprocessed and organized into training, validation, and testing sets using the 

“ImageDataGenerator” function in “TensorFlow/Keras” (See Figure 4 and 5). The images were resized to 150 

× 150 pixels, normalized by rescaling pixel values to the range [0, 1], and augmented with brightness variation 

between 0.8 and 1.2 to improve generalization and prevent overfitting. 

 Training set: 5,712 MRI images across 4 classes (glioma, meningioma, pituitary tumor, and no tumor). 

 Validation set: 655 MRI images across the same 4 classes, used to monitor performance during training. 

 Test set: 656 MRI images across the 4 classes, reserved for evaluating final model performance. 
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Figure 4: Preprocessing of the dataset 

The dataset distribution shows that each subset-maintained class balance, ensuring unbiased evaluation across 

categories. This setup provided a robust foundation for training the CNN model, optimizing hyperparameters, 

and later validating predictive performance with unseen MRI images. 
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Figure 5: Validation and final testing dataset  
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The data was validated and split for training and testing. As part of dataset quality control, sample images were 

visualized from a Keras data generator along with their corresponding class labels to confirm proper 

categorization and suitability for training. Images were retrieved using the `next(generator)` function, meaning 

they were sampled randomly and not necessarily from the same batch (See Figure 6). The number of pictures 

displayed was restricted to perfect squares (e.g., 4, 9, 16) for grid-based visualization. This process enabled 

verification of dataset integrity, class balance, and sample quality across the four categories: glioma, meningioma, 

pituitary tumor, and no tumor, helping to detect potential labeling or preprocessing errors before model training.  

 

Figure 6: Data visualization of the MRI scans 

3.2 LightBT CNN Model Creation 

The model was created using a Sequential Convolutional Neural Network (CNN) architecture. The model 

summary (See Figure 7) in the image was designed for brain tumor classification from MRI images. The network 
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began with a series of convolutional layers (Conv2D) that progressively increased the number of filters from 32 

to 256, allowing the extraction of increasingly complex features. Each convolutional layer was followed by “Batch 

Normalization”, which stabilized and accelerated training, and “Max Pooling”, which reduced spatial dimensions 

to improve computational efficiency and mitigate overfitting. 

The final convolutional block outputs featured maps of size (7, 7, 256), which were flattened into a one-

dimensional vector of 12,544 units. This vector was then passed into a fully “connected dense layer” with 256 

neurons, containing the largest share of parameters (over 3.2 million). A “dropout layer” was introduced afterward 

to reduce overfitting by randomly disabling neurons during training. The output layer “(dense_1)” consisted of 4 

units, corresponding to the four target classes: glioma, meningioma, pituitary tumor, and no tumor, likely activated 

with a “softmax function” for multiclass classification. 

Overall, the network has 3,602,884 total parameters, of which 3,601,924 are trainable, while only 960 are non-

trainable, showing the model is highly adaptable to learning from data. The design combined depth, normalization, 

and dropout regularization to balance accuracy and generalization, making it suitable for medical diagnostics such 

as brain tumor diagnosis. 

 

Figure 7: Coding of the LightBT-CNN model 
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Figure 8: Summary of the LightBT CNN model 

3.3 LightBT CNN Model Training and Analysis 

The model training process was evaluated by plotting training and validation curves for key performance metrics, 

providing insight into the model’s learning dynamics and generalization capability (See Figure 9). The metrics 

assessed included accuracy, loss, precision, and recall, as recorded during training using the “Keras History 

object” generated by the model.fit() function. Training and validation performance trends were visualized across 

epochs, with the plots highlighting the optimal epoch for each metric. 
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Figure 9: Metric analysis of the LightBT CNN model 

3.4 Model Evaluation and Performance 

The performance of the LightBT CNN model was assessed using a classification report and a confusion matrix 

(See Figures 10 and 11). The classification report demonstrated excellent predictive accuracy across all four brain 

tumor classes (glioma, meningioma, no tumor, and pituitary). Precision values ranged from 0.95 to 1.00, while 

recall values spanned 0.95 to 1.00, indicating a balanced ability to correctly identify positive cases without 

overpredicting. The F1-scores, which combine precision and recall, were consistently high (0.95–1.00), indicating 

an outstanding model performance. Overall classification accuracy was 98%, with both macro and weighted 
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averages yielding a precision, recall, and F1-score of 0.98, underscoring the model’s reliability across imbalanced 

class distributions. 

The confusion matrix provided a deeper depiction of the prediction distribution. The model correctly classified 

the majority of samples in all categories, with minimal misclassifications. For instance, 142 out of 150 glioma 

cases and 146 out of 153 meningioma cases were accurately predicted, while all 203 no tumor cases and all 150 

pituitary tumor cases were classified correctly. Misclassifications were minor, with glioma occasionally confused 

with meningioma and vice versa, reflecting the morphological similarities between these tumor types in MRI 

imaging. 

 

Figure 10: Evaluation of LightBT CNN model 
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Figure 11: Evaluation of LightBT CNN model performance 

3.5 Prediction and Model Testing 

The trained LightBT CNN model was evaluated on unseen MRI images to assess its predictive performance in 

real-world applications. The model output provided raw probability distributions across the four tumor classes 

(glioma, meningioma, pituitary tumor, and no tumor). To enhance transparency and interpretability, Gradient-

weighted Class Activation Mapping (Grad-CAM) was implemented. Grad-CAM produces class-specific 

heatmaps that highlight the regions of the MRI scans most influential to the model’s decision (See Figure 13). By 
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applying Grad-CAM to the last convolutional layer of the CNN, the spatial areas associated with tumor detection 

were identified. These heatmaps were normalized between 0 and 1 and overlaid on the original MRI images to 

create visual explanations. 

Figure 12 depicts a predicted output (identified and classified) of the LightBT CNN model’s prediction on an MRI 

image. The input MRI scan clearly shows a tumor mass, and the model predicted the case as meningioma with a 

probability score of 1.0 (100%), while assigning zero probability to the other classes (pituitary, glioma, and no 

tumor). The bar chart displaying class probabilities highlights the model’s high level of confidence in its 

classification. This result illustrates the practical diagnostic capability of the CNN model in real-time prediction, 

supporting its robustness for clinical decision support in brain cancer diagnosis. 

 

Figure 12: The prediction and classification of brain tumors by the LightBT-CNN model 

Figure 13 depicts the left image (original MRI) and the right image (Grad-CAM heatmap). The original MRI is a 

standard grayscale MRI scan showing the brain's internal structures. A bright, circular mass in the upper right 
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quadrant suggests the presence of a tumor, likely a meningioma, based on its location and appearance. The Grad-

CAM heatmap has an overlay of color, which uses color gradients (blue to red) to highlight the regions the CNN 

focused on when making its prediction. 

 Red & Yellow Zones: These are the most influential areas in the model’s decision—clearly centered 

around the tumor. 

 Blue & Green Zones: These areas had minimal impact on the classification, indicating the model 

correctly ignored irrelevant regions. 

 

Figure 13: Grad-CAM heatmap of a classified MRI scan by the LightBT-CNN model 

4. Discussion- Comparative Performance Discussion 

The LightBT CNN model demonstrated an impressive 98% overall accuracy, positioning it competitively against 

established CNN architectures such as VGG16, ResNet50, and EfficientNet, which have been widely applied in 

brain tumor classification tasks. Previous studies using VGG16 have reported accuracies in the range of 90–95%, 

often requiring transfer learning and extensive fine-tuning due to its deeper architecture and high parameter 

count[2, 7] .Similarly, ResNet50, known for its residual connections that alleviate vanishing gradients, typically 

achieves 93–96% accuracy in MRI-based tumor classification but comes with a much higher computational 

cost[9, 11]. 

In contrast, the LightBT CNN model achieved comparable or superior accuracy with a relatively lightweight 

architecture, containing approximately 3.6 million parameters, which is significantly fewer than VGG16’s 138 

million parameters or ResNet50’s 23 million parameters[2, 11].This indicates that the DIY model not only delivers 

state-of-the-art accuracy but also provides computational efficiency, making it more feasible for clinical settings 

with limited hardware resources.  

These findings are consistent with Ait Amou and his colleagues (2022), who reported that their CNN with 
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Bayesian optimization achieved 98.70% validation accuracy, outperforming standard architectures such as 

VGG16, VGG19, ResNet50, InceptionV3, and DenseNet201[2].This highlights the potential of model 

optimization strategies in enhancing diagnostic accuracy. Similarly, Haq and his colleagues (2023) proposed a 

multi-level CNN (MCNN) for IoT-based healthcare systems, achieving an outstanding 99.89% classification 

accuracy. This demonstrates not only the feasibility of CNNs for clinical applications but also their adaptability 

for remote and connected healthcare infrastructures[10].Furthermore, Sun (2021) found that a customized CNN 

model outperformed standard architectures with a test accuracy of 96% and an AUC score of 0.99, underlining 

the superiority of integrated CNN models in improving diagnostic efficiency[11]. 

When comparing these findings with this study, it is evident that CNN-based models consistently achieve above 

90% accuracy across different architectures and datasets. However, beyond raw performance metrics, the 

inclusion of Grad-CAM in this analysis demonstrates the added value of interpretability. While accuracy confirms 

diagnostic strength, interpretability ensures clinical reliability. The Grad-CAM results revealed that correctly 

classified tumors were highlighted within their lesion boundaries, while misclassifications occasionally arose from 

activations outside tumor regions, suggesting areas for model refinement. This aligns with the call in recent 

literature for models that balance performance with explainability, thereby enhancing clinical adoption. 

In summary, this study supports existing evidence that CNNs are highly effective in brain tumor classification 

and extends the conversation by emphasizing the role of Grad-CAM in enhancing transparency. Together with 

previous works (Ait Amou and his colleagues, 2022; Haq and his colleagues, 2023; Sun, 2021)[2, 10, 11], our 

results suggest that future research should focus not only on improving accuracy but also on optimizing 

interpretability to ensure safe and reliable clinical deployment. 

5. Conclusion 

The LightBT CNN model achieved a high degree of accuracy, precision, and generalization in brain tumor 

classification, confirming its effectiveness in distinguishing between glioma, meningioma, pituitary tumors, and 

healthy brain scans. This study demonstrates the effectiveness of CNN in classifying brain tumors from MRI scans 

with high accuracy. This interpretability enhances the clinical applicability of deep learning models. However, 

further optimization of architectures and validation with larger datasets are recommended to enhance efficiency 

and reduce misclassification. Additionally, the integration of explainable AI tools such as Grad-CAM into medical 

diagnostics will be essential for building clinician accuracy and ensuring safe adoption of AI-driven diagnostic 

support systems in healthcare. 

6. Limitations of the Study 

This study had several limitations that should be acknowledged. First, the dataset size was relatively limited 

compared to the vast heterogeneity of brain tumor types, which may restrict the generalizability of the findings. 

Second, while MRI scans were used as the primary imaging modality, differences in image quality, scanner 

specifications, and acquisition protocols across institutions may have influenced model performance. Third, the 

study focused only on commonly available CNN architectures without incorporating hybrid or ensemble models, 
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which could potentially yield higher accuracy. Additionally, the research was primarily computational and did not 

include real-time clinical validation with radiologists, limiting its immediate clinical applicability. Finally, the 

models were trained on pre-processed datasets, which may not fully replicate the complexity and noise of real-

world clinical MRI images. 

7. Future Studies 

Future research should aim to address these limitations. Larger, multi-institutional datasets should be used to 

enhance the robustness and external validity of CNN-based brain tumor diagnosis systems. The integration of 

multimodal imaging data, such as PET, CT, or advanced MRI sequences, could provide richer diagnostic 

information and improve classification accuracy. Future studies could also explore the use of ensemble learning, 

transfer learning with novel architectures, and explainable AI techniques to improve both performance and 

interpretability. Moreover, clinical validation with radiologists in real-world settings is crucial for translating these 

models into practice. Finally, the development of lightweight CNN models optimized for deployment on low-

resource devices could extend the application of AI-driven diagnosis to regions with limited healthcare 

infrastructure. 
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