

145

 American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers
http://asrjetsjournal.org/

A Singular Function Algorithm for Packing the Protocol

Description Unit Packet

Kumbirai T. Mukoseraa*, Gilford Hapanyengwib, Ben Nyamboc, Emmanuel

Mashonjowad

a,b,cComputer Science Department, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
dPhysics Department, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe

aEmail: ktmukosera@gmail.com, bEmail: babaticha@gmail.com
cEmail: bennynyambo@gmail.com, dEmail: emash@science.uz.ac.zw

Abstract

A new sequential singular function algorithm for packing Protocol Description Unit packets in the Short

Message Mobile Originated Point-to-Point service is proposed. The single function algorithm simplifies the

Short Message Entities programming where ATtention Commands are used to link Switched on Mobile Stations

with Service Centers. This is in mode 0 of the short message service transmission. This paper shows that by

using, only one single string function, the “Mid” or “Substring” function, it is still possible and is simpler to

encode all the metadata contained in the Transport Protocol Data Unit frame of the Submit Protocol Description

Unit packet. Our results show that, this proposed algorithm, always outputs 100% perfectly accurate packets for

any combination of header and user data payload submitted in hexadecimal octets or decimal semi-octet format.

It is thus possible for programmers not only to manipulate the distinct fields of the header data but also to

modify the metadata using that single function only.

Keywords: Algorithm; AT+CMGF=0; Mid String; PDU; SMS SUBMIT; Substring.

1. Introduction

Short Message Point-to-Point Services (SMS) is an integral facility of the second generation (2G) Global

System for Mobile (GSM) and its subsequent evolution generations [1]. It does not only give users a substitute

way of transmitting in a cellular communication platform like GSM but it can at times be the only available

option due to its low demand for strong signal strength to communicate [2].

--

* Corresponding author.

http://asrjetsjournal.org/

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

146

Its operation between a Short Message Entity (SME) and a Short Message Service Centre (SMSC) is managed

by an inbuilt asynchronous modem that is controlled via AT (ATtention) commands [3].

1.1. The Text Mode and Protocol Description Unit (PDU) mode

Only two modes of sending or receiving SMS exist on the GSM platform when using an AT commanded ETSI

compliant asynchronous GSM modems for data uplink or downlink [4]. These two methods are, “the Text

mode” and “the Protocol Description Unit (PDU) mode”. The text mode is the simplest to use and it is just but

a higher level of the encoding of the bit streams in the PDU packet. It is activated when an “AT+CMGF=1”

command is send to the GSM modem [5]. Unfortunately, the text mode, though easy to program, is limited in

flexibility when it comes to how it can structure the different elements of the SMS content. Moreover, there is

no guarantee that the text mode will be supported by any given mobile phone [5]. This is unlike with the PDU

format which is mandatorily supported on any SME by GSM / ETSI standards [1]. Furthermore, alphabets of the

text mode can differ and therefore the displayed messages can display differently from the original message

which does not happen with the PDU format [6]. The contents are thus standardized when extracted under any

operating system environment. PDU mode also gives the capability to specify the desired destination SME

number [4], the period the SMS can be stored in the network suppose the SME device is not reachable and

request for delivery reports can also be encoded in the message content [7]. Similarly, a message received in

PDU format can display other specifications like the sending SME date and time, number and type of content so

that the decoding process can be as accurate as intended. The PDU mode is activated when an “AT+CMGF=0”

command is send to the GSM modem. Given the foregoing facts then, of the two methods of sending SMS from

an active SME via an SMSC that are available, the most comprehensive is the Protocol Description Unit (PDU)

format [5]. The PDU mode therefore, can be visualized as a management mode of all SMS data elements. It is

more structured in the construction of the entity of the message when either sending or receiving an SMS. This

is why of the two modes, this research prefers to focus on the PDU packet in more depth. As such, in this

research we try to come up with only one function that will attempt to make it is as equally easy to implement

the PDU packet from source code, as it is with the text mode to handle. In this process however, we still want to

leave the programmer with the rich features inherent in the PDU frame design at the same time.

2. Review of the PDU packet

The SMS submit PDU / Short Message Mobile Originated Point-to-Point (SMMO) [8] packet has two main

parts which are the Service Centre Address (SCA) and the Transport Protocol Data Unit (TPDU). TPDU are the

transport layer datagrams that move data packets between the SMEs and the SMSCs. It is mandatory for a

response message to be sent back whenever a TPDU moves between these two systems [9]. The relationship

between the SMS-SUBMIT PDU and the SCA and TPDU is given in figure 1 below. Not all SME support the

full SMS submit PDU format. Some support only the TPDU format where there is no SCA in the PDU packet

[3]. These SME will use the SCA which will have been stored in the SIM card by the network operator. This

difference then leads to two types of PDU packets.

The packet from the SME which supports only TPDU format would have the SCA part replaced with a 00

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

147

Hexadecimal octet [4].

SMS SUBMIT PDU PACKET

Service Centre
Address (SCA)

Transport Protocol Data Unit
(TPDU)

Figure 1: SMS SUBMIT PDU structure

A typical encoded PDU packet which supports SCA would look like the one below.

07916213111902F111000C916273335366000000AA0AE8329BFD4697D9EC37

A similar encoded PDU packet which does not support SCA and has TPDU data only is as below

0011000C916273335366000000AA0AE8329BFD4697D9EC37

If the two PDU packet types are compared it is noticed that only starting from the right side going to the left are

they alike. This is true going all the way to the header byte of the second PDU. The metadata in the first PDU

packet with both an SCA and a TPDU frame can be broken down into the following segments as in table 1.

Table 1: PDU metadata segments

Segment Data Field Name Meaning
1 07 Length of SMSC There are 7 Octets to

follow
2 91 Type of SMSC SMSC is in international

format
3 6213111902F1 SMSC Number The SMSC number is

26311191201
4 11 First Octet Defines other settings
5 00 Message ID (TP-MR) The ID auto generated for

that SMS by modem
6 0C Sending Number

Length
The sending number is 12
digits long

7 91 Sending Number format 91 Means international
format

8 627333536600 Sender Number Sender Number is
+263733356600

9 00 Protocol Identifier TP-
PID

Indicates network
protocol and nature of
message

10 00 Data Encoding Scheme
TP-DCS

00 means user data
encoding scheme

11 AA Message validity TP-
VP

Will hold message for
maximum amount of time
possible

12 0A TP-UDL Size of user data in this
case 10 characters

13 E8329BFD4697D
9EC37

TP-UD The message encoded
“hellohello”

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

148

3. The single function Mid string method

The Mid function is defined by Microsoft Corporation as a function that returns a string that will be containing a

required specified number of characters from an initial string [10]. The structure of the Mid function as defined

in the Microsoft Developer Network (MSDN) is as follows

Public Shared Function Mid(ByVal Str As String, ByVal Start As Integer, Optional ByVal Length As

Integer) As String

If for instance, the Mid function is called with the value of ‘Str’ being = ‘abcdefghij’, and the value of ‘Start’

being an integer = 3 and the value of ‘Length’ being an integer = 5. The function will return the character string

‘cdefg’. This is because it would have moved 3 places into the ‘Str’ string thus submitted. These 3 places from

the start of the string will get us to the character “c” in the string “abcdefghij”. The function then takes the next

5 subsequent characters inclusive as defined by the ‘Length=5’ passed to the function. The function therefore

returns a string which has the 5 characters ‘cdefg’. In different programming platforms this function may have

different names or other alternatives but the syntax is always the same. For instances this Mid function is also

equivalent to the substring function (denoted as “substr”) in some variants of the C programming languages.

The substr function however, maintains the same number of arguments and syntax in these languages as those

defined for the Mid function [10]. It also returns the same value results as the Mid function for similar argument

value calls. We will therefore continue to use the Mid terminology as the common reference to such all

functions in their respective languages. So, in order to simplify the process of encoding the full PDU packet,

this, Mid function is the only function that we will use to encode the PDU packet. By using only this one

function it will be easier to construct the metadata segments of the PDU packet each time that one is

programming a code for sending SMS. This is unlike in the cases where several functions are used to create

each individual segment of the PDU packet. Several individual functions are used since the data formats are

different for each field and one has to use an appropriate function that handles that field format appropriately.

However in this proposed case we propose that it is possible to articulate all the fields by just the one versatile

function together with our proposed algorithm.

4. The flow chart of the algorithm

Figure 2 shows the flow chart of the algorithm that is proposed. The flow chart will start by receiving a number

of the intended recipient of the message. It will also concurrently receive the text of the message that needs to be

send. Once it has received those two parameters, the flow control shows what validation decisions will be made

on the data that will have been input in the algorithm. The flow control assumes that the recipient number that is

entered is a valid mobile phone or ME number and it is in the international format. It also assumes that the input

text characters are all from the 7 bit GSM character set. Since the characters are all assumed from the 7 bit GSM

alphabet the algorithm does not articulate issues of validating them. To also make the PDU packet simpler it will

be assumed that the text to be used as input is less than 160 characters long. This will avoid having to

accommodate the splitting of the two PDU packets so that they are sent as two packets which are later joined at

the Short Message Mobile Terminated Point-to-Point (SMMT) end.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

149

Figure 2: Flow chart for the singular function PDU packing algorithm sequence without an SCA

Start

Get Text Message
Get Mobile Number

Is Number
Length Odd?

Append Number with “F”

Is Number in International
Format? AND

Is Text < 160 Characters?
NO

YES

YES

Do While
x <length(Number) TRUE DecSemiOctetNumber Appends

Swapped x and (x+1) digits; x++

NO

Concatenate PDU String Using
"000100" & "0" &

Hex(Length of (DecSemiOctetNumber)) &
 "91" & "00"

FALSE

Is message required
as Flash?

YES Concatenate PDU
String With “00”

NO

Concatenate PDU with hex(length of Payload)

Concatenate PDU
String With “10”

Do While k =<
length(Message)

Prefix Created Longbits String with
Bits From(MyMessage) position=k; k++ TRUE

FALSE

Is Lengths of Longbits
String a Multiple of 8? NO

YES

For e=Length(longbits) to 1
Decrease e in steps of 8

Create HexDec(PayLoadString) with
8 Bits From(Longbits) position e

from right to left; e:=e-8

Concatenate PDU String& PayloadString

TRUE

End

Output PDU Packet
from PDU string

Add enough padding
bits to make Longbits
Length a multiple of 8

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

150

5. Implementation of the algorithm using only the MID function

In the example to follow, we will have as inputs to our algorithm, the text “hellohello” as the intended message

and the number “263733356600” as the mobile number that we intend to receive the message. We will illustrate

how our PDU string is built up by tracing the contents of a continual concatenation of the string variable which

we will call, PDUStringVar. This variable is first initialized as an empty string and should end up containing

our PDU packet after tracing through the algorithm. The steps of the algorithm will follow the sequence of the

flow chart of figure 2. We will be building the PDU version without a SCA as this will be taken from the

register of the modem and will have been pre saved by AT commands. So the PDUStringVar will be assigned

the string [000100]. The first “00” will mean that there is no SCA number in our PDU packet. The next “01” is

the PDU header. If we needed to set a message validity time we would set this value to “11” instead. The next

“00” will form the message reference number. This can be any number and so we will set it to 00. So at this

stage the contents PDUStringVar= [000100]

Step 1: Since the number 263733356600 has 12 characters that means it is “even”. For even numbers there will

be no need to put the half octet “F” before preparation of the decimal semi-octet number field. If a field which is

represented in decimal semi-octets exists, it may have complete octets if the length of the number is even or can

have one half octet if the length is odd [13]. At the same time this number is assumed to be in international

format which means it is in format “91”. The length of 12 characters is represented by hex 0xC. So we will now

concatenate our PDU with the bytes [0C] and [91] the length of the number and the number format respectively.

At the end of this step the contents PDUStringVar=[0001000C91]

Step 2: In this step there will be a loop through the digits of the number submitted and it is changed from

‘decimal’ to ‘decimal semi octets’ using only the Mid function again.

Do While x < Length of Num In Dec

 Num in Dec Semi Octets := concatenation of Mid(Num in Dec Semi Octets, x + 1, 1) & Mid(Num In Dec, x,

1)

 x:=x+ 2

Loop

As there is loop through the decimal number submitted, the decimal semi octets numbers are built by

continuously concatenating with 2 returned instances of the Mid function. In both encapsulated calls of the

function, the original number in decimal is passed as the contents of Str parameter each time. However, in the

first instance of the Mid function, there is a call by value of Start having a value of (x+1) while in the second

instance there is a call by value of Start with the value of (x) only. The value of Length is constant as 1 in both

instances and the value of x will increment in steps of 2 each time. This Mid function then has the purpose of

converting the decimal number from ‘decimal’ to ‘decimal semi octets’ ready for encoding it. After running

through this sequence we will have the contents of Num in Dec Semi Octets=[627333536600]. This is

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

151

concatenated to the already existing contents of PDUStringVar=[0001000C91]. The new contents of the

PDUStringVar will become=[0001000C91627333536600].

Step 3 Here we check if the user wants the message to reflect as a flash message or not at the SMMT end. If it is

not required as a flash we concatenate with a [00] and if it is required to flash we concatenate with a [10]. We

assume here that we do not want a flash message therefore we will post a [00]. However, before we do the

concatenation, at this stage we will need to set [00] on the protocol identifier segment to indicate that we do not

require a higher level protocol. If we would want to specify how long our message could stay on the SMSC for

retry we would set the next flag to say [AA] provided in the PDU header we would have set [11]. Since our

PDU header is a [01], we will not have a validity period. This will mean that the contents of the PDUStringVar

will become=[0001000C916273335366000000].

Step 4 Here the payload which is the hex length of the message is determined in hex octets and the value of the

payload is again appended to the PDU packet build up. Our test text is “hellohello” and has a hex payload of

0x0A. The field is supposed to have 2 character so we will append a 0 so that it fills up the trailing bit to become

[0A]. At the end of this step our PDUStringVar will become=[0001000C9162733353660000000A]

Step 5 In this step, a continuous string variable declared as LongLongBits is created. It will contain a series of all

binary representations of the 7 bit character table equivalent of the characters in the original message

(hellohello) but in reverse order. The coding of this operation using only the Mid function is outlined below.

For x = 1 To Length of (Original Message)

LongLongBits := BinaryDigits of (Ascii(Mid(Original Message, x, 1))) & LongLongBits

Next

The LongLongBits string is concatenated each time by appending it from the beginning to the end instead of

appending it at the end. Since the value of Start position is always decreasing as it is passed to Mid as x, this

effectively rearranges the order of the bits in the string originally occurring from left to right so that they are

now from right to left. After running this loop the contents of LongLongBits will be

[1101111110110011011001100101110100011011111101100110110011001011101000]

Step 6 : In this step there is only need to add padding bits to the resulting string of bits.

LongLongBits = Create a String(8 – Length of(LongLongBits) Mod 8, "0") & LongLongBits

Here the LonglongBits string is prefixed by as many padding “0” bits as there are in the value of the remainder

of dividing the whole string by a full octet of bits=8. This will ensure that the length of our Longlongbits is a

multiple of 8. If there are up to 8 zeros then a padding bit was not needed and the contribution of the 8 zeros is 0

and is automatically ignored since they form a high order of zeros in the most significant part of the byte. That is

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

152

to say 0x0000 0000F is equivalent to 0x000F which is equivalent to just 0xF. After this execution the contents

of LongLongBits will be:

[001101111110110011011001100101110100011011111101100110110011001011101000]

As can be seen this is again after addition of the padding bits which in this case are only 2 zeros.

Step 7: In this step, each of the set of octets computed in Step 4 and contained in the LonglongBits variable is

given its decimal value using the Mid function before being converted to its hexadecimal-octets equivalent.

Another variable, OctetString is used to concatenate all the ensuing hexadecimal-octets into one continuous

string. This OctetString is the one which will give the final TP-UD frame of the PDU packet. The algorithm to

do this is given below.

For x = Length of (LongLongBits) To 1 in Steps of (-8)

 {

 DecNum = 0

 DecNum = DecNum + value of (Mid(LongLongBits, x + 0 - 7, 1)) * (27)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 1 - 7, 1)) * (26)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 2 - 7, 1)) * (25)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 3 - 7, 1)) * (24)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 4 - 7, 1)) * (23)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 5 - 7, 1)) * (22)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 6 - 7, 1)) * (21)

 DecNum = DecNum + value of (Mid(LongLongBits, x + 7 - 7, 1)) * (20)

 If DecNum <= 15 Then OctetString = OctetString & "0" & Hex(DecNum) Else OctetString = OctetString

& Hex(DecNum)

}

Next

In the algorithm above, the weighting of octet bits to their decimal equivalent can be simplified by running it

through a loop that iterates 8 times. Each time, a variable y can be used in the loop to decrease the value of Start

Upper Octet Nibble

Lower Octet Nibble

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

153

that will be passed to the Mid function. The simpler statement to replace the 8 statements above is given below.

DecNum := DecNum + Val(Mid(LongLongBits, x + y - 7, 1)) * 2(7-y)

The last execution is to concatenate the OctetString, which apparently is the last field of the PDU packet with

the rest of the PDU string that was being built. After execution this OctetString will have the contents

[E8329BFD4697D9EC37]

These contents are then suffixed to the PDUStringVar which was now =[0001000C9162733353660000000A].

At this stage we will now have as the contents of our full packet of PDUStringVar as below

[0001000C9162733353660000000AE8329BFD4697D9EC37]. This is the required PDU packet for sending the

message “hellohello” to the number “263733356600” under the stated options. It can be observed that this

packet was built each time by a call to only 1 function which was the Mid string function.

6. Results and discussion

We analyse our results in the ultimate accuracy of encoding the required PDU packet according to the ETSI

standards. To make this accuracy analysis aspect, we feed similar required messages and numbers into at least

two other algorithms that are found online. These generate PDU packets which we will then compare with ours.

We start by testing whether the constructed packet is valid by posting it online on the following address

https://www.diafaan.com/sms-tutorials/gsm-modem-tutorial/online-sms-pdu-decoder/

The results of the analysis by this online tool are shown in Figure 3. It is shown by this result that primarily all

the fields and segments of the SMS submit framework are 100% as intended.

Table 2: Results of the created SMS SUBMIT PDU by our singular function and those from online utilities

ALGORITHM USED SMS SUBMIT PACKET GENERATED

1 Our Singular Function

Algorithm

0001000C9162732137875900003754741914AFA7C76B9058FEBEBB41E637

1EA4AEB7E173D0DB5E9683E8E832881DD6E741E4F7D90582C564335AC

D76C3E500

2 http://www.smartpositi

on.nl/resources/sms_pd

u.html

0011000C916273213787590000AA3754741914AFA7C76B9058FEBEBB41E

6371EA4AEB7E173D0DB5E9683E8E832881DD6E741E4F7D90582C564335

ACD76C3E500

3 http://rednaxela.net/pdu

.php

0001000C9162732137875900003754741914AFA7C76B9058FEBEBB41E637

1EA4AEB7E173D0DB5E9683E8E832881DD6E741E4F7D90582C564335AC

D76C3E500

4 http://rednaxela.net/pdu

.php

0011000C916273213787590000AA3754741914AFA7C76B9058FEBEBB41E

6371EA4AEB7E173D0DB5E9683E8E832881DD6E741E4F7D90582C564335

ACD76C3E500

http://www.smartposition.nl/resources/sms_pdu.html
http://www.smartposition.nl/resources/sms_pdu.html
http://www.smartposition.nl/resources/sms_pdu.html
http://rednaxela.net/pdu.php
http://rednaxela.net/pdu.php
http://rednaxela.net/pdu.php
http://rednaxela.net/pdu.php

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

154

Figure 3: Analysis from [https://www.diafaan.com] of the PDU packet just created by our singular function

We create a longer SMS SUBMIT PDU packet with a different mobile number being [+263712737895] and the

message [The quick brown fox jumps over the lazy dog. 0123456789]. Our results are compared in table 2.

It is observed from table 2 that our generated PDU packet (#1) is exactly equivalent to that of (#3). On the other

hand packet (#2) is also equivalent to packet number (#4). However, in essence these packets achieve the same

thing. The packets differ because #3 & #4 of the online generated had selected active the sending of validity

periods of the SMS in the SMSC whereas ours (#1) and (#3) this was not preferred. This validity period option

is activated when the second byte in the PDU is set as “11”. In this case one will have also to put the validity

period just before the “payload” bytes. The results therefore show that our proposed singular function algorithm

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 31, No 1, pp 145-155

155

packs perfect PDU packets 100% all the time.

References

[1] B. K. Siang, A. R. Bin Ramli, V. Prakash, and S. A. R. Bin Syed Mohamed, “SMS gateway interface

remote monitoring and controlling via GSM SMS,” in 4th National Conference on Telecommunication

Technology, NCTT 2003 - Proceedings, 2003, pp. 84–87.

[2] G. Gu and G. Peng, “The survey of GSM wireless communication system,” in Proceedings of ICCIA

2010 - 2010 International Conference on Computer and Information Application, 2010, pp. 121–124.

[3] F. Hillebrand, F. Trosby, K. Holley, and I. Harris, Short Message Service (SMS): The Creation of

Personal Global Text Messaging. 2010.

[4] a. Festag and S. Hess, “ETSI technical committee ITS: news from european standardization for

intelligent transport systems (ITS)- [global communications newsletter],” IEEE Commun. Mag., vol.

47, no. June 2009, pp. 1–4, 2009.

[5] J. Brown, B. Shipman, and R. Vetter, “SMS: The Short Message Service,” Computer (Long. Beach.

Calif)., vol. 40, no. 12, pp. 106–110, 2007.

[6] J. G. Caudill, “Mobile Computing : Parallel developments,” Int. Rev. Res. Open Distance Learn., vol.

8, no. 2, p. 13, 2007.

[7] Z. Qian, D. Luo, and S. Wu, “Analysis and design of a mobile forensic software system based on AT

commands,” in 2008 IEEE International Symposium on Knowledge Acquisition and Modeling

Workshop Proceedings, KAM 2008, 2008, pp. 597–600.

[8] R. Teymourzadeh, S. A. Ahmed, K. W. Chan, and M. V. Hoong, “Smart GSM based home automation

system,” in Proceedings - 2013 IEEE Conference on Systems, Process and Control, ICSPC 2013, 2013,

pp. 306–309.

[9] G. Le Bodic, Mobile Messaging Technologies and Services: SMS, EMS and MMS: Second Edition.

2005.

[10] S. Attaway, “Chapter 7 - String Manipulation,” in Matlab (Third Edition), 2013, pp. 235–263.

