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Abstract 

The plane strain problems of the bounded layer medium composed of three different materials contain a crack 

on one of the interface are considered. Using Fourier integral transform, the boundary value problem leads to a 

mixed integral equation with Cauchy kernel in position and continuous kernel in time. In addition, using a 

quadratic numerical method we have a system of Fredholm integral equations with Cauchy kernel in position.   

Then, the Jacobi polynomials method, according to the index of integral equation, is used to solve the system of 

Fredholm integral equations. Moreover, the developing program is used to computing the approximate solution 

and the estimated error. 

Keywords: Fracture mechanics; Fourier integral transform; System of Fredholm integral equations; Cauchy 

kernel; Jacobi polynomial.  

1. Introduction 

Gdoutos, in his work [1], stated that, fracture mechanics is based on the assumption that all engineering 

materials contain cracks from which failure starts. It is known that, cracks lead to high stresses near the crack 

growth takes place. In [2], Erdogen and Kaya studied the elasticity problem for an orthotropic strip or a beam 

with an internal or an edge crack under general loading condition. In [3], Erdogan discussed some different 

method of solution of elastic crack problem, and he described number of related special mechanics problems. In 

[4], Matbuly and Nassar analyzed the electrostatic problem of an edge   cracked orthotropic strip. The crack 

possesses a semi-infinite length. Moreover, the crack surfaces are subjected to opening mode I fracture, by a 

concentrated force action.  
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More information for treating the open cracks of the fracture mechanics are found in [5-7]. In other side, many 

authors have interested in solving the fracture mechanics with curvilinear hole. Some authors expressed the 

solution of fractional mechanics materials in terms of two complex potential functions in the form of Laurent’s 

series, see [8,9,10]. Other used complex variables method (Cauchy method) to obtain the solution of fracture 

mechanics with curvilinear hole in the form of two Gaursat functions, see [11-16]. In most of the problems of 

fractional mechanics materials, we obtain a singular integral equation. For this, many different methods 

numerical and analytic are established for solving the contact problems. More information for using the different 

methods for solving integral equations in fractional mechanics materials, see [17-21]. 

In fractional mechanics materials problem, the unknown function (say ( , )x tφ ) may be either a potential or a 

flux-type quantity.  

In this paper, under certain conditions, the problem of fractional mechanics materials of three layers, after using 

Fourier transforms, leads to mixed integral equation in the space [ ]2 1,1 [0, ], 0 1.L C T t T− × ≤ ≤ < i.e, we 

will have 

( )
1 1

1 1 0

( , )( , ) ( , ) , ( , ) ( , ) ( , ),
ty tx t dy k x y y t dy t x d f x t

y x
λ fµf λ f λ x t f t t
π − −

− − − =
−∫ ∫ ∫              (1.1) 

The formula (1.1) is called mixed integral equation of the second kind in position and time, µ  is a constant 

defined the kind of integral equation.  If 0,µ = we have the mixed integral equation of the first kind, if 0,µ ≠  

we have integral equation of the second kind. λ  is a constant and has physical meaning.  The given function

[ ]2( , ) 1,1 [0, ]f x t L C T∈ − × , and is called the free term.  While  ( , )x tφ  is the unknown function.  The 

interval [-1, 1] is the domain of integration with respect to position x, and ( , )tξ t  is called the kernel of Volterra 

integral with respect to the time [0, ]; 1t T T∈ < . Then using Chebyshev-Jacobi polynomials according to the 

index of the integral equation, the solution of the integral equation is discussed at the index points. Moreover, 

some numerical methods, according to the index and the kind of Chebyshev- Jacobi, are considered and the 

error estimate, in each case, is computed.  

2. Formulation of the generalized problem 

Consider a plane strain problem of the bounded layer medium composed of three different materials, see Fig. 

(1.1). Let the medium material contains a crack on one of the interface. Without any loss in generality, the half-

length of the crack is assumed unity. Consider with the effect of the ratio of the layer thickness to the crack 

length on the stress intensity factors and the strain energy release rate. 

For interesting the disturbed stress state, whiles is variable also with time, caused by the crack. We assume that 

the overall stress distribution (0) ( , , )ij x y tσ , in the imperfection free medium, is known. The stress state

(1) ( , , )ij x y tσ , in the cracked medium, may be expressed as 
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(1) (0)( , , ) ( , , ) ( , , )ij ij ijx y t x y t x y tσ σ σ= + ,   , , ,i j x y z=                  (2.1) 

Where, ijσ  is the disturbed state, which may be obtained by using the tractions 

(0)
1( , ) ( ,0; )yyP x t x tσ= − ; [ ](0)

2 ( , ) ( ,0; ), | | 1, 0, ; 1.xyP x t x t x t T Tσ= − < ∈ <                              (2.2) 

 

Figure 1.1  

Which are the only external loads applied to the medium (the symmetry is considered with ( 0).x =   The 

general problem can always be expressed as the sum of a symmetric component and an anti-symmetric 

component. The tractions ( , ), ( 1,2)iP x t i = , have the following properties 

[ ]1 1 2 2( , ) ( , ), ( , ) ( , ), | | 1, 0, ; 1.P x t P x t P x t P x t x t T T= − = − − < ∈ < .                               (2.3) 

The solution of the anti-symmetric problem requires only a slight modification. Let ,i iu v be the ,x y
components of the displacement vector in the ith materials and satisfy the field equations in the form  

2
2

2( ) i i i
i i i i

u v d uu
x x y dt

µ λ µ ρ
 ∂ ∂∂

∇ + + + = ∂ ∂ ∂ 
                      (2.4)

 
2

2
2( ) i i i

i i i i
u v d vv

y x y dt
µ λ µ ρ

 ∂ ∂∂
∇ + + + = ∂ ∂ ∂ 

 .                           (2.5) 

Then, assume the displacement functions in the form 

x 

 

y 

 

 

 

 

 
2 2( , )II µ υ

3 3( , )III µ υ  

2a 

2 2( , )II µ υ  

1 1( , )I µ υ
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( , , ) ( , ) ( )i iu x y t U x y F t= + ,                           (2.6) 

( , , ) ( , ) ( )i iv x y t V x y F t= + ,                                         (2.7) 

where ( )F t  is  a function of t, will be determined.  

Hence, using (2.6) and (2.7) in Eqs. (2.4) and (2.5), we have  

2 2 2

2 2( 2 ) ( ) 0i i i
i i i i i

U U V
x yx y

λ µ µ λ µ∂ ∂ ∂
+ + + + =

∂ ∂∂ ∂
,                           (2.8) 

2 2 2

2 2( 2 ) ( ) 0i i i
i i i i i

V V U
x yy x

λ µ µ λ µ∂ ∂ ∂
+ + + + =

∂ ∂∂ ∂
,                                  (2.9) 

and 

2

2
( ) ( )id F t F t

dt
µ
ρ

= .        (2.10) 

The formula (2.10) has a solution 

( ) , ( ( ) 0)
i t

F t Be F
µ
ρ

−

= ∞ → .                    (2.11) 

In addition, for solving the two formulas (2.8) and (2.9), we use the Fourier integral transform, to obtain  

1 2 3 4
0

2( , ) ( ) ( ) siny y
i i i i iU x y A A y e A A y e xdα α α α

π

∞
− = + + + ∫ ,                       (2.12) 

1 2 3 4
0

2( , ) [ ( ) ] [ ( ) ] cosy yi i
i i i i i

K KV x y A y A e A y A e xdα α α α
π α α

∞
− = + + + − + − 

 ∫                 (2.13) 

Here, iK  have physical meaning, where 3 4i iK υ= −  for plane strain and (3 ) / (1 )i i iK υ υ= − +  for 

generalized plane stress, iυ are Poisson’s coefficients for each materials, and , , 1,2,3,4i jA j = , are functions 

of α  which can be determined from the boundary conditions. After obtaining the values of ,i iU V , the stresses 

may be evaluated by Hook’s law. In particular, the components of the stress vector at the interfaces and 

boundaries may be expressed, respectively as  

{ 1 2 2 3 4 4
0

21 { ( ) 2(1 ) ] [ ( ) 2(1 ) ] }cos ,
2

i y y
yy i i i i i i i i

i

A A y A e A A y A e xdα α

π
s α υ α υ α α

µ

∞
−= − + + − + − + + −∫                                              
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(2.14) 

{ 1 2 2 3 4 4
0

1 2 [ ( ) (1 2 ) ] [ ( ) (1 2 ) ] }sin .
2

i y y
xy i i i i i i i i

i

A A y A e A A y A e xdα αs α υ α υ α α
µ π

∞
−= − + + − + + − −∫  

(2.15) 

On the boundaries, the medium may have formally any one of the following four groups of homogeneous 

boundary conditions 

(a)    0i i
yy xyσ σ= = , (b) 0i iu v= = , (c)  0i

xy ivσ = = , (d) 0 , 1,2,3i
yy iu iσ = = =  (2.16)                                             

The continuity requires that on the interfaces the stress and displacement vectors in the adjacent layers be equal 

i.e. 

1 1
1 10; 0; 0; 0i i i i

i i i i yy yy xy xyu u v v σ σ σ σ+ +
+ +− = − = − = − = ,                (2.17) 

 Now, to represent the problem in the mixed integral equation form, we first assume that at 0y =  the bond 

between the two adjacent layers is perfect except for the (symmetrically located) dislocations at 0,y x y= =

defined by 

( ) ( )2 3 1 2 3 2( , ), ( , )u u f x t v v f x t
x x

+ − + −∂ ∂
− = − =

∂ ∂
,                  (2.18) 

In addition to (2.18), on the interface 0,y =  we have the following conditions 

2 3 2 30, 0, (0 , 0)yy yy xy xy x yσ σ σ σ− = − = ≤ < ∞ = .                                  (2.19) 

After some algebraic relations, the components of the stress vector at 0y =  and 0x >  may be expressed, 

respectively as 

     33
11 1 12 20

3 0

1 2( ,0, ) lim { ( , ) ( , )}cosx
yy y

K x t e a A t a A t xdasaaaa   
m π−

∞

→

+
= +∫   

+ 11 1 12 2
0 0

2 { ( ) ( , ) ( ) ( , )}cos ( ) ( ,0, )
t

iH A t H A t xd F f x dα α α α α α t t t
π

∞

+ +∫ ∫ ,          (2.20) 

    33
21 1 22 20

3 0

1 2( ,0, ) lim { ( , ) ( , )}sinx
xy y

K x t e a A t a A t xdasaaaa   
m π−

∞

→

+
− = +∫  
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+ 21 1 22 2
0 0

2 { ( ) ( , ) ( ) ( , )}sin ( ) ( ,0, )
t

iH A t H A t xd F f x dα α α α α α t t t
π

∞

+ +∫ ∫ , (2.21) 

Where , ( )i jH α  are the Heaviside functions and iA are the Fourier transforms of if defined as follows 

1 1 2 2
0 0

( , ) ( , )cos ; ( , ) ( , )sinA t f z t z dz A t f z t zdzα α α α
∞ ∞

= =∫ ∫    , .            (2.22) 

  The constants ija depend on the elastic properties of the materials adjacent to the crack only and are given by  

                    11 22 2 4 4 12 21 4 2 4 4(1 ) / , (1 2 ) /a a a aλ λ λ λ λ λ λ= − = + = − = − + − , 

2 2 3 3 2 2 2 3 4 3 2 3 2 3( ) / ( ), ( ) / ( )K K K Kλ µ µ µ µ λ µ µ µ µ= − + = + − .                   (2.23) 

Here, iµ  is the shear modulus and 'sλ are Lame’s constants. 

The integrals on the right hand side are uniformity convergent. The formulas (2.20)-(2.22) give the stresses 

components for all values of x . The crack problem under consideration ( , )if x t are zero for 1x > and are 

unknown for 1x < . On the other hand, the stress vector on the interface 0y =  is unknown for  1x >  and is 

given as known functions for 1x <  i.e. 

3 3
1 2( ,0, ) ( , ), ( ,0, ) ( , ), 1yy xyx t P x t x t P x t xσ σ= = < .                      (2.24) 

Using above information and the following symmetric properties in the presence of time

1 1 2 2( , ) ( , ); ( , ) ( , )f x t f x t f x t f x t= − = − − , we get 

1 1
3 11 12

1 1 20
3 1 0 1

1 ( , ) lim ( , ) cos ( ) ( , )y

y

K a aP x t f z t dz e z x d f z t dza aa
m π π−

∞

→
− −

+
− = − + ×


∫ ∫ ∫  

                 

1 2

1 1
10 1 0

1sin ( ) ( , ) ( , ) ( ) ( , )
t

y
j j

j
e z x d k x z f z t dz F f x dα α α t t t

π

∞

=−


− + + 


∑∫ ∫ ∫ , 

and 

1 1
3 21 22

3 1 20
3 1 0 1 0

1 ( , ) lim ( , ) sin ( ) ( , ) cos ( )y y

y

K a aP x t f z t dz e z x d f z t dz e z x dxaa aaa 
m π π−

∞ ∞

→
− −

+
− = − + −


∫ ∫ ∫ ∫  
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1 2

2 2
11 0

1 ( , ) ( , ) ( ) ( , )
t

j j
j

k x z f z t dz F f x dt t t
π =−


+ + 


∑∫ ∫ .       (2.25) 

Here, the bounded kernels ijk are given by 

11 11 12 12
0 0

( , ) ( )cos ( ) ; ( , ) ( )sin ( )k x z H z x d k x z H z x dα α α α α α
∞ ∞

= − = −∫ ∫ ,     

21 21 22 22
0 0

( , ) ( )sin ( ) ; ( , ) ( )cos ( )k x z H z x d k x z H z x dα α α α α α
∞ ∞

= − = −∫ ∫ ,    (2.26) 

Evaluating the infinite integrals in (2.25), passing to the Cauchy theorem in complex analysis, we have  

1 1 2
3 2

1 1 1 1
112 3 12 121 1 0

1 ( , )1 1 1( , ) ( , ) ( , ) ( , ) ( ) ( , )
t

j j
j

K y t dyP x t x t k x y y t dy F x dt
a x y a a

φ
γφ φ t φ t

µ π π =− −

+
= + − +

− ∑∫ ∫ ∫  (2.27)                    

, 

1 1 2
3 1

2 2 2 2
121 3 21 211 1 0

1 ( , )1 1 1( , ) ( , ) ( , ) ( , ) ( ) ( , )
t

j j
j

K y t dyP x t x t k x y y t dy F x d
a y x a a

φ γφ φ t φ t t
µ π π =− −

+
= − − +

− ∑∫ ∫ ∫
 

 (2.28) 

( ) ( )
( ) ( )

3 3 2 2 2 311 22

12 21 2 2 3 3 3 2

K Ka a
a a K K

µ µ µ µ
γ

µ µ µ µ
+ − +

= = =
+ + +

.                          (2.29) 

 The two formulas of (2.27), (2.28) represent a system of mixed integral equation with Cauchy kernel. For one 

layer, we write Eq. (2.27) in the following form    

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 0

, ( ) , ( , ) , , , , ,
t

x t p y x y t dy k x y y t dy t x d f x tληff  λ f λ x t f t t
p − −

− − − − =∫ ∫ ∫

      {
1( )p y x

y x
− =

−
}.               (2.30) 

The ends 1±  are points of geometric singularity. At these points, and for all values of time, ( , )x tφ  is 

bounded, if it is a potential, and ( , )x tφ  has a singularity, if it is a flux-type quantity of system integral 

equations. This equation may be arising from the formulation of elasticity problems for the parallel layers 

compressed by stamps with arbitrary profile. If the contact between the parallel layers and the stamps is 

frictionless the corresponding constant η  is zero and the related system integral equations is of the first kind, 

while, if the contact is perfect adhesion the related system integral equations  is of the second kind, where the 

lengths of the cracks or size of the stamps are not equals. 
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3. The Existence of a unique solution of mixed integral equation: 

In this section, we use Banach fixed-point theorem to prove the existence of a unique solution of mixed integral 

equation (2.30), under certain conditions. For this, we write (2.30) in the integral operator form  

( ) ( ) ( ) ( )1, , , , 0W x t f x t W x tff  η
η

= + ≠ ,                              (3.1) 

where 

W H Dφ φ φ ξφ= + + ,                                                          (3.2) 

and  

1 1

1 1 0

( ) ( , ) , ( , ) ( , ) ; ( , ) ( , )
t

H p y x y t dy D k x y y t dy t x dλ λ λφ φ φ φ xφ x t φ t t
ηp η η− −

= − = =∫ ∫ ∫ ,       (3.3) 

Then, we assume the following conditions  

i) The two kernels of Fredholm integral term satisfies in [ ]2 1,1L − , respectively, for the constants L and M the 

following conditions: 

  (i-a) ( , )k x y L≤ ,       (i-b) 
1

1 1 2
2

1 1

( ) ,p y x dydx M
− −

 
− = 

 
∫ ∫

  

ii) The kernel of Volterra integral term ( , );tξ t  in the space [ ]TC ,0 , is continuous and satisfies for a constant

N , the condition ( ), ,t Nξ t ≤  [ ], 0,t Tt∀ ∈ . 

iii) The given function ( , )f x t  is continuous in the space [ ]2 1,1 [0, ]L C T− × , and its norm is 

1
1 2

2

0 0 1

( , ) ( , ) , max
t

t T
f x t f x dx d Rt t

≤ ≤
−

 
= = 

 
∫ ∫ . 

Theorem 1.1: The mixed integral equation has a unique solution in the space [ ]2 1,1 [0, ]L C T− × , under the 

condition   

0
( 2 ( )); max

t

M T L N T tη λ
π ≤ ≤T

> + + = ,                       .                  (3.4) 

Proof:  To prove Theorem 1.1, we must prove the following lemmas. 
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Lemma 1.1: The integral operator W  maps [ ]2 1,1 [0, ]L C T− × into itself. 

Proof:  From the formulas (3.1)-(3.3), the normality of the integral operator ,   and  H Dφ φ ξφ  will take the 

forms 

0
; 2 ; 2 , max

t
H M D LT NT T tλ λ λφ φ φ φ xφ φ

ηπ η η ≤ ≤T
≤ ≤ ≤ =  ,             (3.5)  

Hence, with the aid of condition (iv) and (3.5), we get 

( )1

0
; 2 , max

t T

R MW T L N T tφ a φ a η λ
η π

−

≤ ≤

  ≤ + = + + =  
  

,     .                     (3.6) 

The inequality (3.6) yields that, the operator W  maps the ball S ρ  in [ ]2 1,1 [0, ]L C T− × into itself, where 

1
1

Rρ
η α

 =  − 
 .                                           (3.7) 

Since 0 1, 0Rρ< < > , therefore we must have ( 1)α < . Moreover, the inequality (3.7) involves that,  the 

operators W  and W are bounded 

Lemma 1.2: The integral operator (3.1), under the condition (3.4) is continuous and contraction operator. 

Proof: For the two functions 1( , )x tφ  and 2 ( , )x tφ  in the Banach space ( )2 1,1 [0, ]L C T− ×  the formula (3.1) 

after using the conditions (i),(ii) and (iii), then applying Cauchy – Schwarz inequality , yields 

1
1 2 1 2 , 2 ( )MW W T L Nφ φ α φ φ α η λ

π
−  − ≤ − = + +  

  
.                   (3.8) 

Hence, W  is a continuous operator in the space [ ]2 1,1 [0, ]L C T− × , and under the condition ( 1)α <  ,  is a 

contraction operator . From Lemma 1.1 and Lemma 1.2 and Banach fixed -point theorem, we can decide that the 

operator W  has a unique fixed point which is the unique solution of Eq. (.2.30). Then Theorem 1.1 is 

completely proved. 

4. The System of Fredholm Integral Equations 

In order to discuss the solution of mixed integral equation (2.30), we use a quadratic numerical method to 

transform the mixed integral equation in position and time to system of Fredholm integral equations. For this, let 

W
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it t= , 0,1,2,...,i n= ,  and follow  the work of  Abdou and Mustafa [22]. Hence, the Volterra integral 

term, of (2.30) becomes  

( ) ( )
00

( , ) ( , ) ( , ) , ,
it i

i j i j j i
j

t x d w t t x t R x tx t φ t t x φ
=

= +∑∫ .                          (4.1) 

The values of i and the order of the truncation error iR  are depending on the number of derivatives of ( , ) tξ t

for all [ ]0,Tτ ∈ , with respect to t  and  jw  is the weights, where 0 0
1 1,
2 2i iw h w h= = and j jw h= ,

0 j i< < , h  denotes the constant step size for integration. Using (4.1) in (2.30) and then after using the 

following notations: ( ) ( , ),i ix x tφ φ=
 ,( ) ( , ) , ( , )i i i j i jf x f x t t tx x= = , 0,1,2,..., , 0i n j i= ≤ ≤ , we get  

1 1

1 1

( ) ( ) ( ) ( , ) ( ) ( ),i i i i ix p y x y dy k x y y dy xλµ φ φ λ φ y
p − −

+ − + =∫ ∫
    

                        (4.2) 

where 

( ),i i i iwµ η λ ξ= + ,  
1

,
0

( ) ( )
i

i i j i j j
j

f x w xψ λ x f
−

=

 = −  ∑ ,  0,1,2,...,i n= .                  (4.3) 

The formula (4.2) represents system of Fredholm integral equations of the second kind,  

To prove the existence of a unique solution of (4.2) according to the Banach fixed- point theorem, we let E be 

the set of all continuous functions ( )p xφ in the space [ ]2 1,1L − , where 

( ) ( ) ( ) ( ){ }0 1, ,..., ,...px x x xφ φ φΦ = and define the norm in the Banach space E by 

 ( )2 1,1
( )max iE Li
xφ

−
Φ =  and ( )2 1,1

( )max iE Li
xψ

−
Ψ =   . 

Consider the following two conditions 

(1)   
2

( )  max i Li
f x Q≤ , (2)   

1

,
0
max

i

j i j
jj

w Px
−

=

≤∑ ,         (Q, P are constants). 

Theorem 2 (without proof): If the conditions (i), (iii), of theorem 1.1 with the two conditions (1) and (2) 

are satisfied, then the formula (4.2) has a unique solution in the space E, under the condition:  

* *2 , ( max )ii

MP L iλ η η m
π

 + + < = ∀ 
 

.   
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5.  Jacobi polynomials method for solving system of equations (4.2)  

The solution of the problem (4.2) can be written as 

( ) ( ) ( )y g y w yφ = ,     ( ) (1 ) (1 )w x x xα β= − + .                                               (5.1) 

where the unknown function ( )g y  is regular on 1 1.y− ≤ ≤  w(x) is the fundamental function of Eq. (4.2). 

The singular behavior of the solution may be characterized by a fundamental function and the index of the 

problem. Where  the index ( )K α β= − + ;  1,0,1.K = −  More information for the   importance of K can be 

founded in [23].  

 The relation between the values of K and the weight function and the unknown potential function can be 

discussed as the following:                                                         

 (1):  If 1K = − .  Then, 
1
2

α β= = . In this case, the unknown function ( )xφ  is bounded at both ends.  

(2): If 0K = , this means physically that: 
1 1; ,
2 2

α β= − =   or    
1 1;
2 2

α β= = −   and the weight function, in 

each case, can be determined.   In this case, the unknown function ( )xφ  is bounded at one end and has an 

integrable singularity at the other one. In addition, no extra condition is needed (the condition is the constant be 

zero), and the solution being a unique. 

(3): If 1,K =  then, 
1
2

α β= − = . The function ( )xφ  has singularities at both ends, and ( )xφ  must satisfy an 

additional condition 

[ ]
1

1

( ) 0
( )

dxF x
w x−

=∫ ,        
1

1

( ) ( ) ( ) ( )x k y x y dy F xλµφ φ
π −

+ − =∫                  (5.2) 

Once, from the above discuss the unknown function, the fundamental function, ( )w y and he index K ; 

1,0,1K = − can be connected by the  Jacobi polynomials  ( , ) ( ), ( 0,1, )nP y nα β =   in the form 

( , )

0
( ) ( ) ( )n n

n
y w y c P yα βφ

∞

=
= ∑ ,                                       (5.3) 

where ,( 0,1,...)nc n =  are undetermined constants.  

Hence, we represent the solution of (2.30) in the form of (5.3). For this, we use the following famous relation, 

see Szegö [24] 
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1 ( )
( , ) ( , )

2 1
1

1 2 ( ) ( 1) 1( ) ( ) cot( ) ( ) ( ) 1, ;1 ,
( 1) 2n n

dy n xw y P y w x P x F n n
y x n

α β
α β α β α βπα α β α

π π α β

− +

−

Γ Γ + + − = − × + − − − − − Γ + + +  ∫
       [ ( 1)x < ,  0,1,2, .n =   ]   (5.4) 

Here, 2 1
11, ;1 ;

2
xF n n K α − + − + − 

 
and , ( )nP xα β  are the Hyper geometric function and the Jacobi 

polynomials, respectively. Using the following relation (see Erdelyi [25]) 

( , )
2 1

( 1) 1( ) 1, ;1 ;
( 1) (1 ) 2n K

n K xP x F n n K
n K

α β α α
α

− −
−

Γ − − + − = + − + − Γ − + Γ −  
.               (5.5) 

 The relation (5.4), yields 

1
( , ) ( , ) ( , )

1

1 2 ( ) (1 )( ) ( ) ( ) ( ) ( )
K

n n n K
dyw y P y w x P x P x

y x
α β α β α βµ α α

π λ π

−
− −
−

−

Γ Γ −
= − −

−∫
          

(5.6) 

Substituting from (5.6) into (4.2), after neglecting the suffix i and using the properties of the gamma function, 

we have 

( , )

0

2 ( ) ( ) ( )
sin( )

K

n n K n
n

c P x h x xα βλ π ψ
πα

−∞
− −
−

=

 
− + = 
 

∑ ,     ( 1 1)x− < < ,              (5.7) 

where, 

1
( , )

1

( ) ( ) ( ) ( , ) , ( 1 1)n nh x w y P y k x y dy xα β

−

= − < <∫ .                      (5.8) 

The functional equation (5.7) represents an infinite linear algebraic system with unknown coefficients nc . 

Expanding both sides of (5.7) in the form of Jacobi polynomials ( , ) ( ); ( 0,1,...).kP x kα β− − = Then, multiplying 

both sides by ( )( , )( , ) ( ) ,kw P xα βα β − −− − ,and integrating the result from -1 to 1  and  using the orthogonal 

relation,  see Erdelyi [25] 

 

1
( , ) ( , )

( , )
1

0
( ) ( ) ( )n k

k

n k
P x P x w x dx

n k
α β α β

α βθ−

≠= 
=

∫ ,                      (5.9) 

where 
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1
( , ) 2 ( 1) ( 1) ,

2 1 ! ( 1)k
k k

k k k

α β
α β α βθ

α β α β

+ + Γ + + Γ + +
=

+ + + Γ + + +
 ( 0,1,...)k = .                (5.10) 

 Hence, after truncating the series (5.7), we have 

( , )

0

2 , ( 0,1,..., )
sin

K N

k k K nk n k
n

c d c F k Nα βλ θ π
πα

−
− −

+
=

− + = =∑ ,            (5.11) 

where 

1
( , )

1
1

( , )

1

( ) ( , , ) ( )

( ) ( , , ) ( )

nk k n

k k

d P x w x h x dx

F P x w x x dx

α β

α β

α β

α β ψ

− −

−

− −

−


= − − 



= − − 

∫

∫
 .                           (5.12) 

1)  In the case K = - 1, we note that the first term in the series (5.7) is a constant times ( , )
1 ( ).oc P xα β− −  Hence, 

in solving (5.11) it can be formally assumed that 1 0.c− =  Also, from (5.7) to (5.12) it is seen that 

( , )
0 ( ) 1P xα β− − =  is the first equation obtained from (5.11) . 

2) In the case K=0, there are no additional arbitrary constants or conditions, and (5.11) provides (N + 1) linear 

algebraic system for the unknown constants 0 ,..., .Nc c  

3) In the case K = 1, the N + 1 equations given by (5.11) contains N + 2 unknown constants, 0 1,..., .Nc c +  The 

additional equation for a unique solution is provided by the equilibrium or compatibility condition by 

substituting from (5.10) and using the orthogonal condition, hence Eq. (1.7.21) yields: 

0 0 ( , )c Pθ α β = .                                                           (5.13) 

where 

1
( , ) 1
0

1

( 1) ( 1)( ) 2
( 2)

w t dtα β α β α βθ
α β

+ +

−

Γ + Γ +
= =

Γ + +∫  ,    k = 0.               (5.14) 

6. Applications and Discussions 

Here, we  employ the procedures of the Jacobi polynomials methods to solve (2.30) with 1µ =  where the exact 

solution 2 2( , )x t x tφ = , at times 0.5  and  0.9T = . In addition, we consider the continuous kernel of Fredholm 

integral term 1( )
y x−

, while the given function ( , )t tξ t t= , with 2k =  (k is the division of the interval of 
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time [0, T]. In this case, the free function ( , )f x t  can be computed from Eq. (2.30). For the Polyurethane and 

the Fibber materials, we compute 
( )

2 ,
1 2

Gυλ
υ

=
−

 that corresponding to the value of Poison ratio 

0.22, 0.389υ =  and 7 71 10 , 0.132 10G = × × , respectively. In our applications, we let N = 40, to get the 

approximate solutions, Pφ , and the corresponding error, PE . In the first case, let K=0, and write in (2.30) the 

unknown function ( )xφ  in the Jacobi polynomials form  

1 1( , )
2 2

0
( ) ( ) ( ),

N

n n
n

x c w x P xφ
−

=

=∑    
1 1
2 2( ) (1 ) (1 ) ,w x x x

−
= − +                     (6.1) 

The unknown coefficients 1,..., Nc c can be obtained from Eq. (5.11) and then substituted into Eq. (6.1) to get 

the approximate solution. Secondly, if we take K=1, then the unknown function is expressed in Cheypshev 

polynomials formula of the first kind as 

0
( ) ( ) ( ),

N

n nx c w x T xφ =∑         
1

2 2
2

1( ) (1 )
1

w x x
x

−
= − =

−
.                     (6.2) 

The system of IEs (5.11) may be solved, after determining the unknown coefficients 1 1,..., Nc c − . In addition, 

the physics of the problem requires that the solution satisfy the compatibility conditions, which used to 

determine the N arbitrary constants in the solution. In the later case, we assume K = -1, then the unknown 

function ( )xφ  is expressed as 

0
( ) ( ) ( ),

N

n nx c w x U xφ =∑               
1

2 2( ) (1 )w x x= −  .                   (6.3) 

In the following Tables (1-1) -(1-3), the results of the approximate solutions Pφ , Cφ and Uφ and the errors PE ,

CE and UE , respectively, are obtained for different cases of time 0.5  and  0.9T = . In this part, we note 

the following results:    

1. For 0.5  and  0.9T = , the values of the approximate solutions Pφ , Cφ and Uφ  equal to zero at 1x = ± , or 

at 1x = ± , the values of the errors PE , CE and UE are equal the exact solutions. 

2. The values of CE  are less than the other errors PE and UE , where we have  

. 

Case 1 : We apply the Jacobi polynomials method to solve Eq.(5.6) 

  C P UE E E< <
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Table 1-1 

t x exact 
Jacobi  polynomials method   

Fibber v=0.22 Polyurethane v=0.389 
Appr.      error      Appr.  Error 

0.5 

-1.00E+00 2.500E-01 0.000E+00 2.500E-01 0.00E+00 2.500E-01 

-4.00E-01 4.000E-02 0. 409E-02 0.254E-04 2.60101E-02 0.399E-04 

-2.00E-01 1.000E-02 0.990E-02 0.858E-05 0.983E-02 0. 817E-05 

2.00E-01 1.000E-02 0.10047E-02 0. 053E-05 0.2490E-02 0.0 10E-05 

4.00E-01 4.000E-02 0. 428E-02 0.057E-05 0.853E-02 0. 011E-05 

1.00E+00 2.500E-01 0.000E+00 2.500E-01 0.000E+00 2.500E-01 

0.9 

-1.00E+00 0.990E-01 0.000E+00 0.990E-01 0.000E+00 0.990E-01 

-6.00E-01 2.916E-01 2.916E-01 1.300E-05 2.919E-01 1. 275E-05 

-2.00E-01 3.240E-02 3.240E-02 0.5 83E-05 3.240E-02 0.494E-05 

2.00E-01 3.240E-02 3. 241E-02 0.5 04E-05 3. 241E-03 0.5 04E-05 

6.00E-01 2.916E-01 2.917E-02 0.269E-04 2. 911E-02 0.310E-04 

1.00E+00 0.990E-01 0.000E+00 0.990E-01 0.000E+00 0.990E-01 

Table (1-1) show the change of  errors PE of Fibber and Polyurethane materials at N = 40 for T=0.5,0.9 

Case 2 : We apply Chebyshev polynomials of the first kind  to solve Eq.(5.6).  

Table 1-2 

t x exact 

Cheypshev polynomials method  T(x) 

Fibber  v=0.22 Polyurethane v=0.389 

Appr.  Error Appr.  error 

0.5 

-1.000E+00 2.500E-01 0.000E+00 2.500E-01 0.000E+00 2.500E-01 

-6.000E-01 0. 600E-02 0.600E-02 0.690E-05 0.600E-02 0.490E-05 

-2.000E-01 1.000E-02 0.998E-02 0.884E-05 0.9999E-02 0.328E-05 

2.000E-01 1.000E-02 0.998E-02 0.690E-05 0.600E-02 0. 490E -05 

6.000E-01 0. 600E-02 0.600E-02 2.500E-01 9.058E-02 5.856E-04 

1.000E+00 2.50000E-01 0.000E+00 2.500E-01 0.000E+00 2.500E-01 

0.9 

-1.000E+00 8.100E-01 0.000E+00 8.100E-01 0.000E+00 8.100E-01 

-6.000E-01 2.916E-01 2.916E-01 0.351E-04 2.917E-01 0.1783E-04 

-2.000E-01 3.240E-02 3.244E-01 0.248E-04 3.243E-01 0.102E-04 

2.000E-01 3.240E-02 3.244E-01 0. 248E -04 3.243E-01 0.102E-04 

6.000E-01 2.916E-01 3.244E-01 0.248E-04 3.243E-01 0.102E-04 

1.000E+00 8.100E-01 0.000E+00 8.100E-01 0.000E+00 8.100E-01 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 34, No  1, pp 213-230 

228 
 

Table (1-2) show the change of errors CE of Fibber and Polyurethane materials at N = 40 for T= 0.5,0.9 

 

Case (3) : We apply the Chebyshev polynomials of the second kind U(x) to solve Eq.(5.6)  

Table 1-3 

t x exact 

Chebyshev polynomials method  U(x) 

Fibber y  v=0.22 Polyurethane v=0.389 

Appr.  error Appr.  error 

0.5 

-1.000E+00 2.500E-01 0.000E+00 2.500E-01 0.000E+00 2.500E-01 

-6.000E-01 9.000E-02 0.600E-02 0.893E-04 0.600E-02 0.873E-04 

-2.000E-01 1.000E-02 0.995E-02 0.479E-05 0.996E-02 0.995E-05 

2.000E-01 1.000E-02 0.995E-02 0.479E-05 0.996E-02 0.873E-04 

6.000E-01 9.000E-02 0.600E-02 0.893E-04 0.600E-02 0.873E-04 

1.000E+00 2.500E-01 0.000E+00 2.500E-01 0.000E+00 2.500E-01 

0.9 

-1.000E+00 8.100E-01 0.000E+00 8.100E-01 0.000E+00 8.100E-01 

-6.000E-01 2.916E-01 2.916E-01 0.819E-04 2.916E-01 0.751E-04 

-2.000E-01 3.240E-02 2.240E-01 0.289E-04 2.240E-01 0.102E-04 

2.000E-01 3.240E-02 2.240E-01 0.289E-04 2.240E-01 0.102E-04 

4.000E-01 1.296E-01 1.296E-01 0.148E-04 1.334E-01 0.826E-04 
6.000E-01 2.916E-01 2.916E-01 0.819E-04 2.916E-01 0.751E-04 

1.000E+00 8.100E-01 0.000E+00 8.100E-01 0.000E+00 8.100E-01 
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