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Abstract 

Analytical Laplace transform and numerical finite difference methods were used to solve solute transport model 

(conversion dispersion equation) for a simplified homogeneous soil and simulation of the transport were done 

using Matlab programming language. Nitrate solute was used for the study. The study compared the simulation 

results that were generated by both the Laplace transform and the finite difference methods. Spatial and 

Temporal simulation of nitrate transport comparing both analytical and numerical solutions were presented. The 

errors in the spatial and temporal numerical solution were simulated. A three dimensional simulation of the 

nitrate concentration, depth and time for both the Laplace transform and the finite difference method were also 

presented. The results showed that finite difference numerical method gave a good approximation of the Laplace 

transform analytical method which provide exact solution. Although there were errors associated with the 

numerical solution, the output of the numerical solution do not sharply deviate from that of the analytical 

solution. The errors associated with the finite difference numerical solution were mainly as a result of truncation 

of the Taylor series expression.  
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Finite difference numerical method can be used to model solute transport in heterogeneous soil which is a more 

complex process that cannot be accomplished with analytical method with a reasonable level of accuracy. 

Modeling of solute transport in soil is essential for management of nutrients supply to plants and water resource.   

Keyword: Laplace Transform; Finite Difference; Model; Simulation; Solute. 

1. Introduction 

Different kinds of solutes can be found in the soil and they include nutrients, salts, pesticides, naturally 

occurring chemicals and other applied chemicals. A lot of these solutes are of great benefit as they give plants 

and soil organisms’ food and protection against diseases. However, when these solutes move out of their desired 

zones in the soil into ground and surface water sources, they can cause a substantial agronomic, environmental, 

economic consequences [1]. Huge cost are usually associated with solutes that move off site as a result of over 

application of agrichemicals, ineffective treatment of targeted pests (weeds, insects or diseases) or the 

remediation of contaminated water sources [2]. Hence, knowledge and understanding of solute transport in soil 

and how to minimize off-site contamination is required to be able to effectively use chemicals and protect the 

quality of water resources. Studying transport of solute in soils is necessary to improving crop production and 

assessing its impact on the environment [3]. 

Mathematical models are critical for any attempt to effectively understand and estimate site specific subsurface 

water flow and solute transport processes. Mathematical modelling helps to analyze the existing situation, 

allows forecasting, and to evaluate the effects of nutrients transport on surrounding water quality. Models are 

helpful tools for designing, testing and implementing soil, water, and crop management practices that minimize 

soil and water pollution [4]. There are two methods to mathematically model a system and these are analytical 

methods and numerical methods. The analytical methods provide exact solution to mathematical problems, 

however, analytical methods cannot be used to model complex situations. The numerical methods provide 

approximate solution to mathematical problems but they can be used to model very complex situations. Soil is a 

heterogeneous medium and hence transport phenomena within it is very complex, as a result only numerical 

approach can be used to model solute transport within the soil without oversimplifying the soil medium. Since 

numerical approach provides approximate solution, this paper assessed the margin of error of Finite Difference 

numerical method as compared with Laplace Transform analytical methods when both approaches are used to 

model nitrate solute transport in a simplified homogeneous soil.  

1.1 Laplace Transform analytical method 

Laplace transform method uses algebra to solve differential equations. The Laplace transform   is defined by:  

ℒ[𝑓𝑓(𝑡𝑡)](𝑠𝑠) ≡ ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠∞
0 𝑑𝑑𝑑𝑑……………………………………………………………...1.1 

Where 𝑓𝑓(𝑡𝑡) is defined for 𝑡𝑡 ≥ 0 [5] 

Laplace transforms are used to simplify the governing equations for solute transport.  The transform eliminate 
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one independent variable, usually time, and also convert the original transport equation from a partial to an 

ordinary differential equation. A governing Convection Dispersion Equation (CDE) in the Laplace domain is 

obtained with the Laplace transform and the equation in this form is much simpler to solve analytically than the 

original equation. The Laplace Transform of the solute concentration with respect to time is defined as 

𝐿𝐿[𝑐𝑐(𝑧𝑧, 𝑡𝑡)] = 𝑐𝑐 �(𝑧𝑧, 𝑠𝑠) = ∫ 𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠∞
0 𝑑𝑑𝑑𝑑…………………………………………………..1.2 

Where s is the Laplace transform variable. 

Analytical solution in the Laplace space must be subsequently inverted to the real space using either a Table of 

Laplace transforms or by applying inversion theorems and the solution is expressed as an error function or 

complimentary error function [6]. 

1.2 Finite Difference  

The finite difference method consists of approximation of the differential operator by replacing the derivatives 

in the equation using differential quotients. The domain of interest is partitioned in space and time, and 

approximate solutions are computed at the space or time points. Time and space are both divided into small 

increments  t∆  and z∆ or ( x∆ and z∆ ) known as step size as shown in Figure 1.1. Temporal and spatial 

derivatives are approximated by Taylor series expansion. The accuracy of the approximation is determined by 

the scheme selected and the mesh sizes of the spatial and temporal domains [6]. 

 

Figure 1.1: Spatial and temporal finite difference discretization [6] 

1.3 Solute Transport 

Solute transport in soil results from convection of the dissolved substances, molecular or ionic diffusion and 

mechanical dispersion but the transport process is generally assumed to be convection-dominated process. Other 

factors including soil matrix-solute interaction and decay phenomena may affect transport of solute in soils. 

1.3.1 Convection (Mass) Flow 

Convection is passive movement of dissolved constituents of solute with water flowing through the soil, 
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whereby solute and the water move at the same average rate. It is also known as Darcian flow [7]. Convection 

describes the bulk movement of solute particles along the mean direction of fluid flow at a rate equal to the 

average interstitial fluid velocity. Convection does not consider microscopic processes but follows the bulk 

Darcian flow vectors, and is therefore described as the transport along path lines [8]. The velocity at which 

solutes move through soil matrix is known as pore water velocity, and is described by the ratio of Darcian 

velocity and moisture content. In general pore water velocity accounts for straight line of length of path 

traversed in the soil in a given time [9]. The solute flux density, 𝐽𝐽𝑐𝑐 for convective transport is defined; 

𝐽𝐽𝑐𝑐 = 𝑞𝑞𝐶𝐶…………………………………………………………………................................... 1.3 

𝐶𝐶 = dissolved solute concentration, 

The water flux density, q is expressed as  

𝑞𝑞 = 𝑣𝑣𝑣𝑣………………………………………………………………………………………... 1.4 

𝑣𝑣 = pore water velocity,   

1.3.2 Diffusion 

Diffusion is a spontaneous process where solute ions and molecules move from locations of higher to lower 

concentration as a result of thermal random motion of dissolved ions and molecules. Diffusion is an active 

process and tends to decrease existing concentration gradients and move the process towards homogeneity 

rather rapidly [9].  Rates of molecular diffusion are independent of soil water velocity, and diffusion occurs even 

in the absence of fluid movement [8]. Diffusion flux spreads solute through a concentration gradient. Diffusion 

is a dominant transport mechanism when convection is insignificant, and is usually a negligible transport 

mechanism when convection process is very high. 

Fick’s law defines the diffusive transport as:  

𝐽𝐽𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 = −𝜃𝜃𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 
∂C
∂z

 ……………………………………………………………………………..  1.5 

𝐽𝐽𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 = solute flux density for diffusion, z = soil depth  

𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 = diffusion coefficient in soils.  

𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 = 𝐷𝐷𝑜𝑜θε……………………………………………………….…………………………... 1.6 

𝐷𝐷𝑜𝑜 = diffusion coefficient in pure water, ε = tortuosity  

1.3.3 Dispersion 

Dispersion is the mixing and spreading of solutes along and transverse to the direction of flow in response to 
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local variations in interstitial fluid velocities. Dispersive transport of solute occurs due to the uneven distribution 

of water flow velocities within and between different soil pores. Dispersion is a passive process.  

Macroscopically, dispersion is similar to diffusion; however it occurs only during water movement and not 

driven by concentration gradients [9]. The dispersion that occurs along the direction of flow path is called 

longitudinal dispersion and that in the direction normal to flow is known as transverse dispersion. Dispersion 

process and diffusion process are considered to be additive at macroscopic level. 

The dispersive transport is described by an equation similar to diffusion as: 

𝐽𝐽𝑑𝑑𝑖𝑖𝑠𝑠 = −𝜃𝜃𝐷𝐷𝑑𝑑𝑖𝑖𝑠𝑠   
∂C
∂z

 ………………………………………..….………………………………… 1.7 

 𝐽𝐽𝑑𝑑𝑖𝑖𝑠𝑠 = solute flux for dispersion, 𝐷𝐷𝑑𝑑𝑖𝑖𝑠𝑠 = dispersion coefficient. 

 Dispersion is assumed to be a function of fluid velocity as: 

𝐷𝐷𝑑𝑑𝑖𝑖𝑠𝑠 = λvn……………………………………………………………………………………... 1.8 

 λ = dispersivity, n = empirical constant (generally assumed to be 1).  

 Dispersion process and diffusion process are considered to be additive at macroscopic level. The two are 

therefore combined to define a new parameter called the apparent dispersion coefficient or hydrodynamic 

dispersion coefficient (D) 

D = 𝐷𝐷𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 + 𝐷𝐷𝑑𝑑𝑖𝑖𝑠𝑠 ……………………………………………………..……………………….. 1.9 

1.4 Nitrate Solute 

Nitrate (NO3
-) is negatively charged ion. It is very mobile in soils and can easily be lost from the soil with water 

that moves downward laterally through a soil profile. The surface of the negatively charged clay or organic 

matter particles repels nitrate rather than been attracted and therefore it can be lost by leaching. Movement of 

the NO3
- ion through soil is governed by convection, or mass-flow, with the moving soil solution and by 

diffusion and dispersion within the soil solution. The widespread appearance of NO3
- in ground water is a 

consequence of its high solubility, mobility, and easy displacement by water [10]. Nitrate is a potential pollutant 

if it reaches surface and ground water supplies. 

2. Methodology 

The governing equation for the modelling process was the one dimensional convectional dispersion equation 

(CDE). The CDE was solve using both Laplace transform and finite difference methods and the solutions were 

implemented in mat- lab programming environment. 

2.1 Solute Transport Equation 
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The convection-dispersion equation (CDE) which is the accepted deterministic solute transport equation 

describes the time rate of change of solute concentration for a single solute [8]. The CDE is a partial differential 

equation of parabolic type, derived on the principle of conservation of mass using Fick’s law. The 

analytical/numerical solutions of the CDE along with initial and boundary conditions help to understand the 

solute concentration profile or distribution behavior through an open medium like air, rivers, lakes and porous 

medium on the basis for which remedial measures to reduce or eliminate the damages may be implemented [11].  

2.1.1 Convection-Dispersion Equation 

The classic one dimensional CDE for transport of conservative species without adsorption or decay in a partially 

saturated porous medium can be written as [7]: 

𝜕𝜕(𝜃𝜃𝜃𝜃)
𝜕𝜕𝜕𝜕

=  𝜕𝜕
𝜕𝜕𝜕𝜕

 �𝜃𝜃𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑞𝑞𝑞𝑞�…………………………………………………………..… (2.1) 

The comprehensive CDE for one-dimensional transport of reactive solutes, subject to reaction terms of 

adsorption, first-order degradation, and zero-order production is given as [12]; 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜃𝜃𝜃𝜃 + 𝜌𝜌𝑏𝑏𝑆𝑆𝑠𝑠 ) =  𝜕𝜕
𝜕𝜕𝜕𝜕

 �𝜃𝜃𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑞𝑞𝑞𝑞� − 𝜃𝜃𝜇𝜇𝑙𝑙𝐶𝐶 − 𝜌𝜌𝑏𝑏𝜇𝜇𝑠𝑠𝑆𝑆𝑠𝑠  + 𝜃𝜃𝛾𝛾𝑙𝑙(𝑧𝑧) +   𝜌𝜌𝑏𝑏𝛾𝛾𝑆𝑆(𝑧𝑧……… (2.2) 

𝑆𝑆𝑠𝑠 = 𝑘𝑘𝑑𝑑C......................................................................................................................... (2.3) 

Assuming reversible equilibrium adsorption and steady state flow in a homogeneous soil, equation (2.2) reduces 

to  

𝑅𝑅  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧2

− 𝑞𝑞
𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜇𝜇𝜇𝜇 + 𝛾𝛾(𝑧𝑧) ……..………………............................................... (2.4) 

R=1+
𝜌𝜌𝑏𝑏𝐾𝐾𝑑𝑑
𝜃𝜃

 …………………..………………………..................................................... (2.5) 

𝜇𝜇 = 𝜇𝜇𝑙𝑙 +
𝜌𝜌𝑏𝑏𝐾𝐾𝑑𝑑𝜇𝜇𝑠𝑠

𝜃𝜃
…………...………………………....................................................... (2.6) 

𝛾𝛾(𝑧𝑧) =  𝛾𝛾𝑙𝑙(z) + 
𝜌𝜌𝑏𝑏𝐾𝐾𝑑𝑑𝛾𝛾𝑠𝑠

𝜃𝜃
  …..…………………………………......................................... (2.7) 

𝜇𝜇𝑙𝑙 ,  𝜇𝜇𝑠𝑠  = First-order decay coefficients for degradation of the solute in the liquid and adsorbed phases 

respectively. 

 𝛾𝛾𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎  𝛾𝛾𝑆𝑆 = zero order production terms for the liquid and adsorbed respectively. 

R = retardation factor,   𝜇𝜇 and  𝛾𝛾 = combined first and zero order rate coefficients respectively. 

𝑅𝑅  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧2

− 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜇𝜇𝜇𝜇 + 𝛾𝛾(𝑧𝑧) ………………………….……………………................ (2.8) 
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2.2 Assumptions 

• Nitrate transport occurs in the vertical direction only. 

• The soil is homogeneous and unsaturated. 

• Nitrate transport is affected by only convection, and hydrodynamic dispersion (combined dispersion 

and diffusion) processes. Any other solute process is negligible. 

• Nitrate is non-adsorbing solute 

2.3 Initial and Boundary Conditions 

𝐶𝐶(𝑧𝑧, 0) = 0              0 ≤ 𝑧𝑧 ≤ ∞, 𝑡𝑡 = 0 ……..………………………………………………. (2.9) 

𝐶𝐶(0, 𝑡𝑡) = 𝐶𝐶0               𝑧𝑧 = 0, 𝑡𝑡 > 0…..………...……………………………………………… (2.10) 

𝐶𝐶(∞, 𝑡𝑡) = 0             𝑧𝑧 → ∞, 𝑡𝑡 > 0 …...………………………….………………………….. (2.11) 

2.4 Laplace Transform Solution of the CDE 

Applying the assumptions, equation (2.8) reduces to  

∂c
∂t

= D ∂2c
∂z2

− v ∂c
∂z

……………………………………………….………….……… ……… (2.12) 

 Laplace Transform with respect to time is defined as   

𝐿𝐿[𝑐𝑐(𝑧𝑧, 𝑡𝑡)] = 𝑐𝑐 �(𝑧𝑧, 𝑠𝑠) = ∫ 𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠∞
0 𝑑𝑑𝑑𝑑 ……..………………………………………… (2.13) 

Applying Laplace transform with respect to time to equation (2.12) gave: 

𝐿𝐿 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝐿𝐿 �𝐷𝐷 𝜕𝜕2𝑦𝑦

𝜕𝜕𝑧𝑧2
� − 𝐿𝐿 �𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�…………………………………….…………………………................ (2.14) 

The Laplace transforms are; [13] 

𝐿𝐿{𝑓𝑓(𝑡𝑡)} = ∫ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑠𝑠)∞
0 …….………………………………………...……………………... (2.15) 

𝐿𝐿{𝑓𝑓′(𝑡𝑡)} = 𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑓𝑓(0)…………...……………………………………………………………….… (2.16) 

𝐿𝐿 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑠𝑠𝑐𝑐̅ − 𝑐𝑐(𝑧𝑧, 0)………….…………………………………………………..........................................(2.17) 

Applying the initial condition, equation (2.17) becomes: 

𝐿𝐿 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑠𝑠𝑐𝑐̅ − 𝑐𝑐(𝑧𝑧, 0)……………………………………………………………………………………... (2.18) 
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𝐿𝐿 �𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑣𝑣 ∫ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑∞

0 …….…………………………………………………………………………. (2.19) 

Since the integral of derivative = derivative of integral, then by exchanging the order of integration and 

differentiation in eqn. (2.19) becomes: 

𝐿𝐿 �𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 ∫ 𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠∞
0 𝑑𝑑𝑑𝑑………………………………………………………………………..  (2.20) 

𝐿𝐿 �𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑣𝑣 𝜕𝜕𝑐𝑐̅

𝜕𝜕𝜕𝜕
………………………………………………………………………………………………. (2.21) 

𝐿𝐿 �𝐷𝐷 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

� = 𝐷𝐷 ∫ 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑∞
0 …….………………………………………………………………………. (2.22) 

𝐿𝐿 �𝐷𝐷 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

� = 𝐷𝐷 𝜕𝜕2

𝜕𝜕𝑧𝑧2 ∫ 𝑐𝑐(𝑧𝑧, 𝑡𝑡) 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑∞
0 …….……………………………………………………………… (2.23) 

𝐿𝐿 �𝐷𝐷 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

� = 𝐷𝐷 𝜕𝜕2𝑐𝑐̅
𝜕𝜕𝑧𝑧2

…………….……………………………………………………………………….…….. (2.24) 

Putting eqn. (2.18), (2.21) and (2.24) into eqn. (2.14) yielded: 

𝑠𝑠𝑐𝑐̅ = 𝐷𝐷 𝜕𝜕2𝑐𝑐̅
𝜕𝜕𝑧𝑧2

− 𝑣𝑣 𝜕𝜕𝑐𝑐̅
𝜕𝜕𝜕𝜕

…………………………………………………………………………..……………….. (2.25) 

Taking Laplace transform of the boundary conditions  

 

𝐿𝐿[𝑐𝑐(0, 𝑡𝑡)] = 𝐿𝐿[𝑐𝑐0]……….………………………………………………………………………………...... (2.26) 

𝑐𝑐̅ (0, 𝑠𝑠) = 𝑐𝑐0 ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 = 𝑐𝑐0
∞
0 �𝑒𝑒

−𝑠𝑠𝑠𝑠

𝑠𝑠
�
0

∞
= 𝑐𝑐0

𝑠𝑠
………….……………………………………………….... (2.27) 

𝐿𝐿[(∞, 𝑡𝑡)] = 𝐿𝐿[0]……...……………………………………………………………………………............. (2.28) 

∫ 𝑐𝑐(∞, 𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑 = 0∞
0  …………………………………………………………….…………………….... (2.29) 

𝑐𝑐̅ (∞, 𝑠𝑠) = 0... ……………………………………………………..……………..……………………….… (2.30) 

Dividing through equation (2.25) by D and rearranging gives: 

𝜕𝜕2𝑐𝑐̅
𝜕𝜕𝑧𝑧2

− 𝑣𝑣
𝐷𝐷
𝜕𝜕𝑐𝑐̅
𝜕𝜕𝜕𝜕
− 1

𝐷𝐷
𝑠𝑠𝑐𝑐̅ = 0……..………………………………………………………………………………… (2.31) 

Which is a second order ordinary differential equation with auxiliary equation 

𝑚𝑚2 − 𝑣𝑣
𝐷𝐷
𝑚𝑚 − 𝑠𝑠

𝐷𝐷
= 0…………………………………………………….………………………………........ (2.32) 
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The roots of equation (2.32) were determined from the quadratic formula. 

 

𝑚𝑚 = −𝑏𝑏±�𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

………...……………………………………………….………..……………………….... (2.33) 

Hence equation (2.32) had the roots:                                

𝑚𝑚 = 1
2
�𝑣𝑣
𝐷𝐷

± �𝑣𝑣2

𝐷𝐷2
+ 4𝑠𝑠

𝐷𝐷
�…… …. ………………………………………………..…………………………. (2.34) 

The general solution of equation (2.31) is given as [13] 

𝑐𝑐̅ = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �𝑣𝑣𝑣𝑣
2𝐷𝐷

+ 𝑧𝑧
2
�𝑣𝑣2

𝐷𝐷2
+ 4𝑠𝑠

𝐷𝐷
� + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑣𝑣𝑣𝑣

2𝐷𝐷
− 𝑧𝑧

2
�𝑣𝑣2

𝐷𝐷2
+ 4𝑠𝑠

𝐷𝐷
�……………...…………….………….. (2.35) 

Applying the lower boundary condition [𝑐𝑐̅ (∞, 𝑠𝑠) = 0]means as 𝑧𝑧 → ∞ there would be no concentration, hence 

A=0, and equation (2.35) reduced to: 

𝑐𝑐̅ = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑣𝑣𝑣𝑣
2𝐷𝐷
− 𝑧𝑧

2
�𝑣𝑣2

𝐷𝐷2
+ 4𝑠𝑠

𝐷𝐷
�……….……………………………………………………………….. (2.36) 

Applying the upper (surface) boundary condition, �𝑐𝑐̅(0, 𝑠𝑠) = 𝐶𝐶0
𝑠𝑠
�  to equation (2.36) yields,  𝐵𝐵 = 𝐶𝐶0

𝑠𝑠
 and eqn. 

(2.36) becomes: 

𝑐𝑐̅ = 𝐶𝐶0
𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣

2𝐷𝐷
− 𝑧𝑧

2
�𝑣𝑣2

𝐷𝐷2
+ 4𝑠𝑠

𝐷𝐷
�…………..……………………………………………………………. (2.37) 

Rearranging equation (2.37) produced: 

𝑐𝑐̅
𝐶𝐶0

= 1
𝑠𝑠
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣

2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧�

𝑠𝑠+𝑣𝑣
2

4𝐷𝐷
𝐷𝐷
�……………....……………………………….…………………..… (2.38) 

Letting 𝑄𝑄 = 𝑠𝑠 + 𝑣𝑣2

4𝐷𝐷
  ⇉   𝑠𝑠 = 𝑄𝑄 − 𝑣𝑣2

4𝐷𝐷
 

𝑐𝑐̅
𝐶𝐶0

= � 1

𝑄𝑄−𝑣𝑣
2

4𝐷𝐷

� 𝑒𝑒𝑒𝑒𝑝𝑝 �𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑧𝑧 �𝑄𝑄

𝐷𝐷
�
0.5
�……………… ……………………………………..……….. (2.39) 

From Shift theorem [14]  

𝐿𝐿−1[𝐹𝐹(𝑠𝑠 + 𝑎𝑎)] = 𝑒𝑒−𝑎𝑎𝑎𝑎𝐿𝐿−1[𝐹𝐹(𝑠𝑠)]………………………………………………. …………  (2.40) 
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𝐿𝐿−1[𝐹𝐹(𝑄𝑄)] = 𝐿𝐿−1 �𝐹𝐹 �𝑠𝑠 + 𝑣𝑣2

4𝐷𝐷
�� = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣2𝑡𝑡

4𝐷𝐷
� 𝐿𝐿−1[𝐹𝐹(𝑠𝑠)]………...…….………………….............. (2.41) 

The Laplace inverse of equation (2.39) was written as:  

𝐶𝐶(𝑧𝑧,𝑡𝑡)
𝐶𝐶0

= exp �𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣2𝑡𝑡

4𝐷𝐷
� 𝐿𝐿−1 � 1

𝑄𝑄−𝑣𝑣
2

4𝐷𝐷

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑧𝑧 �𝑄𝑄
𝐷𝐷
�
0.5
��…………………………..………………… (2.42) 

Carslaw and Jaeger [15] have shown that the inverse Laplace expression on RHS of eqn. (2.42) could be written 

as:   

𝐿𝐿−1 � 1

𝑄𝑄−𝑣𝑣
2

4𝐷𝐷

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑧𝑧 �𝑄𝑄
𝐷𝐷
�
0.5
�� = 1

2
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣

2𝑡𝑡
4𝐷𝐷
�

⎣
⎢
⎢
⎢
⎡𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣𝑣𝑣

2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝐷𝐷
− �𝑣𝑣2𝑡𝑡

4𝐷𝐷
� +

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝐷𝐷
+ �𝑣𝑣2𝑡𝑡

4𝐷𝐷
�  

⎦
⎥
⎥
⎥
⎤
 ………… (2.43) 

Substituting equation (2.43) into equation (2.42) gave 

𝑐𝑐(𝑧𝑧,𝑡𝑡)
𝑐𝑐0

= 1
2

exp �𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣2𝑡𝑡

4𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣

2𝑡𝑡
4𝐷𝐷
�

⎣
⎢
⎢
⎢
⎡𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣𝑣𝑣

2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝐷𝐷
− �𝑣𝑣2𝑡𝑡

4𝐷𝐷
�+

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝐷𝐷
+ �𝑣𝑣2𝑡𝑡

4𝐷𝐷
�  

⎦
⎥
⎥
⎥
⎤
…………. (2.44) 

𝑐𝑐(𝑧𝑧,𝑡𝑡)
𝑐𝑐0

= 1
2
�𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑣𝑣𝑣𝑣
2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝐷𝐷
− �𝑣𝑣2𝑡𝑡

4𝐷𝐷
� + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣

2𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑧𝑧

2√𝐷𝐷𝑡𝑡
+ �𝑣𝑣2𝑡𝑡

4𝐷𝐷
�

 
�…...…….. … (2.45) 

𝑐𝑐(𝑧𝑧,𝑡𝑡)
𝑐𝑐0

= 𝑐𝑐0
2
�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑧𝑧−𝑣𝑣𝑣𝑣
2√𝐷𝐷𝐷𝐷

�+ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑣𝑣
𝐷𝐷
� 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑧𝑧+𝑣𝑣𝑣𝑣

2√𝐷𝐷𝐷𝐷
�

 
�………….……………………………..(2.46 

2.5 Finite Difference Solution of the CDE 

The CDE was also solved numerically by fully implicit (backward in time) finite difference scheme. The model 

domain was discretized into grid points using space and time steps of 1cm and 1 hour respectively.  

Applying the assumptions, equation (2.8) reduces to  

∂c
∂t

= D ∂2c
∂z2

− v ∂c
∂z

……………………………………………….………….……. ……….. (2.47) 

Converting the CDE equation (3.24) into a difference equation gives:        

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑖𝑖
𝑗𝑗+1−𝐶𝐶𝑖𝑖

𝑗𝑗

∆𝑡𝑡
……………………………………………………........................................ (2.48) 
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𝐷𝐷 ∂2c
𝜕𝜕𝑧𝑧2

= 𝐷𝐷
𝐶𝐶𝑖𝑖+1
𝑗𝑗+1−2𝐶𝐶𝑖𝑖

𝑗𝑗+1+𝐶𝐶𝑖𝑖−1
𝑗𝑗+1

(∆𝑧𝑧)2
……………………………………………………………….. (2.49) 

𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣
𝐶𝐶𝑖𝑖+1
𝑗𝑗+1−𝐶𝐶𝑖𝑖−1

𝑗𝑗+1

2∆𝑧𝑧
……………………………………………………………………….. (2.50) 

Substituting equation (3.63), (3.64), and (3.65) into equation (3.24) 

𝐶𝐶𝑖𝑖
𝑗𝑗+1−𝐶𝐶𝑖𝑖

𝑗𝑗

∆𝑡𝑡
= 𝐷𝐷

𝐶𝐶𝑖𝑖+1
𝑗𝑗+1−2𝐶𝐶𝑖𝑖

𝑗𝑗+1−𝐶𝐶𝑖𝑖−1
𝑗𝑗+1

(∆𝑧𝑧)2
− 𝑣𝑣

𝐶𝐶𝑖𝑖+1
𝑗𝑗+1−𝐶𝐶𝑖𝑖−1

𝑗𝑗+1

2∆𝑧𝑧
……………………………………………… (2.51) 

𝐶𝐶𝑖𝑖
𝑗𝑗+1 − 𝐶𝐶𝑖𝑖

𝑗𝑗 = 𝐷𝐷(∆𝑡𝑡)
(∆𝑧𝑧)2

�𝐶𝐶𝑖𝑖+1
𝑗𝑗+1 − 2𝐶𝐶𝑖𝑖

𝑗𝑗+1 + 𝐶𝐶𝑖𝑖−1
𝑗𝑗+1� − 𝑣𝑣∆𝑡𝑡

2∆𝑧𝑧
�𝐶𝐶𝑖𝑖+1

𝑗𝑗+1 − 𝐶𝐶𝑖𝑖−1
𝑗𝑗+1�……………………... (2.52) 

Let  𝑝𝑝 = 𝐷𝐷∆𝑡𝑡
(∆𝑧𝑧)2

,     𝑞𝑞 = 𝑣𝑣∆𝑡𝑡
2∆𝑧𝑧

 

𝐶𝐶𝑖𝑖
𝑗𝑗+1 − 𝐶𝐶𝑖𝑖

𝑗𝑗 = 𝑝𝑝�𝐶𝐶𝑖𝑖+1
𝑗𝑗+1 − 2𝐶𝐶𝑖𝑖

𝑗𝑗+1 + 𝐶𝐶𝑖𝑖−1
𝑗𝑗+1� − 𝑞𝑞�𝐶𝐶𝑖𝑖+1

𝑗𝑗+1 − 𝐶𝐶𝑖𝑖−1
𝑗𝑗+1�……………………………. (2.53) 

𝐶𝐶𝑖𝑖
𝑗𝑗+1 − 𝐶𝐶𝑖𝑖

𝑗𝑗 = 𝑝𝑝𝐶𝐶𝑖𝑖+1
𝑗𝑗+1 − 2𝑝𝑝𝐶𝐶𝑖𝑖

𝑗𝑗+1 + 𝑝𝑝𝐶𝐶𝑖𝑖−1
𝑗𝑗+1 − 𝑞𝑞𝐶𝐶𝑖𝑖+1

𝑗𝑗+1 + 𝑞𝑞𝐶𝐶𝑖𝑖−1
𝑗𝑗+1……………………………. (2.54) 

−(𝑝𝑝 + 𝑞𝑞)𝐶𝐶𝑖𝑖−1
𝑗𝑗+1 + (1 + 2𝑝𝑝)𝐶𝐶𝑖𝑖

𝑗𝑗+1 + (𝑞𝑞 − 𝑝𝑝)𝐶𝐶𝑖𝑖+1
𝑗𝑗+1 = 𝐶𝐶𝑖𝑖

𝑗𝑗 ………………………………….. (2.55) 

When i =1 equation (3.70) reduces to: 

−(𝑝𝑝 + 𝑞𝑞)𝐶𝐶0
𝐽𝐽+1 + (1 + 2𝑝𝑝)𝐶𝐶1

𝑗𝑗+1 + (𝑞𝑞 − 𝑝𝑝)𝐶𝐶2
𝑗𝑗+1 = 𝐶𝐶1

𝑗𝑗………………………………… (2.56) 

Applying the boundary condition 𝐶𝐶(0, 𝑡𝑡) = 𝐶𝐶0 ,        𝑧𝑧 = 0, 𝑡𝑡 > 0  equation ( ) becomes 

(1 + 2𝑝𝑝)𝐶𝐶1
𝑗𝑗+1 + (𝑞𝑞 − 𝑝𝑝)𝐶𝐶2

𝑗𝑗+1 = 𝐶𝐶1
𝑗𝑗 + (𝑝𝑝 + 𝑞𝑞)𝐶𝐶0

𝑗𝑗+1………………………………….. (2.57) 

When  𝑖𝑖 = 2 → 𝑛𝑛 − 1, equation (3.71) remains: 

−(𝑝𝑝 + 𝑞𝑞)𝐶𝐶𝑖𝑖−1
𝑗𝑗+1 + (1 + 2𝑝𝑝)𝐶𝐶𝑖𝑖

𝑗𝑗+1 + (𝑞𝑞 − 𝑝𝑝)𝐶𝐶𝑖𝑖+1
𝑗𝑗+1 = 𝐶𝐶𝑖𝑖

𝑗𝑗 ……………………………….. (2.58) 

n = number of grid points 

When i = n 

−(𝑝𝑝 + 𝑞𝑞)𝐶𝐶𝑛𝑛−1
𝑗𝑗+1 + (1 + 2𝑝𝑝)𝐶𝐶𝑛𝑛

𝑗𝑗+1 + (𝑞𝑞 − 𝑝𝑝)𝐶𝐶𝑛𝑛+1
𝑗𝑗+1 = 𝐶𝐶𝑛𝑛

𝑗𝑗 ……………………………...... (2.59) 

Applying the boundary condition 𝐶𝐶(∞, 𝑡𝑡) = 0,    𝑧𝑧 → ∞, 𝑡𝑡 > 0 equation ( ) becomes 

−(𝑝𝑝 + 𝑞𝑞)𝐶𝐶𝑛𝑛−1
𝑗𝑗+1 + (1 + 2𝑝𝑝)𝐶𝐶𝑛𝑛

𝑗𝑗+1 = 𝐶𝐶𝑛𝑛
𝑗𝑗 ……………………………………………….. (2.60) 
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Assuming  𝑥𝑥1 = 𝑝𝑝 + 𝑞𝑞,     𝑥𝑥2 = 1 + 2𝑝𝑝    𝑥𝑥3 = 𝑞𝑞 − 𝑝𝑝, the above sets of simultaneous equations can be expressed 

in a tri-diagonal matrix notation as follows: 

 

( )1 1
2 3 1 1 0

1
1 2 3 2 2

1
1 2 3 3 3

1
1 2 3 2 2

1
1 2 3 1 1

1
1 2

0
0

0 0

0 0 0
0 0
0 0 0

j j j

j j

j j

j j
n n
j j

n n
j j

n n

x x C C q p C
x x x C C

x x x C C

x x x C C
x x x C C

x x C C

+ +

+

+

+
− −
+
− −
+

   + + 
    −     
    −
    
↓ ↓     =     ↓ ↓

    
−     

    −     
−          

�

�

     ……….. (2.61) 

3. Result and Discussion 

 

Figure 3.1: Analytical and Numerical simulation of nitrate transport with respect to soil depth 

 

Figure 3.2: Analytical and Numerical simulation of nitrate transport with respect to time 
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Figure 3.3: analytical simulation of concentration, time and depth 

 

Figure 3.4: 3D numerical simulation of concentration, time and depth 

 

Figure 3.5: Plot of error in temporal numerical model against time 

 

Figure 3.5: Plot of error in spatial numerical model against depth 

0 20 40 60 80 100 120 0
10

20
30

40
50

0

2

4

6

8

 

Time (hrs)

Depth (cm)

 

Co
nc

en
tra

tio
n 

(g
cm

3 )

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120
0

10

20

30

40

50

0

1

2

3

4

5

6

7

8

 

Time (hrs)

Depth (cm)

 

Co
nc

en
tra

tio
n (

gc
m3 )

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time,hrs

Erro
r

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Depth(z),cm

Error



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 38, No  1, pp 235-249 

248 
 

Figure 3.1 and 3.2 compare the analytical and numerical simulation of nitrate transport in soil with respect to 

depth and time respectively. Figure 3.3 and Figure 3.4 show three dimensional analytical and numerical 

simulation of nitrate transport with respect to both depth and time respectively. Figure 3.5 and 3.6 depict the 

error associated with the numerical simulation with respect to time and depth respectively. The simulations 

show that although there are errors associated the finite difference numerical method, its results do not deviate 

sharply from the Laplace transform analytical simulations results. The errors in the finite difference simulations 

were as a result of truncation of Taylor series and therefore the error is mainly truncation error. The finite 

difference numerical simulation generated values which were greater than the values generated by the Laplace 

transform analytical simulation. The errors in both the temporal and spatial simulations initially grew to a point 

and started declining from that point.    

4. Conclusion 

Modeling of solute transport in soil is a very complex process, hence the analytical models cannot capture most 

of the complexities of such process. Analytical models can only describe simplified process which is far from 

what pertains in reality. Numerical models are able to capture most the complexities of solute transport in soil 

hence it is very close to what happens in nature. However, numerical models unlike analytical models provide 

approximate and not exact solutions. There are errors associated with the numerical models. A comparison 

between Laplace transform model and finite difference model for nitrate solute transport in soil showed that the 

finite difference model gave a good approximation of the Laplace transform model. There were errors 

associated with the numerical model but it was mainly as a result of truncation error. The error associated with 

both the temporal and spatial simulations grew initially to some point and decline from that point onwards. The 

finite difference numerical model can be used to model the complex solute transport process in soil. However, 

there will be some errors but these errors will not cause too much difference between the numerical model 

solution and analytical model solution should it have been possible. 
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