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Abstract 

A three dimensional coupled heat and moisture transfer model for vibrating convective drying process of 

unsaturated porous medium was established. The aim of this paper is to study the effect of vibration on the 

drying of whole brick. A Three-dimensional unstructured Control Volume Finite Element Method (CVFEM) is 

developed. In order to simulate 3-D complex geometries, as application here the drying of whole brick, we 

developed Fortran modules to build the polygonal CVFEM mesh based on 3-D unstructured meshes generated 

by the free mesh generator Gmsh. The temperature, the liquid saturation and pressure distributions for whole 

brick were presented and analyzed for both cases namely with and without vibration. The results obtained state 

that the drying process is highly enhanced by vibration and the drying time is reduced by 20%. 

Keywords: 3D vibrating drying; CVFEM; Gmsh; unsaturated porous media. 

1. Introduction  

Technology of vibrating drying has been widely used in industry in several developed countries, and it has 

gained more and more attention. Since, the vibration has been found to enhance heat and mass transfer 

mechanisms. However, A review of literature shows that only few research papers were conducted to investigate 

this technique of drying. Beck and his colleagues investigate the influence of airborne ultrasound conditions on 

the drying [1]. Moreover, a fundamental study of the drying intensification by vibration was established by 

Colin and his colleagues [2]. 
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Also, the vibration effect on convection excitation in fluid and porous layers has been studied by Kolchanova 

and Kolchanov [3]. The effect of high-frequency and small-amplitude vibrations on the excitation of convection 

in fluids and fluid-saturated porous media was widely studied [4-8].  

Application of vibrational techniques for physical processing of granular materials in feeding, conveying, 

cooling, drying, agglomeration and milling, were reviewed by [9]. Reference [10] studied food product drying 

using vibro-fluidization technique. It was found that vibration intensity should be lower than 3.3. The suitable 

values of vibration intensity and amplitude were 1.5–2.0 and 5–10 mm, respectively.  

More recently, Ramzi and his colleagues has developed a 3-D numerical model to study the vibration effects on 

drying process [11]. The motivation of this study is that the vibration is a new technology for the amelioration of 

drying process which deserves more attention. 

In this context, the aim of the present paper is to offer a numerical study that is able to evaluate the external 

vibration effect on drying process through a comparison between two cases; classical convective drying and 

triangular vibrating drying. For this reason, a 3-D numerical model is employed to describe the coupled heat and 

mass transfer phenomena during vibrating drying of unsaturated porous plate.  

The control volume finite element method (CVFEM) is employed. A review of the literature unveils little 

evidence of where CVFEM has been used to simulate numerically the physics associated with heat and mass 

transfer in porous materials [12-13]. References [14-15] have used the finite element method to study similar 

problems. However, they found that the CVFEM was superior for reasons concerning efficiency, conservation, 

and robustness across a wide range of varying drying conditions of isotropic and anisotropic porous material. 

The 3-D drying kinetics (average water content, temperature and pressure profiles) will be exhibited for the 

vibration during high temperature drying of whole brick. Several simulation numerical results studying the 

effect of vibration on drying process, are presented and analyzed. 

2. Mathematical model  

The proposed problem is an industrial problem treating the vibrating drying of whole brick which is an 

industrial problem. 

 The system considered in this work is a whole brick (porous medium) which is composed of: 

• An inert and rigid solid phase (brick matrix). 

• A liquid phase (pure water). 

• A gaseous phase which contains both air and water vapor. 
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Figure 1: Whole clay brick dimensions. 

2.1.  Governing equations 

The proposed model is based on a numerical problem treating an external vibrations of hot air on heat and mass 

transfer during the drying of unsaturated porous medium process. 

The numerical model is a comparison of heat and mass transfer during drying process for three configurations of 

drying (hot air velocity): 

 Without vibration 

Va = 10 m s⁄                                                            (1) 

 With triangular vibration  

 Va = a × t + b (m s⁄ )                                              (2) 

                                           With: 

⎩
⎪⎪
⎨

⎪⎪
⎧a =

3 × Av

Tv
 , b = 0                             ;   0 ≤ t ≤

Tv
3

a =
−6 × Av

Tv
 , b = 3 × Av ;    

Tv
3
≤ t ≤

2 × Tv
3

a =
3 × Av

Tv
 , b = −3 × Av ;    

2 × Tv
3

≤ t ≤ Tv

 

With Av is the maximum amplitude of vibrating velocity, t is the time, Tv and fv are respectively the period and 

the frequency of vibrating velocity and a is the acceleration. 

The periodic evolutions of hot air velocity for the two configurations of vibrating drying are presented in Fig. 2. 

.  
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Figure 2: Evolution of hot air velocity during a period for triangular vibration 

Based on Whitaker theory, a mathematical model governing heat and mass transfer is established for the 

unsaturated porous media. In order to obtain a closed set of governing macroscopic equations, the following 

assumptions are made: 

• The porous layer is homogenous and isotropic. 

• The solid, liquid and gas phases are in local thermodynamic equilibrium. 

• The compression-work and viscous dissipation are negligible. 

• The gas-phase is ideal in the thermodynamic sense. 

•  The dispersion and tortuosity terms are interpreted as diffusion term. 

• The radiative heat transfer is negligible. 

Considering these assumptions, macroscopic equations governing heat and mass transfer in the porous medium 

are: 

 Generalized Darcy's Law: 

The average velocities of the liquid phase (Vl� ) and the gas phase (Vg���) are obtained using Darcy's Law which is 

generalized by using the concept of relative permeability defined as the ratio between the effective permeability 

and the intrinsic permeability. 

For the liquid phase: 

KK g ll P ρ gg lμl
V Pl c

  = − ∇ − −  
                                                                                                            (1) 

With 
g l

P P Pc g l= −
 : the capillary pressure.  

For the gas phase (without taking into consideration the gravitational effect): 
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KK ggV Pg g
gµ

= − ∇
                                                                                                           (2) 

 Mass conservation equations: 

• Liquid phase: 

Assuming that liquid density is constant, the mass conservation equation of the liquid phase is: 

(V )l
l

ml
t

ε

ρ

∂
+∇ = −

∂
&

                                                                                                          (3) 

Where  ṁ is the mass rate of evaporation and εl is the volume fraction of liquid phase. 

• Gas phase: 

For this phase the average density is not constant. In this case, the mass conservation equation of the gas phase 

is given by: 

( )g
V mg

d g
gt gd

ρ
ρ∇+ = &

                                                                                                                      (4) 

Where
g
gρ  is the intrinsic average density of the gas phase. This phase is considered as an ideal mixture of 

perfect gases. 

• Vapor phase: 

( )  d v
dt

g
V mv v vρ

ρ
∇ =+ &

                                                                                                                             (5) 

g ρvρ Dg geff ρg

g g
V Vv gv vρ ρ

 
 = − ∇  
                                                                                                                   (6) 

Deff represents the coefficient of the effective diffusion of the vapor in the porous medium. This coefficient 

takes into account the resistance to the diffusion due to tortuosity and the effects of constriction. 

 Energy conservation equation: 
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( ) ( )l g
ρC T ρ C v ρ C v = . T .mp vapl pl l k pk k effk=a,v

div T H vt
∂ λ
∂

  
+ + ∇ ∇ −∆ ∑     

&
                                       (7) 

vapH∆
is the latent heat of vaporization at temperature T(K). 

effλ
and

Cpρ
are respectively the effective thermal conductivity and the constant pressure heat capacity of the 

porous medium and 
Cpρ

is given by: 

C C C C Cs l a vp ps pa pvplρ ρ ρ ρ ρ= + + +
                                                                                                  (8) 

Where ρ Cs ps ,
ρ Cl pl , ρ Cv pv  and ρ Ca pa are respectively the mass heat capacities of the brick solid matrix, liquid, 

vapor and air. 

 Thermodynamic relations: 

The partial pressure of the vapor is equal to its equilibrium pressure: Pv = Pveq(T, S). 

Where S is the liquid saturation defined by: 

lS
ε

ε
=

                                                                                                                                                      (9) 

The gaseous phase is assumed to be an ideal mixture of perfect gases: 

ρiP = RT ;i=a,vi Mi                                                                                                                         (10) 

P =P +Pg a v ,
ρ =ρ +ρg a v  

Vapor Pressure: 

2. .M
exp

. . .
Pv v
Pvs r R Tl

σ
ρ

 
 = −
 
                                                                                                          (11) 

2.2 Boundary and initial conditions 

Initially, the temperature, the gas pressure and liquid saturation are uniform in the brick. Thermal energy 
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brought by air convection is necessary for water evaporation and to the heat conduction in porous medium. This 

energy is function of temperature and heat transfer coefficient.  

On the exchanging faces (holes and sides (right, left and top)), we can write: 

( )T H V n h T Tvap tieff l lXi
λ ρ
 ∂〈 〉

+ ∆ 〈 〉 = 〈 〉 −  ∞∂                                                                                        (12) 

The mass flow corresponding to evaporation and to the evacuation of water is function of the vapor density 

difference and mass transfer coefficient: 

( )gV V n h C Cv v m vs vil l
ρ ρ 〈 〉 + 〈 〉 〈 〉 = −  ∞                                                                               (13) 

The gas pressure on exchanging face is equal to atmospheric pressure: 

gP Pg atm 〈 〉 =                                                                                                            (14) 

Since the brick is placed on the swing of the dryer, the bottom face does not exchange heat with hot air. Then, 

we assume that the bottom face (y=0) is adiabatic and impermeable face. 

0T H V nvap ieff l lXi
λ ρ
 ∂〈 〉

+ ∆ 〈 〉 = 
∂                                                                                                                 (15) 

0gV V nv v il lρ ρ 〈 〉 + 〈 〉 〈 〉 =                                                                                              (16) 

0
gPg

Xi

 ∂〈 〉
  =

∂                                                                                                 (17) 

For heat and mass convection, the convective heat and mass transfer coefficients were listed in Table 1 [16]. 

Table 1: Convective heat and mass transfer coefficients 

Rectangular holes Brick faces 
ht λ × 0.332 × Re

1/2 × Pr
1/3

LC
 

λ × 0.023 × Re
4/5 × Pr

1/3

LC
 

hm DA,B × 0.332 × Re
1/2 × Sc

1/3

LC
 

DA,B × 0.023 × Re
4/5 × Sc

1/3

LC
 

Validity Re < 5 × 105  Pr ≥ 0.6  Sc ≥ 0.6 

Re = ρawaLC
µa

      Pr = Caµa
λa

      Sc = ϑa
DA,B
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With: 

ht :the convective heat transfer coefficient(W
m2℃� ) 

hm:the convective mass transfer coefficient(W
m2℃� ) 

DA,B is the vapor diffusion in air given by: DA,B = Dvap,air = 0,26 × 10−4 [m2
s� ] 

LC = 0.3 m is the characteristic length of the brick. 

3. Solution method 

The equations set, with initial and boundary conditions has been solved numerically using the Control Volume 

Finite Element Method (CVFEM) [17-18]. The advantages of this method are (i) It ensures the flux conservation 

(ii) the used control volumes present more faces, that makes it possible to avoid the numerical diffusion. (iii) 

The control volume is composed of triangular elements that improve the grid flexibility. 

3.1 Mesh generation 

For the mesh generation, we use the free mesh generator Gmsh [19]. The brick domain is divided first in six-

node prisms. To create the polygonal control volumes around each node in the finite element grid, the centroids 

of the triangular elements (bases of prisms) are joined to the midpoints of the corresponding sides (Fig. 3). Then 

we developed a Fortran program called “Geomet Generator” allowing the reading of the Gmsh mesh file 

(*.msh) and the construction of control volumes.   

 

base1 
border2 

slateral1 
slateral2 

base2 
4nr 

1nr 2nr 

3nr 

border 1 

Z 

k+1/2 

k 

k-1/2 

1bnr 
2bnr 

bΩ the sub-element 
 

Figure 3: Control volume and sub-volume. 

 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 40, No  1, pp 97-112 

105 

Geomet Generator generates a ‘Geomet.g’ file containing the control volumes Data structures. This file will be 

then used by our main program called “porous drying simulator”.  

4. Results and Discussions 

This section is devoted to the numerical results obtained from the simulation which is applied to the drying of 

porous brick for two cases namely with and without vibration. 

We use free mesh generator Gmsh to achieve three-dimensional meshing (Fig. 4) to numerically simulate the 

three-dimensional phenomenon of vibrating drying of whole brick. 

 

Figure 4: Mesh generation by Gmsh. 

The operating conditions, which are listed in Table 2, are taken the same of a typical industrial drying process 

and we kept the same operating conditions for both cases with and without vibration. 

Table 2: Operating conditions 

Tamb 

(℃) 

Tini 

(℃) 

Sini 

(%) 

CVamb Pamb 

(atm) 

Pini 

(atm) 

110 20 50 0.01 1 1 

 

Referring to the time evolution of temperature, liquid saturation and gas pressure for the two cases with and 

without vibration which are depicted in Figs. 6-9, we can clearly observe the three conventional drying phases: 

• The transient heating phase 
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• The constant drying rate phase 

• The decreasing drying rate phase: 

- First decreasing drying rate period 

- Second decreasing drying rate period 

From Fig. 5, we note that the vibration accelerates the drying process. Moreover it is clearly noticed that  the 

isenthalpic phase is slightly longer for the case of classic drying that means that the vibration highly enhances 

the heat and mass transfer and hence reduces the drying time.  

Also referring to Fig. 6, we can observe a rapid decrease of liquid saturation for the vibration case compared to 

the classical drying one. Similar behavior is noticed from the gaseous pressure time evolution (Fig.7) where the 

most intense evaporation occurred earlier during the vibrating drying.  

Since from the time evolution of liquid saturation for one node we cannot properly determine the whole drying 

time, we depicted in figure 8 the moisture content variation for the whole brick. From this figure it is clearly 

noticed that the drying period during the vibrating drying is shorter compared to the classical drying.  

 

Figure 5: Comparison of the evolution of temperature 

 

Figure 6: Comparison of the evolution of liquid saturation 
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Figure 7: Comparison of the time evolution of gaseous pressure 

 

Figure 8: Comparison of the time  evolution of water content 

In order to better observe the mechanisms of 3D vibrating drying process, we showed in Fig. 9 the 3D 

spatiotemporal evolutions of temperature, liquid saturation and gas pressure of the whole brick after 40 min of 

vibrating drying. We can notice from this figure that the presence of three orthogonal exchanging faces forces 

the liquid saturation to be very low at the top corners and given the fact of the gravity, it is clear that only the 

core of whole brick  and especially the bottom face retains a high value of liquid saturation. Moreover, the 

temperature and pressure fields allow more subtle phenomena to be observed. The temperature gradient is 

required to supply the energy necessary for the evaporation which occurs rapidly and intensively near the 

exchanging faces. Also the temperature varies significantly in space only in the region of vapor migration 

(gaseous Darcy’s flow and vapor diffusion). The pressure gradient that exists in this region results from a cross 

diffusion effect of vapor and air, and in the domain of free water, almost no pressure gradient exists.  
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Figure 9: Distribution of the temperature, the liquid saturation and the gaseous pressure inside whole brick. 

In order to exhibit clearly the effect of three-dimensional heat and mass transfer especially in the core of the 

brick, we choose the slices view to represent the distribution of temperature, liquid saturation and gaseous 

pressure in the three conventional phases of the drying process (Figs. 10-12): 

The transient heating period: this is a very short period in the light of the overall drying time. It corresponds to 

the evolution of the temperature of the material to the wet bulb temperature which is 

 characteristic of the drying environment accompanied by the evaporation. Though, a slight depression 

was observed (Fig. 10). 

 The constant drying rate period: it is a time of constant rate of drying. All the heat supplied to the brick 

is consumed by the evaporation of water to the solid surface whose temperature is evolving to the wet 

bulb, homogenizes and remains constant. However, the gas depression reduces without canceling (Fig. 

11). 

 The decreasing drying rate period (first and second phases): it is characterized by evaporation inside 
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the environment and diffusion to the surface. Also in contrast, the air diffuses inwardly. Hence the 

occurrence of evaporation front in the brick, characterized by an increase in temperature, a significant 

gradient of liquid content then a decrease in the density and a gaseous overpressure. 

When the front reaches the axis, the brick is in heat and moisture equilibrium with the external environment. We 

note also that the two bottom corners of the whole brick dry the last since they present the greatest amount of 

water that comes from accumulating by gravity . 

After 2 h of drying (Fig.12), the process is well established. However, the exchanging faces are heated both by 

convective heat transfer and by the latent heat associated with the vapor that condenses at the surface. The 

pressure is clearly observed inside the brick whose liquid evaporation is important. As a result, it has very high 

values in the core of the brick and it is zero on the outer sides. Moreover, the liquid saturation decreases 

gradually from the center towards the exchanging face. 

 

 

Figure 10: Distribution of the temperature, the liquid saturation and the gaseous pressure after 30 minutes. 
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Figure 11: Distribution of the temperature, the liquid saturation and the gaseous pressure after 1h 

 

 

Figure 12: Distribution of the temperature, the liquid saturation and the gaseous pressure after 2h. 
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5. Conclusions 

In this presented study, a 3-D numerical simulation has been developed to analyze the heat and mass transfer 

mechanisms that arise during vibrating drying of unsaturated porous medium. 

In order to quantify these effects, a comparison between two cases of convective drying was investigated 

namely are: with external triangular vibration and classical drying (without vibration).  

Referring to the numerical results,  the external vibrations highly enhance the heat and mass transfer during the 

drying process and the drying time is reduced by 20%. 

Finally, this numerical model successfully simulates the evolution of the different phases of convective of whole 

brick drying.  
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