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Abstract 

Numerical computational technique(s) with simulation tool is one of the most important difficult tasks in order 

to carry out real time scientific astronomical and other sophisticated problems. The main focus and highlight of 

this paper is concerned with the introduction of a method Runge-Kutta (4, 4) technique to determine the 

distribution of thermodynamic variables inside protoplanets during pre-collapse stage, formed by gravitational 

instability, for protoplanetary masses between 0.3 to 10 Jupiter. The case of convection is a significant concern 

for transference of heat inside the protoplanets and the graphical solution demonstrates positively better 

performance by the RK (4, 4) algorithm for any length of time. A viable quantitative analysis has been carried 

out to clearly visualize the goodness and robustness of the Runge-Kutta (4, 4) algorithm.  
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1. Introduction  

The mechanism of giant planet formation is one of the eminent topics of interest to scientists and still is a matter 

of debate. The discovery of the first extra solar planet in the mass range~0.5–3 Jupiter masses demands a 

revaluation of theoretical mechanisms for giant planet formation (Boss [1]) and after that a lot of work has been 

done on the physical conditions prevailing in the interior of such planets both inside and outside the solar system 

(e.g., Helled and Schubert [2]; Boley and his colleagues [3]). Two mechanisms, available in the literature, i.e. 

the core accretion and disk instability models are the two end members that are used to explain the formation of 

gas giant planets.  

According to the core accretion model, a heavy element core is formed first by the accretion of planetesimals. 

As the core becomes more massive, its gas accretion ability from the surrounding disk increases. When the core 

becomes sufficiently massive, rapid accretion of gas occurs onto the core, and a gas giant is formed (Pollack and 

his colleagues [4]; Hubickyj and his colleagues [5]; Matsuo and his colleagues [6]). With the difficulties 

encountered with the core accretion models, The only serious alternative of  the currently favored core accretion 

model, the disk instability model, for explaining the formation of gaseous giant planets suggests that these 

planets are formed as a result of gravitational fragmentation in a massive protoplanetary disk surrounding a 

young star, the gravitational collapse of an unsegregated protoplanet which was in vogue in the 1970s when a 

great deal of now forgotten work has been reviewed and reformulated with fragmentation from massive 

protoplanetary disks, gas giants are formed due to local gravitational instability in the solar nebula having solar 

composition of elements and no core at all. This theory, once in vogue and then quickly forgotten, has been 

revived and reformulated by several authors (e.g. Boss [7]; Durisen, R. H and his colleagues [8], Cha and 

Nayakshin [9]; Boley and his colleagues [3]). As for example, the investigation of Nayakshin [10] predicted 

colder protoplanets than the ones found in Helled and Schubert [2]  and Mayer and his colleagues [8] predicted 

denser and hotter protoplanets than the ones predicted by Boss [7].  

However, no author has shown that such protoplanets with definite structure exists in reality. Boss [7] in his 

simulation assumed an initial protoplanet to be fully radiative, Helled and Schubert [2] found such protoplanets 

to be fully convective with a thin outer radiative zone, while Paul and his colleagues [11] and Senthilkumar and 

Paul [12] investigated the initial configurations of protoplanets assuming them to be fully convective. In this 

paper, we intend to investigate the internal structure of protoplanets formed by disk instability, using the 

distribution of necessary thermodynamic variables inside the gaint protoplanets obtained by solving their 

structure equations assuming the protoplanets to be fully convective.  

1.1. Method Analysis 

New innovative technique(s) continues to play a major role in research and development to obtain optimal 

solution (s) for any real-time problem(s). A large volume of work on initial value problems arising in 

Mathematics, engineering and physical sciences are being solved by the classic Runge-Kutta method. Evans and 

Yaakub [13] and Yaakub and Evans [14] introduced a new 4th order Runge–Kutta technique for initial value 

problems with error control. Evans and Yaakub [13] introduced a new fourth order Runge–Kutta method based 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 48, No  1, pp 115-127 

 

117 
 

on the Heronian Mean formula for solving initial value problem in numerical analysis. In this article, the 

structure of initial extrasolar giant protoplanets having masses between 0.3 and 10 Jovian masses assuming the 

gas blob of the protoplanets to be fully convective have been analyzed and examined by RK (4,4) algorithm and 

the obtained results are addressed in detail.  

1.2. Structure of the Protoplanets 

For the initial grain radius we consider three different values, namely r0 = 10-1 cm, r0 = 10-2 cm and r0 = 10-3 

cm. the object being formed via disk instability. Following Paul and his colleagues [11], such an object is 

assumed to be spherical with solar composition of gas, which is in a steady state of quasi-static equilibrium with 

no core in which the ideal gas law holds well. 

In this paper, a giant gaseous protoplanet is referred to an object in the mass range 0.3Mj to 10Mj (1Mj = 2× 

1030 g) and radius R = 3× 1012 cm (Paul and his colleagues [11]) respectively. 

1.3. Statement of the equations  

This model assumes a non-rotating, non-magnetic spherical giant gaseous object of solar composition in the 

mass range 0.3–10 Jupiter masses. The choice of the mass range is that it covers most of the observed mass 

range of extra solar giant planets (see, e.g., Helled and Schubert [2]). As in DeCampli and Cameron [15] and 

Bodenheimer and his colleagues [16], in our study it is assumed that such an object is in a steady state of quasi-

static equilibrium in which the ideal gas law holds and the gravitational contraction of the gas is only the source 

of energy. For heat transfer inside the object, we consider the convective case. Then the structure of the object 

during its pre-collapse stage can be given by the following set of equations:  

The equation of  hydrostatic equilibrium   

)()()(
2 r

r
rGM

dr
rdp r=  

The equation of conversation of mass, 

)(4)( 2 rr
dr

rdM rπ=  

The equation of conversation heat flux  

( ) 1 ( ) ( )1
( )

dT r T r dP r
dr p r drγ

 
= − 
 

 

The Clapeyron gas law, 
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)()()( rTr
H
krP r
µ

=  

In the above equations )(),( rTrP  and )(rr  represent the pressure, temperature and density respectively at 

distance r from the Centre of the protoplanet inside a radius r. 

1.4. Essential boundary conditions  

Let us consider a sphere of infinitesimal radius r at the Centre, We find that the mass of a protoplanet )(rM  is 

 )(
3
4)( 3 rrrM rπ=  

Here ρ  is the density. We may treat ρ  sensibly constant in the sphere. Hence as r→0, it is also clear from the 

above equation that M(r) = M at the surface. 

We may derive suitable conditions for pressure and temperature of a protoplanet at its surface. The initial 

protoplanets having cold origin must have low surface temperature. In the first approximation we assume that 

the surface temperature is zero. So the approximate boundary conditions are 

( ) 0, ( ) 0; 0( )
( ) ;
( ) 0; 0( )

T r P r at r surface
M r M at r R
M r at r centre

= = = 
= = 
= = 

          

1.5. Solution of the equations 

As is usual in numerical work, the equations were non-dimensionalized using the Schwarzschild transformations 

xRrAndqMrMt
KR

HGMrTP
r

GMrP ==== ,)(,)(,
4

)( 4

2 r
π

 

With the help of above transformations and then using the transformation x=1-y  

Then the following equations are given below.  

The equation of the hydrostatic equilibrium 

2

)()()(
r

rrGM
dr

rdP r
−=      ……………………………………….(1) 

 The equation of the conservation of mass 
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)(4)( 2 rr
dr

rdM rπ= …………………………………….…….(2) 

The equation of convective heat flux 

dr
dP

rp
rT

dr
rdT

)(
)(11)(









−=
γ

.………………………  ………….…(3) 

The Clapeyron gas law  

P(r) = )()( rTr
H
K r
µ

 ……………………………………….…...(4) 

and  )(
3
4)( 3 rrrM rπ=

       ……………………………………(5)
 

We know PV = RT and ρ V = mass of one gram molecule= µ  gm, using Boltzmann Constant  K=RH we get 

KP T
H

ρ
µ

=  

Using the Schwarzschild transformation  

yxxRrAndqMrMt
KR

HGMrTP
r

GMrP −===== 1,,)(,)(,
4

)( 4

2 r
π

 

and boundary conditions     

( ) 0, ( ) 0; 0( )
( ) ;
( ) 0; 0( )

T r P r at r surface
M r M at r R
M r at r centre

= = = 
= = 
= = 

 ………………………(6) 

Finally, equations (1),(2) and (3)  can be reduced to the following form 

,
)1( 2yt

pq
dy
dp

−
= ................................................ (7) 

,)1( 2

t
yp

dy
dq −

−= ............................................. (8) 
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and 

( )215
2

y
q

dy
dt

−
= ................................................. (9) 

respectively where the value of γ  is considered as  35  is appropriate for a mono atomic gas. 

While the boundary conditions given by equation (6) are reduced to the form 









==
==
===

1,1
0,1
0,0,0

yatq
yatq
yatpt

............................. (10) 

Solving  equations (7) and (8) by using integration, we get 

2
5

Etp =∴ ....................................................... (11) 

Where E is a constant of integration. 

Equation (4) can be reduces in the following form 

.
4 3 t

p
R

M
p

ρ = .................................................... (12) 

Also, differentiating both sides of equations (9) with respect to y and using equations (8) and (11), we get 

2 1.5
2

1 (1 )
2.5(1 )

d dt Ey t
dy dyy

   ∴ − =   −   
 ………… (13) 

It is evident that if the equation (13) can be solved for t and 
dt
dy

, then using equations (9) and (11), q and p can 

be determined and hence using equation (12), ρ can be obtained. Equation (13) as such cannot be integrated 

analytically. Therefore, we must rely on numerical methods. However, integration cannot be started right from 

the surface. This complication arises from the fact that at the boundary vanishing denominators occur in the 

basic differential equations given by equation (13). Therefore, we have developed the solution at the boundary 

and have used the development to compute the solution at a point little distance from the boundary, and started 

step-by step integration procedure from this point. The forms of the variables used to integrate equation (13) are

2
5 (1 )

yt
y

=
−

 and 2
2 1
5 (1 )

dt
dy y

=
−

  as y→0. With these values as our initial conditions, we have solved 
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equation (13) numerically by RK (4, 4) method to determine t and 
dt
dy

 for different y. Following Paul and his 

colleagues [11] the value of E is supplied and through calibration, the value of E is adjusted. The correct value 

of E will be that for which the extra boundary condition q→0 as y→1 is satisfied. The value of E, through 

calibration, is found to be E = 45.4. In our numerical computation, the used values of mass and radius are those 

that are available in Helled and Schubert [2]. Also, we have used μ=2.2, as is appropriate for molecular 

hydrogen, and all other values involved in the problem have been assumed to have their standard values. 

1.6. Simulation results and analysis 

The above figure shows that the distribution of thermodynamic variables central temperature and pressure inside 

the protoplanets with increasing Jupiter mass. The different color dotted line shows that the initial configuration 

for objects with Jupiter masses 0.3, 1, 5, 7 and 10 respectively. Figure 1 shows the pressure for 1.0 Jupiter mass 

and   Figure 2 shows our calculated pressure profiles inside the protoplanets with the assumed masses. It can be 

shown from the figure that after a point little depth from the surface down to the core region, the pressures of the 

protoplanets at a corresponding point increase with their increasing masses, Figure 3 shows the temperature for 

1.0 Jupiter mass. It can be shown from the figure 4 that the more massive is a protoplanet the hotter is its interior 

and for objects with Jupiter masses 0.3, 1, 5, 7 and 10 respectively it is very difficult to compare the profiles 

with each other. Figure 5 shows the density for 1.0 Jupiter mass and Figure 6 depicts the distribution of density 

inside the protoplanets assumed. It can be observed from the figure that the surface density of the protoplanets 

with masses 0.3, and 1 Jupiter masses decreases with decreasing masses. On the other hand the protoplanet 

withmass 10 Jupiter mass can be found to be rarer in comparison with the protoplanets with masses 5 and 7 

Jupiter masses with respect to surface densities. Figure 4 shows our calculated pressure and temperature profiles 

inside the protoplanets with the assumed masses.  

For increasing pressure of different masses the temperature is also increased. Figure 7 shows our calculated 

pressure and density profiles inside the protoplanets with the assumed masses. For increasing pressure of 

different masses the density is also increased. Figure 8 shows our calculated temperature and density profiles 

inside the protoplanets with the assumed masses. For increasing temperature of different masses the density is 

also increased but the density of 7 Jupiter mass iss higher than the 10 Jupiter mass. 

2. Conclusion  

The Runge-Kutta (4, 4) method is analyzed mathematically and properly implemented in determining the 

distribution of thermodynamic variables inside protoplanets during pre-collapse stage, formed by gravitational 

instability for protoplanetary masses between 0.3 to 10 Jupiter masses. When the mass is larger than 0.3 Jupiter 

mass the central temperature of the protoplanets increased. As a result, the interio part (Convective) of the 

protoplanet is hotter with increasing Jupiter mass. This also shows that after a point little depth from the surface 

down to the core region, the pressures of the protoplanets at a corresponding point increase with their increasing 

masses. The all figures show that matter is not distributed uniformly in the atmosphere, and there may be 

variation in parameters due to gravitational stratification. 
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3. Limitations 

It is important to mention here that Clapeyron equation of state is valid for gas at not very high pressure and 

temperature. The central pressure of the protoplanets in this case can be found to be the below 2× 10-2 atm (Paul 

and his colleagues [11]). But this Clapeyron equation of state is not suitable at very low temperature and high 

pressure. Also, the gas is found to be not idealized, rather a composition of both ionized and non-ionized. Thus 

in this communication, we intend to investigate initial configuration of protoplanets formed via disk instability 

with the appropriate equation of state and to see how our computed results compare the results obtained in 

different investigation 

3.1. Tables  

Table 1: Mathematical results of pressure, temperature and density for 1.0 Jupiter mass 

X Pressure Temperature Density 

0.010000000000000 0.000000019176690 0.002525252525253 0.000000000000008 
0.020000000000000 0.001604924395652 20.187710437383400 0.000000000000081 
0.030000000000000 0.003268220129475 26.861784509080700 0.000000000000123 
0.040000000000000 0.004378360795089 30.196062659939000 0.000000000000147 
0.050000000000000 0.005139799402255 32.196268413705300 0.000000000000162 
0.060000000000000 0.005688591513147 33.529662954926200 0.000000000000172 
0.070000000000000 0.006101194398254 34.482066256753000 0.000000000000180 
0.080000000000000 0.006422084925875 35.196361403159100 0.000000000000185 
0.090000000000000 0.006678517654371 35.751921389557600 0.000000000000190 
0.100000000000000 0.006888015204260 36.196368091970900 0.000000000000193 
0.110000000000000 0.007062317552027 36.560005680092500 0.000000000000196 
0.120000000000000 0.007209570202987 36.863036678595600 0.000000000000198 
0.130000000000000 0.007335595199022 37.119447342565200 0.000000000000201 
0.140000000000000 0.007444661131065 37.339227804731400 0.000000000000202 
0.150000000000000 0.007539967174237 37.529704138312800 0.000000000000204 
0.160000000000000 0.007623957340847 37.696370885817200 0.000000000000205 
0.170000000000000 0.007698530368740 37.843429749536600 0.000000000000206 
0.180000000000000 0.007765183452545 37.974148716393400 0.000000000000208 
0.190000000000000 0.007825112876806 38.091107773885100 0.000000000000208 
0.200000000000000 0.007879285881003 38.196370910704000 0.000000000000209 
0.210000000000000 0.007928492898567 38.291608974034500 0.000000000000210 
0.220000000000000 0.007973386141455 38.378189020155600 0.000000000000211 
0.230000000000000 0.008014508514906 38.457240356099900 0.000000000000211 
0.240000000000000 0.008052315572966 38.529704070844600 0.000000000000212 
0.250000000000000 0.008087192391497 38.596370678985200 0.000000000000213 
0.260000000000000 0.008119466679007 38.657909077387700 0.000000000000213 
0.270000000000000 0.008149419068060 38.714889067017000 0.000000000000214 
0.280000000000000 0.008177291269574 38.767799048652000 0.000000000000214 
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0.290000000000000 0.008203292590088 38.817060057412000 0.000000000000214 
0.300000000000000 0.008227605182721 38.863036990375500 0.000000000000215 
0.310000000000000 0.008250388309721 38.906047661108800 0.000000000000215 
0.320000000000000 0.008271781826918 38.946370156468800 0.000000000000216 
0.330000000000000 0.008291909050823 38.984248855804600 0.000000000000216 
0.340000000000000 0.008310879132243 39.019899387946200 0.000000000000216 
0.350000000000000 0.008328789032718 39.053512738422900 0.000000000000216 
0.360000000000000 0.008345725179156 39.085258672145200 0.000000000000217 
0.370000000000000 0.008361764856180 39.115288601057000 0.000000000000217 
0.380000000000000 0.008376977383398 39.143737999000200 0.000000000000217 
0.390000000000000 0.008391425115395 39.170728445061600 0.000000000000217 
0.400000000000000 0.008405164294805 39.196369360417600 0.000000000000218 
0.410000000000000 0.008418245783036 39.220759491006700 0.000000000000218 
0.420000000000000 0.008430715688643 39.243988178391400 0.000000000000218 
0.430000000000000 0.008442615909677 39.266136453290100 0.000000000000218 
0.440000000000000 0.008453984603457 39.287277979991700 0.000000000000218 
0.450000000000000 0.008464856594821 39.307479874847900 0.000000000000219 
0.460000000000000 0.008475263732075 39.326803418005300 0.000000000000219 
0.470000000000000 0.008485235198280 39.345304674278500 0.000000000000219 
0.480000000000000 0.008494797784285 39.363035036414100 0.000000000000219 
0.490000000000000 0.008503976128872 39.380041701832000 0.000000000000219 
0.500000000000000 0.008512792930551 39.396368092158400 0.000000000000219 
0.510000000000000 0.008521269134832 39.412054223401700 0.000000000000219 
0.520000000000000 0.008529424100214 39.427137033415500 0.000000000000220 
0.530000000000000 0.008537275745678 39.441650672290900 0.000000000000220 
0.540000000000000 0.008544840682021 39.455626760482300 0.000000000000220 
0.550000000000000 0.008552134329085 39.469094618774800 0.000000000000220 
0.560000000000000 0.008559171020592 39.482081473611500 0.000000000000220 
0.570000000000000 0.008565964098107 39.494612640808100 0.000000000000220 
0.580000000000000 0.008572525995405 39.506711690261700 0.000000000000220 
0.590000000000000 0.008578868314387 39.518400593910200 0.000000000000220 
0.600000000000000 0.008585001893486 39.529699858895800 0.000000000000220 
0.610000000000000 0.008590936869454 39.540628647629800 0.000000000000220 
0.620000000000000 0.008596682733225 39.551204886239100 0.000000000000221 
0.630000000000000 0.008602248380540 39.561445362683700 0.000000000000221 
0.640000000000000 0.008607642157876 39.571365815676100 0.000000000000221 
0.650000000000000 0.008612871904191 39.580981015392400 0.000000000000221 
0.660000000000000 0.008617944988914 39.590304836846900 0.000000000000221 
0.670000000000000 0.008622868346583 39.599350326694500 0.000000000000221 
0.680000000000000 0.008627648508451 39.608129764140000 0.000000000000221 
0.690000000000000 0.008632291631379 39.616654716550000 0.000000000000221 
0.700000000000000 0.008636803524284 39.624936090299000 0.000000000000221 
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0.710000000000000 0.008641189672374 39.632984177317700 0.000000000000221 
0.720000000000000 0.008645455259383 39.640808697762800 0.000000000000221 
0.730000000000000 0.008649605187998 39.648418839179800 0.000000000000221 
0.740000000000000 0.008653644098656 39.655823292490100 0.000000000000221 
0.750000000000000 0.008657576386840 39.663030285099200 0.000000000000222 
0.760000000000000 0.008661406219035 39.670047611391300 0.000000000000222 
0.770000000000000 0.008665137547443 39.676882660847600 0.000000000000222 
0.780000000000000 0.008668774123588 39.683542444001400 0.000000000000222 
0.790000000000000 0.008672319510889 39.690033616422300 0.000000000000222 
0.800000000000000 0.008675777096304 39.696362500901600 0.000000000000222 
0.810000000000001 0.008679150101118 39.702535107993800 0.000000000000222 
0.820000000000001 0.008682441590953 39.708557155055700 0.000000000000222 
0.830000000000001 0.008685654485053 39.714434083908800 0.000000000000222 
0.840000000000001 0.008688791564919 39.720171077240200 0.000000000000222 
0.850000000000001 0.008691855482340 39.725773073845900 0.000000000000222 
0.860000000000001 0.008694848766863 39.731244782810500 0.000000000000222 
0.870000000000001 0.008697773832759 39.736590696708900 0.000000000000222 
0.880000000000001 0.008700632985513 39.741815103908000 0.000000000000222 
0.890000000000001 0.008703428427886 39.746922100039200 0.000000000000222 
0.900000000000001 0.008706162265570 39.751915598705900 0.000000000000222 
0.910000000000001 0.008708836512476 39.756799341484700 0.000000000000222 
0.920000000000001 0.008711453095682 39.761576907275300 0.000000000000222 
0.930000000000001 0.008714013860065 39.766251721045900 0.000000000000222 
0.940000000000001 0.008716520572631 39.770827062021700 0.000000000000222 
0.950000000000001 0.008718974926588 39.775306071355000 0.000000000000222 
0.960000000000001 0.008721378545152 39.779691759316900 0.000000000000222 
0.970000000000001 0.008723732985132 39.783987012043500 0.000000000000223 
0.980000000000001 0.008726039740286 39.788194597869500 0.000000000000223 
0.990000000000001 0.008728300244486 39.792317173277700 0.000000000000223 

4. Figures  

Graphical representation of equation of state 

 

Figure 1: initial pressure profile of a protoplanet. 
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Figure 2: pressure profiles inside some initial protoplanets. 

 

Figure 3: initial temperature profile of a protoplanet. 

 

Figure 4:  Pressure- Temperature profiles of some initial protoplanets. 

 

Figure 5:  initial density profile of a protoplanet. 
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Figure 6:  Density distributions of some initial protoplanets. 

 

Figure 7: initial pressure-density profiles of some protoplanets. 

 

Figure 8: initial temperature-density profiles of some protoplanets.       
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