
 

 

 

 

240 
 

 American Scientific Research Journal for Engineering, Technology,  and Sciences  (ASRJETS) 
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

© Global Society of Scientific Research and Researchers  
http://asrjetsjournal.org/  

 

About the Proof of the L’Hôpital's Rule 

Gulmaro Corona-Corona* 

Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Departamento de Ciencias Básicas e Ingeniería, 

Area de Análisis Matemático y sus Aplicaciones, Ave. San Pablo 180, Colonia Reynosa Tamaulipas, Delegación 

Azcapotzalco, CDMX, C.P. 02200, México 

Email: ccg@correo.azc.uam.mx 

 

 

Abstract  

The recent proofs of L’Hopital’s rule require the continuity of the derivatives of the functions in an interval. In 

this work, a proof is given so that it does not require the existence of the derivatives of the functions in any other 

number than the number where the limit of its ratio is calculated, more precisely the L’Hopital rule extends to 

locally defined and derivable functions in the number where the limit of the ratio of the functions is calculated.  

Keywords: Locally defined; L’Hopital’s rule; Limit.  

1. Introduction  

The present L’Hopital Rule proof is based on the algebra of limits of locally defined functions in the number 

where the limit is calculated, as it is done for the proofs of the derivation rules where the functions involved 

need to be defined locally and derivable only in the number where the limit is calculated. Consequently, this 

proof extends the L’Hopital rule to locally defined and derivable functions only in the number where the limit of 

the ratio of the same is calculated.The ratio for the differences of the given functions will be considered, which 

will be expressed as a ratio of derivation quotients of each of the two functions, which by their definition tend to 

the derivatives of the functions, respectively.The derivation quotient of a given function is the one that is used to 

calculate the derivative of it. This quotient is locally defined and always different from zero when the derivative 

is different from zero in the number where the limit is calculated, so that the ratio of the differences of the 

functions (e.g. [4]), can be expressed as a ratio of derivation quotients. 

------------------------------------------------------------------------ 
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2. Definitions y results on continuity and derivation of locally defined functions 

For our purposes it will be necessary to define what means locally defined functions in a given number and their 

derivation quotients, for which it is necessary to introduce some basic auxiliary concepts and results.  

Definition 1. Given a number 𝑎𝑎 = 0 in te interval (−∞, +∞) , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) = 𝑎𝑎
|𝑎𝑎|

.  

For our purposes we define te norm of a couple of numbers.  

Definition 2. Given a pair of numbers (𝑎𝑎, 𝑏𝑏), denote 𝑎𝑎2 + 𝑏𝑏2 by ‖𝑎𝑎, 𝑏𝑏‖2 = 𝑎𝑎2 + 𝑏𝑏2.  

Remark 3.  𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) = �0, 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎)
±2, 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) and for any pair of numbers 𝑎𝑎, 𝑏𝑏 : |𝑎𝑎|, |𝑏𝑏| ≤ ‖𝑎𝑎, 𝑏𝑏‖.  

Proposition 4. Assume that |𝑎𝑎 − 𝑏𝑏| < 𝜀𝜀 < |𝑎𝑎| then 𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏)  

Proof. sgn(𝑎𝑎) − sgn(𝑏𝑏) = 𝑎𝑎
|𝑎𝑎|
− 𝑏𝑏

|𝑏𝑏|
= |𝑏𝑏|𝑎𝑎−|𝑎𝑎|𝑏𝑏

|𝑎𝑎||𝑏𝑏|
= |𝑏𝑏|(𝑎𝑎−𝑏𝑏)+(|𝑏𝑏|−|𝑎𝑎|)𝑏𝑏

|𝑎𝑎||𝑏𝑏|
 then 

|sgn(𝑎𝑎) − sgn(𝑏𝑏)| ≤ |𝑏𝑏||𝑎𝑎−𝑏𝑏|+�|𝑏𝑏|−|𝑎𝑎|�𝑏𝑏
|𝑎𝑎||𝑏𝑏|

≤ |𝑏𝑏|
|𝑎𝑎||𝑏𝑏|

|𝑎𝑎 − 𝑏𝑏| ≤ |𝑎𝑎−𝑏𝑏|
|𝑎𝑎|

< |𝑎𝑎−𝑏𝑏|
𝜀𝜀

< 1. Because of the observation                              

3, we have sgn(𝑎𝑎) = sgn(𝑏𝑏).  

Proposition 5. Assuming that 𝜀𝜀 < |𝑎𝑎| , |𝑏𝑏 − 𝑎𝑎| < 𝜀𝜀 sí y sí y solo si 0 < |𝑎𝑎| − 𝜀𝜀 < 𝑏𝑏 < |𝑎𝑎| + 𝜀𝜀.  

Proof. : 0 < 𝜀𝜀2 − (𝑏𝑏 − 𝑎𝑎)2 = 𝜀𝜀2 − 𝑏𝑏2 − 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎, that is to say ‖𝑎𝑎, 𝑏𝑏‖2 − 𝜀𝜀2 < 2𝑎𝑎𝑎𝑎 then by the assumption 

about the norm and the observation 3, 𝑎𝑎𝑎𝑎 > 0, if and only if 𝑎𝑎𝑎𝑎 = |𝑎𝑎𝑎𝑎| = |𝑎𝑎||𝑏𝑏| if and only if 0 < 𝜀𝜀2 − 𝑏𝑏2 −

𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 = 𝜀𝜀2 − |𝑏𝑏|2 − |𝑎𝑎|2 + 2|𝑎𝑎||𝑏𝑏| = 𝜀𝜀2 − (|𝑏𝑏| − |𝑎𝑎|)2  if and only if �|𝑏𝑏| − |𝑎𝑎|� < 𝜀𝜀  if and only if 

−𝜀𝜀 + |𝑎𝑎| < 𝑏𝑏 < 𝜀𝜀 + |𝑎𝑎| . Reciprocally, if 0 < |𝑎𝑎| − 𝜀𝜀 < 𝑏𝑏 < |𝑎𝑎| + 𝜀𝜀  by te supposition and the preceding 

proposition sgn(𝑎𝑎) = sgn(𝑏𝑏) if and only if 𝑎𝑎𝑎𝑎 = |𝑎𝑎𝑎𝑎| if and only if |𝑎𝑎 − 𝑏𝑏| < 𝜀𝜀.  

We will consider functions defined in te subsets of the interval (−∞, +∞) and with the range in the same 

interval.  

Definition 6. A number in the domain of a function is said to be a pre-image or simply a number of the given 

function.   

Definition 7. A number in the range of a function is called a value of the given function.  

Definition 8. It is said that 𝑥𝑥 = 𝑎𝑎 is close to 𝑎𝑎 if and only if |𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿 for some 𝛿𝛿 = 𝛿𝛿(𝑎𝑎) .  

The functions considered here do not need to be defined globally.  



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 240-245 

 

242 
 

Definition 9. A function is said to be locally defined in a given number if it is defined for all pre-images 

(numbers of the function) close to the number 𝑎𝑎. Example 10. The function 𝑥𝑥 ↦ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is locally defined at 0, 

since it is defined for 𝑥𝑥 =0 and close to 0. Definition 11. Let 𝑔𝑔 be defined locally in a number 𝑎𝑎. It is said that 

the limit of such function exists in the given number 𝑎𝑎 when there is a number 𝑙𝑙 such that for any positive 

number 𝜀𝜀 there exists 𝛿𝛿 such that |𝑔𝑔(𝑥𝑥) − 𝑙𝑙| < 𝜀𝜀 provided that |𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿: the values of 𝑔𝑔 are arbitrarily close 

to 𝑙𝑙  for all the numbers of the function sufficiently close to 𝑎𝑎. Remark 12.  If 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) exists, then 𝑓𝑓(𝑥𝑥) =

�
𝑓𝑓(𝑥𝑥), 𝑥𝑥 = 𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥), 𝑥𝑥 = 𝑎𝑎. is continuous at 𝑎𝑎 in which case it is asserted that 𝑓𝑓 is continuously extended to 𝑎𝑎.  

Definition 13.The derivation quotient of a function 𝑓𝑓 locally defined at the number 𝑎𝑎 is the ratio of differences 
𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)

𝑥𝑥−𝑎𝑎
.  

Proposition 14. There exists 𝑔𝑔′(𝑎𝑎) and it is not null if and only if there exists � 𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

� (𝑎𝑎) and it is null. 

Proof. By the definition of derivative: 𝑔𝑔′(𝑎𝑎) = lim
𝑥𝑥↦𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 and by the definition of limit 𝑥𝑥 ↦ 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 it is 

locally defined at 𝑎𝑎 and �𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

− 𝑔𝑔′(𝑎𝑎)� < 𝜀𝜀 for any 𝑥𝑥 sufficiently close to 𝑎𝑎. By Proposition 6 we have that 

if 𝜀𝜀 < |𝑔𝑔′(𝑎𝑎)| , then 0 < |𝑔𝑔′(𝑎𝑎)| − 𝜀𝜀 < 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 for 𝑥𝑥  sufficiently close to 𝑎𝑎 . Consequently, the quotient 

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

 is defined for esta 𝑥𝑥  sufficiently close to 𝑎𝑎  . By the definition of derivative: � 𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

� =

lim
𝑥𝑥→𝑎𝑎

�
𝑥𝑥−𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)−lim𝑥𝑥→𝑎𝑎
𝑥𝑥−𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎
� = lim

𝑥𝑥→𝑎𝑎
�

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)−lim𝑥𝑥→𝑎𝑎

1
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎

𝑥𝑥−𝑎𝑎
� 

= lim
𝑥𝑥→𝑎𝑎

⎝

⎜⎜
⎛

𝑥𝑥 − 𝑎𝑎
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎) −

1

lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
𝑥𝑥 − 𝑎𝑎

𝑥𝑥 − 𝑎𝑎

⎠

⎟⎟
⎞

= lim
𝑥𝑥→𝑎𝑎

�

𝑥𝑥 − 𝑎𝑎
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎) −

1
𝑔𝑔′(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎
� = lim

𝑥𝑥→𝑎𝑎

⎝

⎜
⎛

(𝑥𝑥 − 𝑎𝑎)𝑔𝑔′(𝑎𝑎) − �𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)�
�𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)�𝑔𝑔′(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎

⎠

⎟
⎞

 

= lim
𝑥𝑥→𝑎𝑎

⎝

⎜
⎛

(𝑥𝑥 − 𝑎𝑎)𝑔𝑔′(𝑎𝑎) − �𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)�
�𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)�𝑔𝑔′(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎

⎠

⎟
⎞

= lim
𝑥𝑥→𝑎𝑎

⎝

⎜
⎛

(𝑥𝑥 − 𝑎𝑎)
𝑔𝑔′(𝑎𝑎) − 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

(𝑥𝑥 − 𝑎𝑎) 𝑔𝑔′(𝑎𝑎)
⎠

⎟
⎞

= lim
𝑥𝑥→𝑎𝑎

⎝

⎜
⎛

(𝑥𝑥

− 𝑎𝑎)
𝑔𝑔′(𝑎𝑎) − 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

(𝑥𝑥 − 𝑎𝑎) 𝑔𝑔′(𝑎𝑎)
⎠

⎟
⎞

 

= lim
𝑥𝑥→𝑎𝑎

(𝑥𝑥 − 𝑎𝑎)lim
𝑥𝑥→𝑎𝑎

𝑔𝑔′(𝑎𝑎) − 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
𝑥𝑥 − 𝑎𝑎

𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
(𝑥𝑥 − 𝑎𝑎) 𝑔𝑔′(𝑎𝑎)

= 0
𝑔𝑔′(𝑎𝑎) − lim

𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
𝑥𝑥 − 𝑎𝑎

�lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
(𝑥𝑥 − 𝑎𝑎) � 𝑔𝑔′(𝑎𝑎)

= 0
𝑔𝑔′(𝑎𝑎) − 𝑔𝑔′(𝑎𝑎)
𝑔𝑔′(𝑎𝑎)𝑔𝑔′(𝑎𝑎) = 0(0) = 0 
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Reciprocally, by te definition of � 𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

� (𝑎𝑎) and the definition of limit 𝑥𝑥 →

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)−

1

lim𝑥𝑥→𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎
𝑥𝑥−𝑎𝑎

 it is definied 

and �

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)−lim𝑥𝑥→𝑎𝑎

𝑥𝑥−𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎
� < 𝜀𝜀 for 𝑥𝑥 sufficiently close to 𝑎𝑎 if and only if there existslim

𝑥𝑥→𝑎𝑎

1
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎

= 1

lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 

if and only if 𝑔𝑔′(𝑎𝑎) there exists and its value is not null.  

3. Main Results  

The derivation quotients are the main ingredient for the demonstration of the L’Hopital Rule presented here.  

Theorem 15. If 𝑔𝑔′(𝑎𝑎) exists and it is not null, then 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

 exists if and only if 𝑓𝑓′(𝑎𝑎) exists. In this case 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

= 𝑓𝑓′
𝑔𝑔′

(𝑎𝑎).  

Proof. By the definition of derivative and limit, Proposition 13 implies that 𝑥𝑥 → 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

= 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

�𝑓𝑓(𝑥𝑥) −

𝑓𝑓(𝑎𝑎)� 1
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

= 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

 it is defined for 𝑥𝑥  close to 𝑎𝑎  as the product of the functions 𝑥𝑥 →

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

, 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

, since by hypotesis there is a derivative of 𝑔𝑔 and the limit of the quotient of the differences in 

𝑎𝑎 of the functions 𝑓𝑓 y 𝑔𝑔 in 𝑎𝑎. By the Algebra of limits lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

= lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥→𝑎𝑎

, that is, there is 

a derivative of 𝑓𝑓  in 𝑎𝑎  and consequently 𝑓𝑓′(𝑎𝑎) = 𝑔𝑔′(𝑎𝑎)lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

 and in this case 𝑓𝑓′(𝑎𝑎)
𝑔𝑔′(𝑎𝑎)

= lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

. 

Recíprocally, the functions 𝑥𝑥 → 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

, 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 are defined for 𝑥𝑥 sufficiently close to 𝑎𝑎 by Proposition 13 

and the definition of derivative and in this case 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

= 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

= 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

1
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎

=

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

1
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎

=
𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)

𝑥𝑥−𝑎𝑎
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

𝑥𝑥−𝑎𝑎

 , then by the algebra of limits, we have lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)

= lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

=

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑥𝑥−𝑎𝑎

= 𝑓𝑓′
𝑔𝑔′

(𝑎𝑎).   

Corollary 16. If 𝑓𝑓(𝑎𝑎) = 𝑔𝑔(𝑎𝑎) = 0 and also 𝑔𝑔′(𝑎𝑎) exists and is not null, then 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

 exists if and only if 𝑓𝑓′(𝑎𝑎) 

exists. In this case 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→𝑎𝑎

𝑓𝑓
𝑔𝑔

(𝑥𝑥) = 𝑓𝑓′
𝑔𝑔′

(𝑎𝑎) 

Proof. Replacing the present hypothesis, that is, 𝑓𝑓(𝑎𝑎) = 𝑔𝑔(𝑎𝑎) = 0, in Theorem 15, we have the result of the 

present Corollary. 

4. Discussion 

Several authors such as [1; 25] require the assumption of the continuity of the derivatives while in this work, 

such assumption is not necessary, causing the spectrum of application of this rule to be extended. 
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5. Conclusions 

It is well known that the L’Hopital rule proof depends directly on the Roll Theorem or the mean value theorem, 

that is, it is necessary to assume the global continuity of the derivative (even where the logic of the proof of the 

considered rule (see for example.[2]). It has been established, the rule of L’Höpital as it is established the rules 

of derivation, that is to say the rule of H’ôpital can be considered that it becomes one more rule of derivation. 

The substitution of the ratio of the derivatives by the limit of the ratio of the derivatives to the number where the 

limit will be calculated, actually requires that the derivative of the functions is defined in an interval contained 

in the domain of the functions besides require that it be extended continuously to the number where the limit is 

calculated. In general, the condition of local continuity has been replaced by a sophisticated global condition in 

intervals of the number line, such as the existence of the derivative in some interval [2,18] increasing ratios of 

functions [1,3,16,23], quotients of functions of C1 [3,15], ratios of series of numbers [8,19,25], ratios of 

functions of Darboux and / or generalized derivation [9,21,24], functions absolutely continuous and / or Frechet 

differentiable [10,12], analytic function quotients [11,17,20], quotients of integrable functions [14,20,22]. This 

demonstration can be used with baccalaureate students as a rule to calculate limits such as lim
𝑥𝑥→0

exp�−1𝑥𝑥�

sin𝑥𝑥
=

�exp−1𝑥𝑥�(0)

sin′0
= 0

cos0
= 0, in terms of the calculation of derivatives. where the derivative �exp − 1

𝑥𝑥
� (0) has been 

calculated with the definition of derivative.  
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