
 

 

 

 

333 
 

 American Scientific Research Journal for Engineering, Technology,  and Sciences  (ASRJETS) 
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

© Global Society of Scientific Research and Researchers  
http://asrjetsjournal.org/  

 

A Comparative Study among Four Controllers Intended 

for Congestion Control in Computer Networks 

Maryam Abd Al-majeeda*, Laith Saudb 

a,bControl and System Engineering Department, University of Technology, Baghdad, Iraq 
aEmail: Maryam_85_1993@yahoo.com 

bEmail: Laithjasim15@yahoo.com 

 

 

Abstract 

Computer networks efficiency is an vital part of today’s information services technology, with this comes 

multiple issues, among them is the congestion problem. This paper will discuss the designing and evaluating of 

four controllers to deal with this issue. The design starts with modeling the Transmission Control Protocol 

/Active Queue Management (TCP/AQM) which is intended for dynamics modeling of the average TCP window 

size and the queue size in the bottleneck router. Apart from modeling, the work comprises of two parts. In the 

first, three controllers Random Early Detection, Proportional-Integral and Proportional-Integral-Derivative  

(RED, PI, and PID) are designed, tested, evaluated, and compared among each other, with the use of the 

TCP/AQM model developed. The second part considers designing a fuzzy logic based online tuned PID 

controller and comparing its performance with a PID controller tuned offline with three tuning methods, Ziegler 

Nichols (Z-N), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). The Integral Square 

Error (ISE) is used as the objective function for optimization. The controllers’ performance is evaluated using 

the following parameters for system’s response, rise time, settling time, and maximum peak overshoot. The 

performance of the controllers is also examined by applying a disturbance as an exceptional condition. To test 

and evaluate the controllers, the system as all is implemented using MatLab (Version 2014).  The results 

obtained indicated that the PID gave a better performance, compared to the RED and the PI, in following 

changes in the desired queue level, and in reducing the loss of packets. The PID gave a settling time 20% lesser 

than that of the PI and 60% lesser than that of the RED. Regarding the tuning methods, and under the settings 

considered for each in this work, the ACO-PID gave the least overshoot (1.545%) compared to the others 

methods [ZN-PID (40%), PSO-PID (13.85%), Fuzzy-PID (5%)].  

------------------------------------------------------------------------ 

* Corresponding author.  

http://asrjetsjournal.org/


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

334 
 

The PSO and ACO managed to cause great reduction in settling time (𝑡𝑡𝑠𝑠) and rise time (𝑡𝑡𝑟𝑟). The ratios of 𝑡𝑡𝑠𝑠 and 

𝑡𝑡𝑟𝑟 of PSO-PID to PID before tuning are (16.5%), (23.43%) and the ratio of 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑟𝑟 of ACO-PID to PID before 

tuning are (11.5%), (44.56%). The intelligent tuning methods [PSO & ACO] gave better 𝑡𝑡𝑟𝑟 and 𝑡𝑡𝑠𝑠 compared to 

Fuzzy or Ziegler–Nichols. Despite the indicated relative performance of the Fuzzy PID controller, it has some 

important privileges. Firstly, it is an online tuning method, as it continuously adapts the PID controllers’ 

parameters as long as the system is running. Secondly, its performance can still be improved by optimizing the 

fuzzy part. Thirdly, it represents a nonlinear controller (as its parameters are changing), and so it can even suit 

the nonlinear model. 

Keywords: Random Early Detection (RED); Proportional-Integral (PI); Proportional-Integral-Derivative (PID); 

Fuzzy Logic (FL); Ziegler Nichols Method (ZN); Particle Swarm Optimization (PSO); and Ant Colony 

Optimization (ACO).  

1. Introduction  

The vital role computers networks play in modern technology is enormously increasing on a global scale, and so 

does the bandwidth size. Hence, networks efficiency, which depends on many factors and issues, is an important 

concern to be considered. One of the issues is to avoid congestion [1]. During congestion, large amounts of 

packets experience delay or can even be dropped, and the occurrence of several congestion problems can cause 

degradation of the throughput and large packet loss rate. The resulting congestion will decrease efficiency and 

reliability of the whole network and at very high traffic, performance will completely fall and may cause no 

packets to be delivered [2]. 

Avoiding congestion and guaranteeing the reception of transmitted data and in minimum time as possible is an 

important requirement. However due to the massive amount of data transmitted, it is difficult to achieve this 

requirement perfectly. As a compromise, best solutions are sought out by researchers instead of perfect solutions 

to avoid data loss and unacceptable delays.   

The TCP, which is a protocol used for computers communication over the Internet, has a mechanism which 

avoids congestion in computer networks. TCP detects congestion by checking acknowledgements or time-out 

processing and adjusts TCP window sizes of senders. But this control method has a shortcoming that it used to 

avoid congestion after congestion appears on the computer networks. AQM schemes have been proposed to 

complement the TCP role for network congestion control [3]. The most common AQM objectives are: efficient 

queue utilization (to minimize the occurrences of queue overflow and underflow, thus reducing packet loss and 

maximizing link utilization), queuing delay (to minimize the time required for a data packet to be serviced by 

the routing queue), and robustness (to maintain closed-loop performance in spite of changing conditions) [4]. 

Different efforts have been done so far related to active queue management. Misra and his colleagues [5] 

developed a non-linear mathematic model to help in obtaining the expected transient behavior of networks with 

AQM routers supporting TCP flows. In reality, with this model, the congestion control problem turned into a 

control problem of a plant with the possibility of using the rich control theory so far developed. Later, Hollot 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

335 
 

and his colleagues [6] approximated this model to a linear model using small-signal linearization about an 

operating point. The linearization was intended to simplify the problem, in a justified way, and gain the benefit 

of using feedback control theory for linear systems.   

After developing the TCP/AQM system model, a significant part of efforts was devoted to design controllers to 

deal with the congestion problem in computer networks.   Different controllers and design methods have been 

used for this purpose including using different tuning methods to tune the controllers’ parameters for best 

performance and based on different performance indices and optimization objectives.    

Hollot and his colleagues [7] proposed a PI controller as a congestion control scheme based on linear control 

theory. As a model, they adopted the previously developed linearized model of TCP and AQM. For congestion 

avoidance and control in intermediate nodes, Waskasi and his colleagues [8] designed a PI controller with its 

parameters being dynamically adapted, using an ANN (Artificial Neural Network), to compensate for changes 

in the system. Seeking performance improvement over that of the classical PI controller, Al-Faiz and his 

colleagues [9] suggested a Fuzzy PI controller for congestion avoidance in computer networks. Their work starts 

with manual tuning of controller parameters before a Genetic Algorithm (GA) is used to optimize them. Alvarez 

[10] tried a methodology to design a PID controller with linear gain scheduling that allows a network with 

wireless links to deal with control congestion under a variety of configurations. Salim and his colleagues [11] 

used the “MATLAB/Nonlinear Control Design Blockset (NCD)” to tune the of the (PI) controller they used for 

congestion avoidance. Besides introducing the conventional 𝐻𝐻∞  controller as an AQM scheme, Ali and his 

colleagues [12] used the classical PID controller with two ways of optimization, PSO and ACO.   

This paper consists of two efforts. The first one presents three controllers to control congestion and track the 

desired queue level. The controllers are RED, PI, and PID. The effort includes testing and evaluating the 

controllers with a comparison among their performance. The design starts with modeling the TCP/AQM and 

then designing and testing the controllers. The second effort includes designing a fuzzy logic based online tuned 

PID controller and comparing its performance with a PID controller tuned offline with three tuning methods, the 

classical (Z-N) tuning method, and the intelligent optimization methods (PSO) and (ACO). The objective 

function used in the PSO and ACO is the Integral Square Error (ISE). Evaluation of the controllers’ 

performance is based on the following performance indices: rise time (𝑡𝑡𝑟𝑟), settling time (𝑡𝑡𝑟𝑟), and maximum peak 

over shoot (𝑀𝑀𝑝𝑝).  

The rest of this paper is organized as follows: Section 2 covers developing the TCP/AQM model and the control 

objectives. The RED, PI, and PID controllers design is given in Section 3. Section 4 is devoted for the design of 

the fuzzy logic based online tuned PID controller, and the algorithms used for offline tuning of the PID 

controller. Section 5 presents the simulation results for the controllers’ performance and tuning algorithms. 

Finally, brief conclusions are provided in Section 6. 

2. Mathematical Model of the TCP/AQM 

Different approaches have been used to model the TCP like, renewal theory, fixed point, fluid models, processor 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

336 
 

sharing, and control theoretic [13]. Here, the model developed by Hollot and his colleagues 

 [6] is adopted. This model represents a simplified model of the one developed by Misra and his colleagues [5] 

which is a nonlinear dynamic model and is based basically on fluid-flow and stochastic differential equations. 

The simplified model ignores the TCP timeout mechanism.  

The non-linear differential equations for the model are given as: 

Ẇ(𝑡𝑡) = 1
𝑅𝑅(𝑡𝑡)

− 𝑊𝑊(𝑡𝑡)𝑊𝑊�𝑡𝑡−𝑅𝑅(𝑡𝑡)�
2𝑅𝑅�𝑡𝑡−𝑅𝑅(𝑡𝑡)�

𝑝𝑝�𝑡𝑡 − 𝑅𝑅(𝑡𝑡)�   (1) 

𝑞̇𝑞(𝑡𝑡) = 𝑊𝑊(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

𝑁𝑁(𝑡𝑡) − 𝐶𝐶       (2) 

 

Figure 1: A block-diagram of the TCP’s congestion-avoidance flow-control mode. 

Where 𝑊̇𝑊(t) an 𝑞̇𝑞(t) denotes the time-derivative of W (t) and q(t) respectively.   

W = average TCP window size (packets); 

q = average queue length (packets); 

R(t) = round trip time; 

C = link capacity (packets/sec.); 

N = load factor (Number of TCP session); 

p = probability of packet drop/mark; 

Figure (1) shows these differential equations in the block diagram which highlights TCP window-control and 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

337 
 

queue dynamics. 

In order to linearize the model, it is assumed that the number of TCP sessions and the link capacity are constant, 

and then an approximated linearized model can be developed by small-signal linearization about an operating 

point (Wₒ, pₒ, qₒ). The linearized model is given by equation (3): 

(3) 

Taking the Laplace transform of equation (3) and after rearrangement, the following transfer functions can be 

obtained:                     

(4) 

(5) 

The block diagram of the linearized AQM control system is shown in Figure (2), where, Ptcp (s) is the transfer 

function of TCP, Pqueue (s) is the transfer function of the router queue, and C(s) denotes the transfer function of 

the controller.         

 

Figure 2: Block diagram of a linearized AQM model-based feedback control. 

The overall plant transfer function becomes: 

𝑃𝑃(𝑠𝑠) = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)𝑃𝑃𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠)𝑒𝑒−𝑠𝑠𝑅𝑅𝑜𝑜                                                                (6) 

)(
0

1)(
0

)(

)0(22

2
0)(2

0

2)(

tq
R

tW
R
Ntq

Rtp
N

CRtW
CR

NtW

δδδ

δδδ

−=
•

−−−=
•

CR

Ns

N

CR

sp
sWstcpP

2
0

2
22

2
0

)(
)()(

+
==

0

1
0

)(
)()(

R
s

R
N

sW
sqsqueueP

+
==



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

338 
 

which can be expressed as: 

(7) 

The model in equation (7) is a general one, and for the purposes of testing the controllers’ performance and 

simulation work, a specific model for the TCP/AQM is determined from this equation by assuming the 

following values for the network parameters: N = 60, C = 3750 packet/sec, and R0 = 0.246 sec, and the resulting 

model is: 

(8) 

3. The RED, PI, and PID controllers 

The following section, the RED, PI, and PID controllers will be introduced briefly. 

3.1 Random Early Detection Controller [14] 

The Random Early Detection (RED) scheme was initially described and analyzed by Floyd and Jacobson in 

1993. The main idea behind this algorithm is that it starts dropping packets randomly before the buffer gets full, 

the transfer function of RED is: 

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) = 𝐿𝐿𝑟𝑟𝑟𝑟𝑑𝑑
𝑠𝑠
𝐾𝐾� +1

                                                                                      (9) 

Where 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ−𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ

                                                                               (10) 

𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(1−𝛼𝛼)
𝛿𝛿

                                                                                          (11) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ : The minimum threshold, which the queue length must exceed before any dropping or marking is done. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ : The maximum threshold, if the queue length size is exceeded, all the incoming packets are dropped. 

 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚  : The maximum marking/dropping probability, which determines how aggressively the queue marks or 

drops packets when congestion occurs. 

𝛼𝛼 > 0 is the queue averaging parameter. 

)0exp(-s×
)

0
1)(2

0

2(

2

2

)(
)()( R

R
s

CR

Ns

N
C

sp
sWsP

++
==

s)exp(-0.246×
)13.2594.42(

5.117187)(
++

=
Ss

sP



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

339 
 

𝛿𝛿 is the sample time. 

𝑒𝑒 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 is a constant equal to 2.71828. 

 

Figure 3: The block diagram of a RED controller based feedback system. 

Figure (3) shows RED block diagram in the system, where the input represents the reference value of the queue 

length (Qref), and the output represents the actual value of the queue length. The plant represents the TCP/AQM 

model. 

3.2 PI Controller  

The PI controller is described by the following expression [7]: 

𝐶𝐶𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

                                                                                    (12) 

Where Kp and Ki are the proportional and the integral gain coefficients. A block diagram for a feedback PI 

based controller system is shown in Figure (4). 

 

Figure 4: Block diagram of a feedback PI based controller system. 

3.3 PID controller  

The PID controller is a widely used controller due to its simple structure, easy implementation, robust nature 

and the less number of parameters to be tuned. The PID controller is expressed by [15]:  

                       



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

340 
 

C(s)= 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑆𝑆

+ 𝑘𝑘𝑑𝑑𝑠𝑠                                                                               (13) 

Or 

C(s)= 𝑘𝑘(1 + 1
𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝑇𝑇𝑇𝑇𝑇𝑇)                                                                         (14) 

Where kp, ki, and kd are the proportional gain, the integral gain, and the derivative gain respectively. The 

proportional gain makes the controller respond to the error while the integral gain helps to eliminate steady state 

error and derivative gain to prevent overshoot. The block diagram of controller and model can be shown in 

figure (5). 

 

Figure 5: Block diagram of a feedback PID based controller system. 

4. Tuning the PID controller  

The goal of tuning is to determine optimum values for the PID controller parameters that meet closed loop 

system performance specifications, and the robust performance of the control loop over a wide range of 

operating conditions should also be ensured. Four tuning methods are used here starting with a conventional 

tuning method (Ziegler-Nichols), followed by two modern methods, the Particle Swarm Optimization (PSO-

PID), and the Ant Colony Optimization (ACO-PID). All of these three methods are used offline. The fourth 

method represents a fuzzy logic based online tuning method for the PID, which as a result constitutes a fuzzy 

PID controller. 

4.1 Ziegler-Nichols (Z-N) tuning method [16]    

In 1942 Ziegler and Nichols, described a simple mathematical procedure for tuning the PID controller. There are 

two types of Z-N method, one is open loop system based, and the other is closed loop system based. Here, the 

second type is used. The Z-N closed-loop tuning method requires the determination of the ultimate gain and the 

ultimate period.  

Kcr = Ultimate gain (minimum gain with P-only control that causes system to cycle continuously). 

Pcr = Ultimate period of oscillation. 

The procedure of tuning is as follows (using only proportional feedback control):  



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

341 
 

1. Reduce the integrator and derivative gains to 0.  

2. Increase Kp from 0 to some critical value Kp=Kcr at which sustained oscillations occur. 

 3. Note the value Kcr and the corresponding period of sustained oscillation, Pcr. 

Then, the controller gains are specified according to table 1. 

Table 1: Ziegler Nichols Recipe for closed loop. 

PID Type 𝐾𝐾𝑝𝑝 𝑇𝑇𝑖𝑖  𝑇𝑇𝑑𝑑 

P 0.5 𝐾𝐾𝑐𝑐𝑐𝑐  ∞ 0 

PI 0.45 𝐾𝐾𝑐𝑐𝑐𝑐  𝑃𝑃𝑐𝑐𝑐𝑐
1.2

 
0 

PID 0.6 𝐾𝐾𝑐𝑐𝑐𝑐  𝑃𝑃𝑐𝑐𝑐𝑐
2

 
𝑃𝑃𝑐𝑐𝑐𝑐
8

 

 

4.2Tuning of the PID controller with PSO [17] 

Particle Swarm Optimization (PSO) is one of the optimization techniques and a kind of evolutionary 

computation technique. The technique is derived from research on swarm such as bird flocking and fish 

schooling. In the PSO algorithm, instead of using evolutionary operators such as mutation and crossover to 

manipulate algorithms, for m-variable optimization problem, a flock of particles are put into the m-dimensional 

search space with randomly chosen velocities and positions knowing their best values. 

The position 𝑋𝑋𝑖𝑖,𝑚𝑚 of the particle and the previous best position for the particle is represented as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑚𝑚 . The 

best performing particle among the swarm population is represented as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖,𝑚𝑚  and the velocity of each 

particle in each m-dimension is represented as 𝑉𝑉𝑖𝑖,𝑚𝑚. The new velocity and position for each particle can be 

calculated from its current velocity and distance, respectively. The velocity and position of each particle can be 

calculated as shown in the following equations: 

𝑉𝑉𝑖𝑖,𝑚𝑚
(𝑡𝑡+1) =W.𝑉𝑉𝑖𝑖,𝑚𝑚

(𝑡𝑡)+𝑐𝑐1*rand()*(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑚𝑚-𝑥𝑥𝑖𝑖,𝑚𝑚
(𝑡𝑡) )+𝑐𝑐2*rand()*(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚-𝑥𝑥𝑖𝑖,𝑚𝑚

(𝑡𝑡) )         (15) 

𝑥𝑥𝑖𝑖,𝑚𝑚
(𝑡𝑡+1)=𝑥𝑥𝑖𝑖,𝑚𝑚

(𝑡𝑡) +𝑣𝑣𝑖𝑖,𝑚𝑚
(𝑡𝑡+1)                                                                                            (16) 

Where 

i                        -number of particles in the group. 

m                       -dimension. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

342 
 

 t                       -pointer of iterations (generations). 

𝑉𝑉𝑖𝑖,𝑚𝑚
(𝑡𝑡+1)              -velocity of particle at iteration. 

W                     -inertia weight factor. 

𝑐𝑐1, 𝑐𝑐2               -acceleration constant. 

rand (n)            -random number between 0 and 1. 

𝑥𝑥𝑖𝑖,𝑚𝑚
(𝑡𝑡)                  -current position of particle at iterations. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ,𝑚𝑚         -best previous position of the particle. 

ǥ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚           -best particle among all the particles in the population. 

 The following parameters have been used for tuning the PID controller using the PSO:    

1) The parameters of each individual in the PSO algorithm are kp, ki, and kd.  

2) Swarm size equal to 10. 

3) Inertia weight factor =1.5. 

4) C1=2 and C2=2. 

5) Iteration is set to 10. 

6) Using ISE fitness function. 

The ISE ( Integral Squared Error ) fitness function equation is : 

𝐼𝐼𝐼𝐼𝐼𝐼 =  ∫ 𝑒𝑒2(𝑡𝑡)𝑑𝑑𝑑𝑑 ∞
0                                                                                    (17) 

4.3 Tuning of controller with ACO [17] 

ACO (Ant colony optimization) algorithm is based on the behavior of ants. When an ant travels in a path, it 

leaves a substance called pheromone. The other ant which follow will take the path with the most pheromones 

traces present. This path is again marked with their own pheromones. The pheromone gets evaporated over time. 

The probability (𝑃𝑃𝑖𝑖𝑖𝑖𝐴𝐴 ) of choosing a node j at node i is defined in the equation (18). At each generation of the 

algorithm, the ant constructs a complete solution using equation (18), starting at source node. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

343 
 

𝑃𝑃𝑖𝑖𝑖𝑖𝐴𝐴(𝑡𝑡)=
[𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)]𝛼𝛼[ɳ𝑖𝑖𝑖𝑖]𝛽𝛽

∑ [𝜏𝜏𝑖𝑖,𝑗𝑗(𝑡𝑡)]𝛼𝛼[ɳ𝑖𝑖,𝑗𝑗]𝛽𝛽𝑖𝑖,𝑗𝑗∈𝑇𝑇𝐴𝐴
                                                                         (18) 

Where: 

ɳ𝑖𝑖𝑖𝑖  = 1
𝐾𝐾𝑗𝑗

  , j =[ P,I,D ]   representing heuristic functions. 

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)   :  pheromone matrix. 

𝛼𝛼          : constants that determine the relative influence of the pheromone values. 

𝛽𝛽          : constant that determine the heuristic values on the decision of the ant. 

𝑇𝑇𝐴𝐴        : is the path effectuated by the ant at a given time. 

The quantity of pheromone ∆𝜏𝜏𝑖𝑖𝑖𝑖𝐴𝐴  on each path may be defined as: 

∆𝜏𝜏𝑖𝑖𝑖𝑖𝐴𝐴  = �
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝐴𝐴
0

     if i,j ∈ 𝑇𝑇𝐴𝐴                                                                         (19) 

 

When all ants complete one iteration, the pheromone trail is updated using the following equation (20): 

 

𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)=p𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡 − 1) + ∑ ∆𝜏𝜏𝑖𝑖𝑖𝑖𝐴𝐴(𝑡𝑡)𝑁𝑁𝑁𝑁
𝐴𝐴=1                                                           (20) 

The pheromone updating rule was meant to simulate the change in the amount of pheromone due to both the 

addition of new pheromone deposited by ants on the visited edges and to pheromone evaporation, where: 

NA      : number of ants. 

P         : the evaporation rate (a coefficient of persistence of the trial during a cycle such that (1-U) represents the 

evaporation of the trail between two generations). 

The following ACO parameters have been used for tuning the PID controller parameters: 

1) The PID parameters in the ACO algorithm are kp, ki, and kd.  

2) Number of ants is 25. 

3) The Evaporation parameter =0.5. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

344 
 

4) Number of iterations is set to 20. 

5) Using ISE as fitness function (Given in equation (17)). 

4.4The Fuzzy PID tuning method [18] 

Fuzzy rules represent a main part in the fuzzy tuning system and can be evaluated from the human experience 

and knowledge about the system. They are set, in tuning case, to adjust the PID controller parameters for 

achieving the best system response. In engineering application, fuzzy logic has the following characters: 1) 

Fuzzy logic is flexible; 2) Fuzzy logic is based on natural language, and the requirement for intensive reading of 

data is not very high; 3) Fuzzy logic can take full advantage of expert information; 4) Fuzzy logic is easy to 

combine with traditional control technique. The Fuzzy-PID controller based system is shown in figure (6). 

 

Figure 6: The structure of a fuzzy PID controller based feedback control system. 

Choosing the suitable memberships is an issue itself, and many things need to be decided about it among which 

is their number and shape. Here seven membership are selected to represent the input and output.  

The Universe of Discourse (UoD) of each input and output control variable is decomposed into seven fuzzy sets 

that have the linguistic values: Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), 

Positive Small (PS), Positive Medium (PM), Positive Big (PB).  

 The ranges chosen for the fuzzy unit In/Out signals are given in figures (7,8,9,10). 

 For the input variables E and Ec the range is [−2, 2]. The range for the output Kp is [0 , 2.5], The range for the 

output Ki is [0 , 5], and the range for the output Ki is [0 , 30].  



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

345 
 

 

Figure 7:  E, Ec membership function curves. 

 

Figure 8: Kp membership function curves. 

 

Figure 9: Ki membership function curves. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

346 
 

 

Figure 10: Kd membership function curves. 

After defining the membership functions and the range for each input and output signal, we define the rule base. 

Because we used two inputs each contains seven membership functions, we needed 49 rules as shown in tables 

(2), (3) and (4). 

Table 2:  𝐾𝐾𝑝𝑝 Fuzzy control rules. 

E 

Ec 

 

NB 

 

NM 

 

NS 

 

Z 

 

PS 

 

PM 

 

PB 

NB PB PB PM PM PS Z Z 

NM PB PB PM PS PS Z NS 

NS PM PM PM PS Z NS NS 

Z PM PM PS Z NS NM NM 

PS PS PS Z NS NS NM NM 

PB PS Z NS NM NM NM NB 

PB Z Z NM NM NM NB NB 

Table 3: 𝐾𝐾𝑖𝑖 Fuzzy control rules. 

E 
Ec 

NB NM NS Z PS PM PB 

NB NB NB NM NM NS Z Z 

NM NB NB NM NS NS Z Z 

NS NB NM NS NS Z PS PS 

Z NM NM NS Z PS PM PM 

PS NM NS Z PS PS PM PB 

PM Z Z PS PS PM PB PB 

PB Z Z PS PM PM PB PB 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

347 
 

Table 4: 𝐾𝐾𝑑𝑑 Fuzzy control rules. 

E 

Ec 

NB NM NS Z PS PM PB 

NB PS NS NB NB NB NM PS 

NM PS NS NB NM NM NS Z 

NS Z NS NM NM NS NS Z 

Z Z NS NS NS NS NS Z 

PS Z Z Z Z Z Z Z 

PM PB NS PS PS PS PS PB 

PB PB PM PM PS PS PS PB 

 

5. Simulation and Results 

Test 1: The first simulation was done to test the performance of the three controllers (RED, PI, and PID) in the 

system when the input (desired queue) equals to 200 packets. Figures (11, 12, and13) show the responses of the 

three controllers, which show good response for the controllers in tracking the desired queue level. 

 

Figure 11: System response when using RED. 

 

Figure 12: System response with PI controller. 

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

T ime (sec.)

Q
ue

ue
siz

e
(p

ac
ke

ts
)

 

 
RED
Desired queue

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

T ime (sec.)

Qu
eu

es
ize

(p
ac

ke
ts)

 

 
PI
Desired queue



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

348 
 

 

Figure 13: System response with PID controller. 

Test 2: The performance of the controllers is tested when the desired queue change every 50 seconds as in 

equation (21). The response of these controllers are shown in figures (14, 15, and 16). The results obtained 

indicates that the PID controller gave the best performance, compared to RED and PI, in tracking the changing 

queue level and decreasing the lost packets. 

 

 

 

Figure 14: System response with RED. 

 

Figure 15: System response with the PI controller. 

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

T ime (sec.)

Q
ue

ue
siz

e
(p

ac
ke

ts
)

 

 
PID
Desired queue











<<
<<
<<
<<

=

;200150200
;150100500
;10050200
;500300

t
t
t
t

qref

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

RED
Desired queue

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

PI controller
Desired queue



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

349 
 

 

Figure 16: System response with the PID controller. 

Test 3: To get an even better performance with the PID controller, it is tuned using the ZN, PSO, and ACO 

methods. The responses obtained after tuning are shown in figures (17, 18, and 19).  

 

Figure 17: System response with ZN- tuned PID controller. 

 

Figure 18: System response with PSO-PID controller 

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

PID controller
Desired queue

0 5 10 15
0

50

100

150

200

250

300

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

ZN-PID
Qref

0 5 10 150

50

100

150

200

250

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

PSO-PID
Qref



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

350 
 

 

Figure 19: System response with ACO-PID controller 

 

Figure 20: System response with Fuzzy-PID controller 

A comparison among the PID tuning methods showed that the tuning method (ZN) led to a large overshoot 

(40%) compared to the other tuning methods, on the contrary of ACO that gave the least overshoot (1.545%). 

The PSO and Fuzzy methods gave (13.85%) and (5%) overshot, respectively. These observations are 

summarized in table (5). 

Table 5: Comparison result of different tuning methods. 

Methods Settling time (Ts) Rise time (Tr) Peak overshoot Mp 

PID (trial and error tuning) 16 2.39 26.5 

ZN-PID 6 0.77 80 

Fuzzy-PID 2.65 1.32 10 

PSO-PID 2.64 0.56 27.7 

ACO-PID 1.84 1.065 3.09 

 

0 5 10 150

50

100

150

200

250

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

ACO-PID
Qref

0 5 10 15
0

50

100

150

200

250

Time (sec.)

Q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)

 

 

Fuzzy-PID
Qref



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

351 
 

Test 4: To examine the performance of the system in an exceptional condition, a disturbance is added as a step 

equals to 50 which starts at second 50 and stays for the whole remaining response time. Figure (21) shows the 

block diagram of the system with the disturbance, and figure (22) shows the response of the system error as well 

as the disturbance signal.  

 

Figure 21: The block diagram of the system with the disturbance. 

 

Figure 22: The responses for the desired queue, the output, the error, and the disturbance. 

Figures (23) to (29) show the response of the system when a disturbance is added at time equal to 50 seconds. 

The tests are carried out with different controllers to check their performance.   

 

Figure 23: The system response with RED controller in case of disturbance. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

352 
 

 

Figure 24: The system response with PI controller in case of disturbance. 

 

Figure 25: The system response with PID controller in case of disturbance.

 

Figure 26: The system response with ZN-PID controller in case of disturbance. 

 

Figure 27: The system response with FPID controller in case of disturbance. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

353 
 

 

Figure 28: The system response with PSO-PID controller in case of disturbance. 

 

Figure 29: The system response with ACO-PID controller in case of disturbance. 

Table (6) shows the time that each controller takes for settling down the response and tracking the queue 

reference again when the disturbance take place. These figures and the table show that when a disturbance 

occurs, RED takes the longest time to settle down the response again to track the queue reference with time (𝑡𝑡𝑠𝑠= 

35 sec.), and the Fuzzy-PID gives the smallest settling time compared to others (𝑡𝑡𝑠𝑠= 2.4 sec.). 

Table 6: The settling time after disturbance for each controller. 

Controller The time to settle down the disturbance. 

RED 35 sec. 

PI 20 sec. 

PID 10 sec. 

ZN-PID 4.5 sec. 

Fuzzy-PID 2.4 sec. 

PSO-PID 3.5 sec. 

ACO-PID 2.55 sec. 

 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

354 
 

6. Conclusion 

Based on the design and simulation results, the followings are concluded: 

• The PID has a better performance, than the RED and the PI, in following the changes in the desired 

queue level and in reducing the loss of packets. The PID gave a settling time 20% lesser than that of the 

PI and 60% lesser than that of the RED.  

• A comparison between the three methods used to tune the PID controller, and under the settings 

considered in this work for each method, indicates that:  

- The ACO-PID gave the least overshoot (1.545%) compared to the others methods [ZN-PID (40%), PSO-PID 

(13.85%), Fuzzy-PID (5%)].  

   - PSO-PID gave the least settling time and rise time compared to all other tuning methods. 

   - The PSO and ACO managed to cause great reduction in settling time and rise time. The ratios of 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑟𝑟 of 

PSO-PID to PID before tuning are (16.5%), (23.43%). And the ratio of 𝑡𝑡𝑠𝑠 and 𝑡𝑡𝑟𝑟 of ACO-PID to PID before 

tuning are (11.5%), (44.56%).  

- The intelligent tuning methods [PSO & ACO] gave better 𝑡𝑡𝑟𝑟 and 𝑡𝑡𝑠𝑠 compared to Fuzzy or Ziegler–Nichols. 

- The comparison between controllers when adding disturbance showed that the Fuzzy-PID gives the smallest 

settling time compared to others (𝑡𝑡𝑠𝑠= 2.4 sec.). 

• Despite the relative performance of the Fuzzy PID controller indicated above, it is very important to 

state the following points: 

- A very main positive feature of the Fuzzy tuning method is that it is an online tuning method, as it 

continuously adapts the PID controllers’ parameters as long as the system is running.  

- The Fuzzy PID performance can still be improved by optimizing the Fuzzy part. 

- In reality, the Fuzzy-PID controller represents a nonlinear controller (as its parameters are changing), and so it 

can even suit the nonlinear model. 

References 

[1] V. Jacobson and M. J. Karels. “Congestion Avoidance and Control.”  in Proc.ACM SIGCOMM, 1988, 

pp. 314-329. 

[2] G. F. Ahammed and R. Banu. “Analyzing the Performance of Active Queue Management Algorithms.”  

in (IJCNC) International Journal of Computer Networks & Communications, Vol.2, No.2,  March 

2010.  

[3] T. Azuma, T. Fujita, and M. Fujita, “Congestion control for TCP/AQM networks using state predictive 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 41, No  1, pp 333-355 

 

355 
 

control.” EEE Transactions on Electronics, Information and Systems, Vol. 125, No.9, pp. 1491–1496, 

2005. 

[4] C. V. Hollot, V. Misra, D. Towsley and W. Gong, “Analysis and Design of Controllers for AQM 

Routers Supporting TCP flows.” IEEE Transactions on Automatic Control, Vol. 47, No. 6, pp. 945-

959, 2002. 

[5] V. Misra, W. B. Gong and D. Towsley, “ Fluid-Based Analysis of a Network of AQM Routers 

Supporting TCP Flows with an Application to RED.”  in Proc. ACM Sigcomm, 2000, pp. 151-160. 

[6] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “ A Control Theoretic Analysis of RED.” in 

Proceedings of IEEE INFOCOM, 2001.  

[7] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “ On Designing Improved Controllers for AQM 

Routers Supporting TCP Flows.” in Proceedings of IEEE INFOCOM, 2001, pp. 1726–1734. 

[8] M. Y. Waskasi, M. J. Yazdanpanah and N. Yazdani, “ a New Active Queue Management Algorithm 

Based On Neural Networks PI.”  Control and Intelligent Processing Center of Excellence Electrical and 

Computer Engineering Department, University of Tehran, 2005 

[9] M. Z. Al-Faiz and A. M. Mahmood, “ Fuzzy-Genetic Controller for Congestion Avoidance in 

Computer Networks.”  IJCCCE, Vol. 11, No. 2, 2011. 

[10] T. Alvarez, “ Design of PID Controllers for TCP/AQM Wireless Networks.” in Proc. the World 

Congress on Engineering, 2012, pp. 1273-1280. 

[11] S. T. Salim and A. M. Mahmood, “ Design of On-Line Tuned Controller for Congestion Avoidance in 

Computer Networks.” Eng. &Tech. Journal, Vol. 31, No. 3, 2013. 

[12] H. I. Ali, and K. S. Khalid, “ Swarm intelligence based robust active queue management design for 

congestion control in TCP network.” IEEJ Transactions on Electrical and Electronic Engineering, Vol. 

11, pp. 308-324, 2016. 

[13] J. Olsen, “ Stochastic modeling and simulation of the TCP protocol.” Uppsala Dissertations in 

Mathematics, Uppsala University, Sweden, 2003.  

[14] Ch. Koutsimanis, and P. G. Park, “ Active Queue Management – A router based control mechanism.” 

Scientific report, 2006. 

[15] V. Chopra, S. K. Singla, and L. Dewan, “Comparative Analysis of Tuning a PID Controller using 

Intelligent Methods,” Acta Polytechnica Hungarica, Vol. 11, No. 8, 236-249, 2014 

[16] B. R. Copeland, “The Design of PID Controllers using Ziegler Nichols Tuning,” Internet: 

http://educypedia.karadimov.info/library/Ziegler_Nichols.pdf, Mar. 2008[ Apr. 20017]. 

[17] B. Nagaraj and N. Murugananth, “A comparative study of PID controller tuning using GA, EP, PSO 

and ACO,”  Journal of Automation, Mobile Robotics & Intelligent Systems, Vol. 5, No. 2, 2011. 

[18] J. Jin and H. Huang,  “Study on fuzzy self-adaptive PID control system of biomass boiler drum water,” 

Journal of bio-energy systems, Vol. 3, No. 1, 2013. 

http://educypedia.karadimov.info/library/Ziegler_Nichols.pdf

	Taking the Laplace transform of equation (3) and after rearrangement, the following transfer functions can be obtained:
	Figure 2: Block diagram of a linearized AQM model-based feedback control.
	which can be expressed as:

