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Abstract 

In this paper, a generalization of the concept of measure is made using binary oprations. With this 

generalization, we extend the measure domain to         . In the future, the properties of this new concept 

will be examined. 

Keywords: measure; dependable value pre-measure; dependable value measure; dependable value measure 

under binary oprations. 

1. Introduction 

When we study of measure theory, we understand this formal theory is using in Lebesgue and Integral 

operation. In the following, the sigma algebra structure is proper to implement. As we know, when we talk 

about measure, we mean the function such as;           Which has the following properties:  

{

 (    

 (⋃  

 

   

)  ∑ (                                    

 

   

 

The meaning of    is the non -negative real numbers. The triple (       is  which   is an nonempty set and    

is  ring of Subset of     that’s a measure of   sigma algebra. It is called measure space. 

------------------------------------------------------------------------ 
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 In this article, we have generalized the measure range from    to      . The main principle, which used in 

this purpose, are binary operations. For this purpose, we define function 𝜇         , which 

simultaneously satisfies the following two conditions: 

                     𝜇 (  ⋃  

 

   

)  ∑ 𝜇(              

 

   

                                   

                                         𝜇(     𝜇(     𝜇 (     ⋃ )                   

Such that in second condition     are binary operations. The easiest way to satisfy the function in the first 

condition is 𝜇         , defines as follow :  

𝜇(      (   (   

Such that        is a measure and         is a function. The function that satisfies the first condition is 

called the dependable value pre-measure. In addition, when  binary operations defined as the sum , this 

measure is called dependable value measure. This dependable value pre-measure which satisfy in condition 2 

is named dependable value measure under binary operations (    .In the following, we will examine the 

conditions which dependable value pre-measure is turned to the dependable value measure. Finally, we 

recognize some properties of this type of measures. It seems that we can define a numerous advantages for the 

generalization of the measure theory of    to      . One  uses of this type of measure are in a nonlinear 

analysis.  

Definition1.𝝁          is dependable value pre-measure, If 𝝁 is a function that we define as follows: 

𝜇 (  ⋃  

 

   

)  ∑ 𝜇(              

 

   

                                    (    

The easiest way to make a pre-measure is that function 𝜇          define as follows: 

𝜇(      (   (   

Such that         is measure and         is function. In all of this paper, it’s assumed that the 

function 𝜇          is make in this way. 

dependable value pre-measure  𝜇          that is called a dependable value measure under binary 

operations (    , If 𝜇 is function as follows: 

𝜇(     𝜇(     𝜇 (     ⋃ )                       (    
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Such that             are binary oprations. 

If binary operations       are  simple sum, this function is called dependable value measure. In other 

words, each dependable value measure is a function, such as            which satisfies to the following 

properties: 

 (  ⋃  

 

   

)  ∑  (              

 

   

                

 (      (      (     ⋃ ) 

Example 1: let’s assume that binary relations            , define as follows:  

       {   } 

       {   } 

In addition,   on measure space can define as(      . In this case, the function 𝜇   
        which is 

define as follows and it’s a measure under binary operations(    .  

𝜇 (        (   

Example 2: let’s assume that binary relations            , define as follows:  

          

              

In addition,   on measure space can define as(      . In this case, the function is 𝜇   
        which is 

define as follows and it’s a measure under binary operations(    .  

𝜇 (        (   

Example 3: The function     
       is a dependable value measure.  

  (     ,
                                              
                                                    

 

 Theorem1.If   is a measure on space (      . In addition, if        is a  function  it satisfies on this 

condition:  

 (    (    (                   (   
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And a binary operation            should be like for any       , so we have as follow : 

   {   }                      (   

 

Moreover, a binary operation            should be like for any              with     condition, 

so we have as follow: 

  (     (     (                  (   

                                                  (   

Also, if we define a function like this 𝜇          as follow : 

𝜇(      (    (                         (   

Then , 𝜇          is a dependable value measure under binary operations (    .  

 Proof.The proof that function 𝝁          is dependable value pre-measure, it is easily obtained by using 

(2) and (4). In order to proof that function is dependable value measure under binary operations (    , it is 

easy to write down the properties of (*) and (1) and (3):  

𝜇(     𝜇(     𝜇(     𝜇(     

   (   ( (      (    (    

     { (    (  } ( (        { (    (  } ( (    

   (    (    ( (  )    (    (    ( (    

   (    (    ( (    (  )    (    (     (     

  (     (     𝜇(           

Corollary.If   is a measure  on space (      , also         is a function such that satisfies on the 

condition  

 (    (    (                   (    

In addition, if we define a function like this ρ         , as follow:   

 (      (    (   
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Then             is dependable value measure. 

In order to understand the theorem (1) and Corollary, we can give the following example. 

Example 4: let’s assume that         is a measure on (       space. In this case,      
     

        
        which define below, are dependable value measures.  

   (     
  

    
   (   

   (     ∑   
 

 

   

  (                   

Solution. Suppose that  (   
  

    
 . 

In order to measure of      
       , we must notice that we can write like this : 

 (      (    (    

(     

(       
 

  

    
 

  

    
  

                                                                        

                                                             
  

It is clear that non-negative of the above fraction, according to positive value of     . So, this function  (   

  

    
 is satisfies on this condition )**(. In order to     

        measure, the proof of  (   ∑    
   

   is 

satisfies on this condition )**(.It is easy to solve, according to the inequality.  

            (                                          

Lemma 2.Let’s assume that 𝝁          be a dependable value measure under binary operations(    . 

In addition, suppose for binary operations               ; 

we have: 

      

        

Moreover if      are non-negative numbers  which have      relation;show that  

𝜇(     𝜇(     
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Proof.Due to the feature of   , which means dependable value measure under binary operations (    , we can 

write as follows :  

𝜇(     𝜇(       𝜇(  (        𝜇(     

Now, we have as follow: 

𝜇(     𝜇(       𝜇(     

Therefore, we get desired results  

Corollary.Let’s think there is      relation between two non-negative numbers    . In this case, the 

following relationship is established in each dependable value measure 𝝆         . 

 (      (     

Example 5: Let’s suppose that              are dependable value measures. In this case,         

   is dependable value measure which defined by the following criteria. 

 (         (        (     

The research of  first feature is very easy. In order to consider of the feature of    for     (    , we have to 

write as follow: 

    (         (     (      (  (      (    )   

(      (  (        )   

(     (  (        ) 

Due to the same operation in this phrase    (    , we can conclude as follow 

𝜇(     𝜇(     𝜇(         

In two above operations (       are consider as an addition. However, if they wasn’t an addition, it was so 

hard to solve. In below theorem, we are looking for functions, which is multiplied by their dependable value 

measure, the multiplication again become a dependable value measure function under binary operations.  

Theorem 3.Let’s assume that              is dependable value measure under binary operations  (     . 

In addition, we have for non-negative function         and binary operations  (     : 

 (    (    (                               (   
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(    (    (    (                   (   

then function 𝜇          is dependable value measure under binary operations(    . 

𝜇(      (   (     

Proof.The consideration of dependable value pre-measure function 𝝁          is so simple. Now, by 

using the features (5) and (6), we can write: 

𝜇(     𝜇(      (   (      (   (      

  (    (     (      (        (       (          𝜇(         

As we can see in the above theorem, we can apply the conditions, which are possible to maintain the binary 

operations. Certainly, the condition isn't always like that. However, in order to change the condition, the binary 

operations are also changed. The following theorem has this kind of conditions. 

Theorem 4.Let’s                are dependable value measures under binary operations respectively 

 (     ( ̂  ̂ ;such that both measures are made as follows:  

 (      (   (                        (      

 (      (   (                          (    

and functions           have )**( feature and           were two measures. In addition, binary 

operations (     is defines as follow: 

    (     (  ̂  )                  (       

    (     (  ̂  )               (    

Then  𝜇          is defines as follow, It’s a dependable value measure under the binary operation(    . 

𝜇(     ( (    )  ( (      

Proof.The consideration of function 𝝁          is so simple. Now, we are going to prove the second 

feature. According to the hypothesis of the problem: 

 (       (      (         

 (     ̂  (      (   ̂      ) 

As a result, we can write down the following conditions: 
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  (       (      [ (     ̂  (    ]    (          [ (   ̂      )] 

According to the inequality and the features of (7) and (8) and (9) and (10) and due to the function     has **()  

feature, so we can write as follow: 

𝜇(      𝜇(       (       (      [ (     ̂  (    ] 

   (          [ (   ̂      )]   

  (     (        (  ̂  ) (       

[( (      (  ̂  )  (       ( (      (  ̂  )  (    ] 

 * ((     (  ̂  )) (    +    ((     (  ̂  )) (       

 (          (         𝜇(         

Notice.Let’s think 𝝆(        (    is a dependable value measure . In this case, we can put  (   √ 
  

 

function instead of  . As a summary, the resulting function is no dependable value measure.  

 ( √ 
  

  )  √ 
  

  (   

That’s why it can prove easily that the following relation is established according to the defined function. 

 ( (       ( (       ( (        

Therefore, as we can see in the example, by selecting a function we can change the direction of the inequality. In 

the following, we are looking for the conditions, which can choose the functions that don't change by placing 

them in dependable value measure of inequality. 

 Theorem 5.Let’s imagine            is dependable value measure under binary operations (    . Also, 

if we have non-negative function         and binary 

 operations     such that: 

        

 ( (    (       ( (        

   Then  function  𝜇          which define as follow is also dependable value measure under binary 

operations  (    . 
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𝜇(      ( (      

 Proof.It is sufficient to prove    features.  

𝜇(     𝜇(     𝜇(     𝜇(      ( (       ( (       

 ( (    (         ( (          𝜇(         

Corollary. Let’s think            is dependable value measure.  In addition, the negative function 

           satisfies in this  )**(condition. In this case, the function            can define as 

follow, which is a dependable value measure. 

 (      ( (      

For example, from dependable value measure of           , we can make following dependable value 

measure : 

 (      (
               

   
  ) 

We can easily recognize that function  (   
               

   
  can satisfy  )**(condition.  Therefore, we can 

conclude that the function             is dependable value measure.  

 Theorem6.suppose            be a dependable value measure under binary operations  (     and 

also functions             can satisfy the condition 

 ( (       ( (                         (    

In addition, due to the binary operations (    , we have the following relations: 

(     (     (     (           (    

( ( (      ( ( (     )  ( ( (         

 ( ( (          ( ( (       ( (     )           (    

In this case, function 𝜇          can define as follow which is a dependable value measure under binary 

operations (     .  

𝜇(      ( (       ( (      

 Proof.According to feature (11), we conclude as follow: 

𝜇(      ( (       ( (        
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Now to continue, we prove the first feature. 

𝜇(        ( (         ( (         

 ( (       ( (       ( (       ( (       

( ( (       ( (     )  ( ( (       ( (       

𝜇(     𝜇(     

Now to prove the second feature, due to the inequalities (12) and (13), we have as follow: 

𝜇(     𝜇(     ( ( (       ( (     )  ( ( (       ( (        

( ( (      ( ( (     )  ( ( (       ( (     )   

( ( (          ( ( (          𝜇(         

Notice.A sufficient condition for the inequality (13) is that functions           has the binary operations 

relations(    :  

( ( (      ( ( (     )  ( ( (                    (    

( ( (       ( (     )  ( ( (                       (    

 Theorem7.Let’s             is a dependable value measure under binary operations (     and also 

functions            satisfy on (11) and (12) and (14) and (15) conditions .Then function 𝝁           

can define as a dependable value measure under binary operations(    . 

𝜇(      ( (       ( (      

Example6.Let’s think that            is a dependable value measure under binary operations (     

which define by following criterion. 

 (        (   

In addition, above binary operation should define as follow: 

      

        

In this case, 𝜇           which define as criterion is a dependable value measure under binary operations 
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(    .  

𝜇(      (         (     

Notice.In the previous theorem, both conditions are compulsory. 

For example, you can consider the previous example𝜇    
       , which defined by below criterion: 

𝜇 (      (      (          

According to the defined criterion, it’s clear that we have negative number for   which is a result of 𝜇 (    .  

Theorem8.Let’s think     
       (       is a dependable value measures under binary operations 

(     and these relations define as follow: 

  (       (   (   

In addition, we have this about binary operations(     : 

(    (    (    (               (      

    √      
                                   (      

In this case function 𝜇           can define as follow which is a dependable value measure under binary 

operations (    . 

𝜇(     ∏ √  (    
 

 

   
 

 Proof.The consideration of this feature(  , due to the above relations are too easy.  

𝜇(       ∏ √  (      
 

 

   
 ∏ √  (   (    

 
 

   
  

√(∏   (   

 

   

( (      
 

 ∏ √  (  
 

 

   
 (      

∏ √  (  
 

 

   

  (    (    ∏ √  (  
 

 

   
 (   ∏ √  (  

 
 

   
 (    

√(∏   (   ( (    

 

   

 

 √(∏  (   

 

   

( (    
 

 ∏ √  (   (  
 

 

   
 ∏ √  (   (  
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∏ √  (    
 

 

   
 ∏ √  (    

 
 

   
  

𝜇(     𝜇(     

According to this feature (    about (16) and (17), we can write as follow: 

𝜇(     𝜇(     ∏ √  (    
 

 

   
 ∏ √  (    

 
 

   
  

∏ (√  (    
 

 √  (    
 

  
 

   
∏ ( √  (       (    

 
 

 

   
 

∏ √  (        
 

 

   
 𝜇(         

  Lemma9.Let’s think this function             is a dependable value pre-measure and also we have as 

follow: 

 (      (      (       

                               (    

In this case,            is a dependable value measure under binary operation(    . 

Proof.Let’s think this way: 

 (      (      (       

 (      (      (       

In order to addition of this relation, we can conclude as follow: 

 (      (      (         

Now, other operations are sole by (18) relation. Now, let's talk about a theorem which gives us an impressive 

test for examining the dependable value pre-measure 

Theorem10.Let’s assume functions     𝝁          and also suppose               is a 

dependable value pre-measure , Such that for each           have relation: 

 (      (     𝜇(       

In addition, we have as follow: 
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𝜇(     𝜇(      (       

In addition, there should be binary operation   for (18) relations. Then            is a dependable value 

measure under binary operations(    . 

Proof.It’s clear that due to the assumptions and Lemma 10 to prove this relation   (      (     

 (        , it’s sufficient to prove that the following relation is established.   

 (      (      (       

In order to do this  (      (     we have to define as follow; 

 (     
𝜇(      (    

 
 

 (     
𝜇(      (    

 
 

It’s clear that we can write as follow: 

 (      (      (     

𝜇(      (      (     

Therefore, we have as follow: 

 (      (      (      (      (     

So, we have as follow; 

 (        (        (       

  (      (      (      (       (      (     

As a result, by addition of both unequal sides, we have as follow: 

 (       ( (      (    )  [ (       ( (      (    )]   

 (         (      (      

Therefore,for prove   (         (      (     in above Inequality, there is sufficient condition to 

prove that: 

   (       ( (      (    )  [ (       ( (      (    )] 
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In order by replace  the values , and streamline the relation, we can easily conclude as follow.  

𝜇(     𝜇(      (       

For example, if            is a dependable value measure. Such that relation     is stable in order to 

𝜇         . It can define as follow: 

𝜇(     
 (    (         (    (     

 (    (  
        

Where                                (    (    . 

The proof that function   is dependable value pre-measure, it is easily. 

According to the theorem 5, it’s clear that  (        has this relation    is a dependable value measure. In 

addition, according to the lemma 2 and criteria 𝜇         , we have as follow; 

 (        𝜇(      (      

On the other hand, from     , we can easily conclude that        . So, we have as follow; 

 (       (       (       (       (            (      (           

  ((      (        

Therefore, due to the proven theorem, we conclude that 𝜇          is dependable value measure.   

Theorem11.Suppose that  function 𝜇           is a dependable value pre-measure and also we have this 

relation      as follow: 

𝜇(     𝜇(     

In this case, 𝜇          is dependable value measure.  

proof. 

 (       (       (          (          (           

Theorem 12.Let’s think that the function           is a dependable value pre-measure and 𝜇       

   is dependable value measure and we have this function                  as follow: 

𝜇(      (     𝜇 (     ⋃ )   (           

In this case,   is a dependable value measure. 
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Proof.It’s clear that we can as follow: 

𝜇(      (     𝜇 (     ⋃ )   (     ⋃ ) 

As a result,            has One-sided feature and due to the previous theorem, we have a dependable 

value measure.  

Example7.Let’s think about the pre-measure            that can satisfy for any  

arbitrary numbers        and any sets       of condition as follow: 

 (     
 (     ⋃  

 (        
         

Such that                 and 

{
 (                                

 (                                        
 is turning to            which is dependable value measure.  

Solution.Suppose that         hence we can use the condition of the problem, we can write as follow: 

 (     
 (     ⋃  

 
 

Due to    , and desired numbers and sets    , we have as follow: 

 (      (      (     ⋃ ) 

In the following, we examine the feature of the dependable value measure, which can help us to accurately get 

the dependable value measure.  

If     then we have as follow: 

 (      (       

Theorem11 completes the answer. 

Definition2.The dependable value measure of 𝜇         , we call it has a simple form; If we have for 

every          as follow: 

𝜇(      (    (   

Such that         can satisfy this condition )*(, and also measure of   (   is under (      .  
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Theorem13.Assume that  𝜇          be a dependable value measure such that has a simple form. Also, 

suppose given deals 𝜇(    ,  𝜇(      for constant number      , constant set     , any numbers       

and any sets such as     and Also  𝜇(      .Then  for any arbitrary numbers such as     , and any 

arbitrary sets       𝜇(     is calculable.  

Proof.Let’s think we have as follow: 

𝜇(      (    (   

In this case, we can conclude from this relation: 

Pay attention that 𝜇(        Therefore , we can calculate this 𝜇(     as follow: 

𝜇(     
𝜇(     𝜇(    

𝜇(    
 

( (    (    ( (    (   

𝜇(    
 

( (    (    ( (    (  

𝜇(    

 
𝜇(     𝜇(    

𝜇(    
 

This simple theorem has important results. Some of them are referred to below. 

Theorem 14.Suppose that we have below relation for some        and  

        : 

{
𝜇(     𝜇(      

𝜇(     𝜇(      
 

Then  we have as follow: 

𝜇(     𝜇(       

Proof.According to this 𝝁(     𝝁(      , we can use above theorem as follow: 

𝜇(     
𝜇(     𝜇(    

𝜇(    
 

𝜇(     
𝜇(     𝜇(    

𝜇(    
 

Therefore, we have as follow: 

𝜇(    

𝜇(    
 

𝜇(    

𝜇(    
 

𝜇(    

𝜇(    
 

This relation and hypothesis of theorem yield result. 
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Theorem15.Let’s think 𝝁          is dependable value pre-measure. If for each numbers              

and for each sets like       there exist        and      , so we have as follow: 

 𝜇(     𝜇(      𝜇(     𝜇(       𝜇(         

Also, the additional of 𝜇(     𝜇(      be  positive  numbers. Then  𝜇          is a dependable value 

measure.  

 Proof.According to the assumptions, we can write as follow: 

𝜇(     𝜇(    

𝜇(    
 

𝜇(     𝜇(    

𝜇(    
 𝜇(         

Now, due to the theorem 13, we can write as follow: 

𝜇(     𝜇(     𝜇(         

Pay attention that assumptions are for       and      , so this proof is over 

 Theorem16.Let’s  𝝁          is dependable value pre-measure and also if for every numbers  

              and sets      ,there exist a number       and set     ,such that  : 

 𝜇(      𝜇(     𝜇(       𝜇(       

Then 𝜇          is dependable value measure.  

Proof. According to the assumptions, we can write as follow: 

    𝜇(     

Now, other operations by theorem 13 is simple.  
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