Prevalence of Fingerprint Patterns in Multiple and Single Births Women of Igbo-Ora, Nigeria, West Africa

Thomas Kehinde Adenowoa*, Olugbenga Olawale Eweoyab

aDepartment of Anatomy, Olabisi Onabanjo University, Ikenne, Ogun State. Nigeria
bDepartment of Anatomical Sciences, University of Abuja, Abuja. Nigeria
*Email: ewegbenga@gmail.com; Tel.No: +2347032202974

Abstract

Fingerprints are very important in the identification of any individual in forensic science. Beginning from the 21st century, the study of fingerprints has gained much recognition as a diagnostic tool especially in Criminology, Anthropology, Dysmorphology and Medicine. This present study was conducted to establish the relationship between fingerprint patterns and Multiple births. A total of 200 healthy and consenting female subjects (105 multiple births and 95 single births women) aged between 25 and 50 years (37.5+/−2) of Igbo-Ora descent were selected for the study through random sampling. Fingerprints obtained from rolled ink pad were imprinted twice on a designed 10 digit proforma white A4 paper. Fingerprint patterns were identified with magnifying glass x20, analyzed, compared, and evaluated for the women by both authors independently. The principal patterns among women with Multiple births were Whorls (19.7%), Arches (15.5%), Ulnar (56.8%) and Twin loops (5.2%). The study also showed that Radial loop pattern (4.5%) was more predominant in Single births women. Whorls, Arches, Ulnar and Twin loops were more in women with Multiple births than those with Single birth and these differences were statistically significant (p<0.05).

Keywords: Fingerprints; Multiple births; Anthropology; Forensic science; Igbo-Ora, Ink pad.

1. Introduction

Human identification is an important aspect in Criminology and Forensic science. The identification may be partial or complete although the complete identification of an individual is a responsibility of police and most times it becomes difficult especially in decomposed or severely mutilated bodies. In such cases partial identification by Medical or Police officers may become important to arrive at a conclusion [10, 17].

* Corresponding author.
Some parameters used for the identification purposes include, fingerprints, race, handwriting, gender, skin texture, garments and DNA profile [4]. The most important of these parameters is the fingerprint which often provide the positive identification of an individual or suspect because it is unique, durable and permanent [4]. Fingerprints are the prime and infallible means of identification in forensic investigations and trials [11]. Scientific study of the fingerprints, footprints and palm prints is referred to as Dermatoglyphics which was coined from two ancient Greek words; Derma=Skin, Glyphae=Carvings [1, 6, 15]. Fingerprint determination is genetic and it is affected by intrauterine environment in the first trimester of pregnancy though they are characterized by alternating strips of raised frictional ridge and depressed grooves on the fingertips [24]. Fingerprint starts to develop by 6th week of intrauterine life and is fully formed by 21st week and is permanent once formed [16, 24]). Human fingerprint is characterized by various types of ridge patterns classified as an Arch, a Loop, or a Whorl—each has a unique characteristic with respect to a reference point called a Triradius [9]. Multiple births occur when more than one fetus is delivered at birth which could be natural or through assisted human reproduction. Common multiples are usually twins and triplets but can also depend on the number of babies [13]. Multiple births can be monozygotic or dizygotic in nature, and Monozygotic twins result from a single fertilized ovum followed by splitting while dizygotic twins result from the fertilization of two separate ova by two different sperm cells [3]. The incidence of twins varies from all over the World but there is high Incidence in Kondihi, India (17%) and Candido Godoi, Brazil (10%) although the Incidence is not as high as in Igbo-Ora which was found to be 68% [18]. Twins played an important spiritual role among several societies of West Africa, some society such as Igbo in South East Nigeria were killing twins out of greater fear previously, a culture which was stopped by a Scottish missionary, Mary Slessor whereas their Yoruba counterpart in South Western Nigeria loved twins and worshipped them [2]. Variation was observed in the Dermatoglyphic patterns of different digits of same individual [7]. Previous researches had shown emphasis on fingerprint because of their permanence, repeatability, reliability and uniqueness in Dermatoglyphic, Anthropology. This study was therefore carried out to establish the relationship between fingerprint patterns and multiple births with a view to predicting the tendency of a woman to giving birth to multiples.

2. Materials and Methods

Ethical consideration

Ethical consideration was sought and obtained from Ladoke Akintola University Teaching Hospital, Ogbomosho, Oyo State, because of its proximity to the study site.

Limitations

Subjects who lived in Igbo-Ora since their birth and below 50 years old were included in the study while subjects above 50 years and with any injury or permanent deformity to the fingers were excluded from the study.

2.1 Methodology

The study was conducted on 200 presumably healthy and consenting females of Igbo-Ora indigenes (105 women with multiple births and 95 women with single births).
The subjects had parental history of about two Ancestral generations from Igbo-Ora. The subjects gave their free consent to take part in the study. Informed consents were obtained from the subjects before taken their fingerprint patterns.

2.1.1 Procedure

The subjects were asked to wash and dry their hands with the soap, water and towel provided, after which they were asked to roll their finger pulps on the stamp ink pad provided, and imprints were made serially on the 10 digit proforma form designed for the study [6] see Figure 2.

The prints were obtained in duplicates and 4,000 fingerprints were studied for dermatoglyphics analysis with the aid of a x 20 magnifying glass. Care was taken to ensure fingerprints were put in the spaces provided on the designed form and appropriately coded. The same steps were used for the ten fingers of all the other subjects who had given consent and randomly selected for the study.

Excessive pressure was avoided to prevent smudging of the prints. All the data were tabulated and statistically analyzed. Descriptive statistics were used to establish frequencies in the table for further analysis. Out of the 4,000 fingerprints collected from the subjects, 2000 were finally selected.

Patterns of the rolled fingerprint impressions were analyzed, compared, evaluated and verified, this was done by both authors independently.

Among the 2000 fingerprints analyzed, common patterns observed were: Ulnar and Radial loops, Whorls, and Arches see figure 1 below. (Arrow mark delineates the Triradius in the pattern).

3. Results

In this study, both qualitative and quantitative observations were recorded.

In all the subjects studied in Igbo-Ora, the underlisted fingerprints patterns were documented:

i) Ulnar Loop = The ridges were characterized by a waterfall flowing towards the little finger and it has one triradius.(see i below)

ii) Twin Loop = Here the loop was characterized by two triradiii at the ulnar and radial sides of the finger, it is observed as two opposite loops which looks like capital letter S.(see iv)

iii) Simple Arches = This was characterized by ridges which appeared simple, and look hilly, with no triangle formation in the shape.(see iii)

iv) Concentric whorls = Here, the ridges formed lines starting from the center of the small circle, and expanded outwards like concentric circles and it has two triradii.(see ii).
(i) Ulnar loop (Rt Thumb) (ii) Concentric whorl

(iii) Simple Arches (iv) Twin loop (Lt Thumb)

Figure 1: Digital patterns among females in Igbo-Ora.

Figure 2: Picture of stained finger pulps and prints.
4. Discussion

Apart from qualitative classification of the fingerprint pattern described above, different indices are also taken into consideration for quantitative assessment. These indices include: Pattern Intensity Index, Dankmeijer’s index and Furuhata index. The formulae are given below:

\[
\text{Pattern intensity index} = \frac{(2 \times \% \text{ whorl} + \% \text{ loop})}{2}.
\]

\[
\text{Dankmeijer’s index} = \left(\frac{\% \text{ arches}}{\% \text{ whorl}}\right) \times 100.
\]

\[
\text{Furuhata’s index} = \left(\frac{\% \text{ whorl}}{\% \text{ loop}}\right) \times 100. \tag{24}
\]

<table>
<thead>
<tr>
<th>Quantitative Indices</th>
<th>Multiple births women</th>
<th>Single births women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern Intensity Index</td>
<td>52.1</td>
<td>53.6</td>
</tr>
<tr>
<td>Dankmeijer’s Index</td>
<td>78.7</td>
<td>62.2</td>
</tr>
<tr>
<td>Furuhata Index</td>
<td>30.4</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Table 1.0: Comparison of the Quantitative Index in Multiple and Single births women.

A total of 4,000 fingerprints were studied, out of which 2,000 fingerprints pattern were analyzed, compared and evaluated. Overall, whorls (19.7%) followed by arches (15.5%) and twin loop (5.2%) were found to be more prevalent in multiple births women compared to arches (11.7%), twin loop (4.0%), and whorls (18.8%) in single births women. The difference was statistically significant (p < 0.05). The radial loop (2.8%) was the least fingerprint pattern in multiple births women compared to single births women which was 4.5%.

A detailed frequency and percentage distribution of each fingerprint pattern is seen in Table 2.0 and 3.0 for both multiple and single births women respectively.

There was dominance of ulnar loop in both hands of multiple and single birth women (56.8% and 60.6% respectively) although prevalence was higher in single births women (Table 2.0).

In the fourth digits of both women, percentage whorls were observed to be more than loops and this supports the study by [18] (Table 4.0).

The result of this study contradicts the study done by [8]. Also in Table 3.0 there was no radial loop on the fourth digit of multiple births women.
Figure 3: Pie chart showing the study group of multiple and single births women.

The frequency and percentage (%) of pattern types between mothers with multiple births (n=105) and mothers with single birth (n=95).

Table 2.0: Right (Rt) and Left (Lt) Hands.

<table>
<thead>
<tr>
<th>Fingerprint Patterns</th>
<th>Multip (Lt) Freq (%)</th>
<th>Single (Lt) Freq (%)</th>
<th>Multip (Rt) Freq (%)</th>
<th>Single (Rt) Freq (%)</th>
<th>Multip (Both hands) Freq (%)</th>
<th>Single (Both hands) Freq (%)</th>
<th>Std. Devn</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arches Lp</td>
<td>88(16.8)</td>
<td>58(12.2)</td>
<td>75(14.3)</td>
<td>54(11.4)</td>
<td>163(15.5)</td>
<td>112(11.8)</td>
<td>40.9</td>
<td>0.003</td>
</tr>
<tr>
<td>Ulnar Lp</td>
<td>285(54.3)</td>
<td>276(58.1)</td>
<td>311(59.2)</td>
<td>297(62.5)</td>
<td>596(56.8)</td>
<td>573(60.3)</td>
<td>152.6</td>
<td>0.001</td>
</tr>
<tr>
<td>Radial Lp</td>
<td>13(2.5)</td>
<td>20(4.2)</td>
<td>16(3.0)</td>
<td>23(4.8)</td>
<td>29(2.8)</td>
<td>43(4.5)</td>
<td>11.3</td>
<td>0.004</td>
</tr>
<tr>
<td>Twin Lp</td>
<td>31(5.9)</td>
<td>22(4.6)</td>
<td>24(4.6)</td>
<td>21(4.4)</td>
<td>55(5.2)</td>
<td>43(4.5)</td>
<td>13.8</td>
<td>0.002</td>
</tr>
<tr>
<td>Whorls</td>
<td>108(20.6)</td>
<td>99(20.8)</td>
<td>99(18.9)</td>
<td>80(16.8)</td>
<td>207(19.7)</td>
<td>179(18.8)</td>
<td>51.1</td>
<td>0.002</td>
</tr>
<tr>
<td>Total</td>
<td>525</td>
<td>475</td>
<td>525</td>
<td>475</td>
<td>1050</td>
<td>950</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Bar chart showing fingerprint pattern distribution in multiple and single births women.
Table 3.0: Frequency of fingerprint digit patterns between mothers with multiple (n=105) and single births (n=95)

<table>
<thead>
<tr>
<th>Digit</th>
<th>Mothers with twin(n=105)</th>
<th>Mothers without twins(n=95)</th>
<th>Both mothers(n=200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lu</td>
<td>Lr</td>
<td>Lt</td>
</tr>
<tr>
<td>D1</td>
<td>75</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>D2</td>
<td>105</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>D3</td>
<td>135</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>D4</td>
<td>129</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>D5</td>
<td>152</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>596</td>
<td>26</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 4.0: Percentage of fingerprint digit patterns in mothers with multiple (n=105) and without multiple births (n=95) in Right and Left Hands.

<table>
<thead>
<tr>
<th>Digit</th>
<th>Mothers with twin(n=105)</th>
<th>Mothers without twins(n=95)</th>
<th>Both mothers(n=200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lu</td>
<td>Lr</td>
<td>Lt</td>
</tr>
<tr>
<td>D1</td>
<td>12.6</td>
<td>19.2</td>
<td>73.1</td>
</tr>
<tr>
<td>D2</td>
<td>17.6</td>
<td>50.0</td>
<td>13.5</td>
</tr>
<tr>
<td>D3</td>
<td>22.7</td>
<td>26.9</td>
<td>7.7</td>
</tr>
<tr>
<td>D4</td>
<td>21.6</td>
<td>0.0</td>
<td>3.8</td>
</tr>
<tr>
<td>D5</td>
<td>25.5</td>
<td>3.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
The frequency of ulnar loop in the 2nd, 3rd and 4th digit of mothers with twins is higher than mothers with single births, while the frequency of radial loop in the 1st, 3rd, 4th and 5th digits of single births mother is more than in multiple births women Table 3.

Table 2.0 showed that the percentage of whorl pattern is more than arches pattern in both hands of multiple birth women, this is in relative association with the study conducted by [14] which revealed whorls to be a prevalent fingerprint pattern in the group studied and this contradicts the study done by [9] in a philippine population, [8] in Anioma and Urobho students, [11] in a Muslim population in India. The radial loop pattern was more prevalent in single births women; this is in agreement with the study conducted by [20].

The result of this study support the work done by Ching Cho in New Zealand Samoans who reported predominance of whorls (60.6%) [8], by [22] among Tibetans [5] by Karmakar and his colleagues among Muzziena Bedouin [22] by Singh and his colleagues in Rajputs of Himachal Pradesh [12] and Ghosh et al. in Sunni Muslim males of West Bengal [21] who reported whorls to be the most common pattern.

5. Conclusion

Detailed classification and frequency distribution of fingerprint patterns were obtained in multiple and single births women of Igbo-Ora descent. Whorls, Twin loops and Arches were found to be most prevalent in multiple births women than single births women and the difference is statistically significant p<0.05.

One may now propose that women with higher whorls, twins loop and Arches fingerprint pattern with no radial loop on the fourth digit are more likely to give birth to twins than singletons since fingerprint pattern inheritance is an interplay of genetic and intrauterine environmental factor.

6. Recommendation

The result demonstrated a closer relationship between the finger and palmar print patterns with multiple births and therefore would recommend that dermatoglyphics be used to predict women with multiple birth tendency. However, there is still need to carry out similar studies on larger populations in Igbo-Ora and cases from other Nigerian ethnic groups.

Acknowledgement

We wish to express our profound appreciation to Miss. Ademimpe Lamide, Mrs. E. Gbolahan, Mrs. S. Badmus, Mr Adesope Wali, Mr Feranmi Okunlola, Medical Directors of Olugbon and Mak Mercy hospitals in Igbo-Ora with their staff and the participants in this study.

References

