

120

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

Closest Match Based Information Retrieval and

Recommendation Engine using Signature-Trees and Fuzzy

Relevance Sorting

Ali Sohania, Rafi Ullahb *, Athaul Raic, Owais Karnid

a,b,c,d Data Science Department, Cubix.co
aEmail: ali.sohani@cubix.co

bEmail: rafiullah.khan@cubixlabs.com

cEmail: athaulrai@cubixlabs.com

dEmail: owais.karni@cubixlabs.com

Abstract

This paper proposes a recommendation technique to avoid exhaustive search to be ran on the database with

thousands of records, before coming to a conclusion or inference, where it can be said that recommended thing

is matching up to a significant percentage of what was initially desired. Often such searches involve not just the

simple full-match search based on indexes, but also the partial or nearby match searches where which

percentage of match between entities is relevant enough for ultimate recommendation. Usually these problems

are tackled by various methods like Fuzzy operations, Reg-Ex searches, Clustering, Similarity Analysis each

having its own set of effectiveness as well as efficiency. Our goal here was to create a search and

recommendation system which can perform fuzzy-search and fuzzy-similarity-analysis with near-match

percentages in an effective, efficient as well as user-friendly manner on thousands of records/ files/ rows with

100s of attributes/ features/ columns. Inspired from Google's Image Searching Algorithm, that search on the

basis of signatures based on feature-extraction from each image, we have created Match engine, that read

schema of data or files, compiles encoded signature and store them as an index. That index is then converted

into a tree (S-Tree), on the basis of relevance of each field/ column and data frequency observed. After

compilation done, system can now search and recommendation of best matches in very efficient manner. For

further optimization we use heuristics like dividing feature sets into hard-filters and soft-filters, former demands

full match and later demands fuzzy match. On arriving even one best match, we can retrieve other matches

without searching.

--

* Corresponding author.

http://asrjetsjournal.org/

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

121

Our technique though not that modern and actually inspired, but based on ensemble methods used to provide

fast and efficient results. We have proved quicker than full scan searches. In future we plan to make signature

comparison engine on variety of advanced data types of features like Geo-coordinates and synonyms. And

storing compiled signatures trees into distributed database/grid, query will run concurrently to match the results,

or signatures passing through machine learning techniques. Currently system used for recipe recommendation

and in future this will be used in applications like dating system’s, film and music recommendation.

Keywords: Signature tree matching; Recommendation system’s; fuzzy recommendation system; Fuzzy

Relevance Sorting.

1. Introduction

Problems of recommendation often require an exhaustive search (search through complete solution space) to be

ran on the database with thousands/millions of records, before coming to a conclusion or inference, where it can

be said that recommended thing is matching up to a significant percentage of what was initially desired. Often

such searches involve not just the simple full-match search based on indexes, but also the partial or nearby

match searches where which percentage of match between entities is relevant enough for ultimate

recommendation. Usually such problems of matching and recommendations are tackled by various methods like

Fuzzy operations, Reg-Ex (regular expression) searches, Clustering, Similarity Analysis each having its own set

of effectiveness as well as efficiency.

Our goal here was to create a search system and recommendation system which can perform fuzzy-search and

fuzzy-similarity-analysis with near-match percentages in an effective, efficient as well as user-friendly manner

on thousands of records/ files/ rows with 100s of attributes/ features/ columns. In searching each of the attributes

has their owns importances or weight-age. Each of these having individual score and contributes to global score.

May can diminished or enhance the importance of attributes/feature/columns as per requirements.

Inspired from Google image searching based on signatures of images (features of image), we have created

Match-Engine. Match Engine created signature tree (Sig-Tree) after creating encoded signatures. Sig-tree is

created on the basis of relevance of each filed or column and data frequency observed. After compilation,

system can now make search and recommendation. Query is converted into encoded signature and then find best

match in compiled signatures.

We have also optimize technique by dividing features into hard filters and soft filters, former used for strict

match I-e 100% and later used for fuzzy match I-e (0%-100%). Using hard filters we traverse to bins or clusters,

then perform fuzzy match on soft-filters. To make searches faster we have used match-sort and match-drop

techniques. Hence if we have got even a one successful match crossing a threshold, then based on compiled

index of signature similarity analysis, we will be able to retrieve similar signatures. Proposed techniques proves

efficient in searching and recommendation in huge solution space, retrieval is quicker than full scan searches.

Rest of the paper discussed the Related work, Similarity measures, signature compilation, match-sort and

match-drop technique, proposed methodology, Results, Conclusion, Future work.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

122

2. Related work

Multi-level signatures files can be constructed to support relational queries having many AND predicates and

generic text queries in databases [4].

Signature file used as filtering mechanism to reduce the query text when searching, but the signature files is

searched exhaustively which degrade performance. In [6] they have proposed deterministic algorithms to get rid

of such exhaustively search of signature file.

S-tree technique is used in [7] for the efficient organization of fuzzy signatures. Used content-based image

retrieval system. Images from the dataset are described using a fuzzy set of features.

For set of d-dimensional tuples or sets having textual descriptions, a technique is used to facilitate complex

queries. And efficient algorithm is used names Keyword-Matched Skyline search is proposed that uses IR2-tree

as an index structure. To retrieve query it uses nearest neighbor search in the branch and information of node.

Technique has been proven very effective and efficient in term of combinatorial cost and Input-Output cost [8].

Hierarchical tree is used to clustering fuzzy data (they named it ET i-e extensional tree). Proposed technique in

[11] has been compared with some of the algorithm used in literature review.

3. Similarity Measures

For find similarity between two data types, we can use different similarity measures mainly depend upon the

type of data type. For example one can use simple subtraction to find similarity between two integers or float

types, this measure cannot be use in case of tow strings or sets or dates. Some of the similarity measures found

in literature are

A. Jaccard Similarity

This measure is usually used for finding similarity between two sets. Let suppose “A” and “B” are two sets, then

similarity score between “A” and “B” is given by

Similarity (A, B) = (|| A intersection B ||) / (|| A Union B ||) (1)

B. Cosine similarity

“A” and “B” are two vectors, then similarity between “A” and “B” given by

Similarity (A, B) = cos (Q) = (|| A.B ||) / (|| A || . || B ||) (2)

C. Euclidean distance

Euclidean distance is the measure usually for finding similarity between two vectors or points. Distance

between two vectors “A” and “B” given by

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

123

Distance (A, B) = sqrt((x2 - x1)^2 + (y2 - y1)^2) (3)

Similarity (A, B) = 1 / Distance(A, B) (4)

D. Manhattan distance

Manhattan distance between two points (or vectors) given by

Distance (A, B) = | x2 - x1 | + |y2 - y1 | (5)

Some of the techniques used for string matching used for many years are Levenshtein distance formula,

Damerau- Levenshtein, Hamming distance, Jaro-Winkler and strike a match.

4. Proposed Methodology

Proposed technique is consist of two modules

1: Making Signature tree and signature files

2: Records retrieval and recommendations

Module 1 is a one time process for setup of the algorithm, it will only be recalled when underlying data has

caught new feature. Module 2 is a recurring one, will be used time and when Match operation is called given

input parameters.

E. Making Signature tree and signature files

This is one time process, user have to given either configuration data about data i.e. hard filters and soft filters,

minimum, maximum of the values etc.

If user will not provide, system is capable to do that. The setup algorithm globally analyzes the whole data in

form of stats, like for unique values and data-type detection, it takes time depending up on the data size but

eventually arrives at conclusions like based on typed values, what features can be considered hard/ categorical

and features that can be considered soft/ quantitative. Here the signature tree is created in some similar fashion

like decision tree.

Sig-tree levels and signatures in each cluster i.e. leaves of tree mainly depend upon the hard filters found in

data. There will be as many levels as number of hard filters. And the number of children at each node depends

upon the product unique values of each hard filters.

A. Records retrieval and recommendations

After Sig-tree is created now we can make queries for searching and recommendations. User query must be in

same format as signatures. Apply hard filters first for strict match and then soft filters for fuzzy match.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

124

Figure 1: Algorithm for Making Signature tree and signature files

Figure 2: Algorithm for Records retrieval and recommendations

The very first step of our proposed technique is signature compilation. When a thousand or millions of records.

System automatically read the schema of data or files and try to extract the data types of each field. Different

statistics like minimum, maximum etc are calculated, all the values are set in some standard format, data fields

are encoded to achieve fast searching, hard filters and soft filters are decided from the nature of data. Or the

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

125

same configuration can be inputed to system along with data. Consider following data records,

Table 1: An Example dataset

Name Age Degree subjects Experience Gender

Ali 38 MBA (AI, DS) 16 Male

Salman 37 MBA (DS) 19 Male

Urooj 29 MBA (OS, AI) 10 Female

Rafi 28 BSCS (AI, OS) 2 Male

Faraz 27 BSCS (OS) 3 Male

Athual 25 BSCS (DS,OS) 1 Male

System encode the records for fast searching and matching. The proposed system detect the data types and

encode the fields. After encoding records will be something like

Encoded labels are stored as JSON file for later use when

{ “Degree” : { “BSCS” : 1, “MBA” : 2}, “Gender” : {“male” : 1, “female” : 2}}

Encoded records (Each record is actually a signature)

Table 2: Encoded dataset given in table 1

Name Age Degree subjects Experience Gender

1 38 2 (1, 2) 16 1

2 37 2 (2) 19 1

3 29 2 (3, 1) 10 2

4 28 1 (1, 3) 2 1

5 27 1 (3) 3 1

6 25 1 (2,3) 1 2

Now count the unique values in each of the column or attributes and the data types.

Count(Name) = 6

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

126

Count(Age) = 6

Count(Degree) = 2

Count(subjects) = 6

Count(Experience) = 6

Count(Gender) = 2

Attributes having count less than threshold (we have 5) are considered as hard filters and count greater than 5

are considered as soft-filters.

Take minimum of the count and split data like decision tree. Data will split into two partition (splitting here is

dynamic).

Gender = {male, 1}

Table 3: Cluster of male records

Name Age Degree subjects Experience Gender

1 38 2 (1, 2) 16 1

2 37 2 (2) 19 1

4 28 1 (1, 3) 2 1

5 27 1 (3) 3 1

Gender = {female, 2}

Table 4: Cluster of female records

Name Age Degree subjects Experience Gender

3 29 2 (3, 1) 10 2

6 25 1 (2,3) 1 2

Then iteratively split records in each of the partitions above with second minimum count, that is Degree. Repeat

same process for all hard filters and make separate signature file.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

127

Gender = 1(male) and Degree = 1(MBA)

Table 5: Male and MBA cluster

Name Age Degree subjects Experience Gender

4 28 1 (1, 3) 2 1

5 27 1 (3) 3 1

Gender = 1(male) and Degree = 2(BSCS)

Table 6: male and BSCS cluster

Name Age Degree subjects Experience Gender

1 38 2 (1, 2) 16 1

2 37 2 (2) 19 1

Gender = 2(female) and Degree = 1(MBA)

Table 7: female and MBA records

Name Age Degree subjects Experience Gender

6 25 1 (2,3) 1 2

Gender = 2(female) and Degree = 2(BSCS)

Table 8: female and BSCS records

Name Age Degree subjects Experience Gender

3 29 2 (3, 1) 10 2

After all hard-filters signature will be split into different partition, place those signatures in their corresponding

files. These files can be viewed as a decision tree when we will be retrieving and matching records. Sig-tree for

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

128

above example

Figure 3: Making clusters from dataset

This calculations can be avoid if we give configuration file at the time of compiling signatures.

After records encoding, identifying hard-filters, place signature placement in their corresponding signature files.

Then apply vertical-sort and horizontal sort with respect to weight on each signature file or cluster.

These are the compilation steps.

On user query rearrange user query in same format as signature, then go to that specific signature files with the

help of hard-filters. And once we reach that specific signature file, match user query attributes with signature

one by one using similarity measure depending on the type of data. Apply match-drop technique here to decide

whether to go ahead or not? On finding signature that pass the threshold score. Then records lies near this

signature will be recommended with even comparing and checking.

Similarity measures, we have used for

We use following formula for matching integers or float values

Si = (upper_limit - signature_value) / (upper_limit - lower_limit) (6)

Q = (upper_limit - user_value) / (upper_limit - lower_limit) (7)

Result = | Si – Q | (8)

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

129

Result = Result * fuzzyWeight (9)

For set or we have Jaccard similarity, or we can use cosine similarity as well. For string if not encoded, we use

cosine similarity.

5. Hard and Soft Filters

To further optimize it we use heuristics like dividing feature-sets into hard-filters and soft-filters, former

demanding full-match and later one demanding the fuzzy ones. All soft-filters are granted relevance score, %

weight-age.

Algorithm that traverses the tree, traverses it on the basis of most relevant features first (hard filters), jumping

directly into the bin/ tree cluster where nodes of specific relevance are located per index. User query is compare

against signature using hard filters. These hard filters must be fulfilled to go signature file, otherwise signature

file or bin will not be selected.

Once we reach signature file, attributes that are soft filters are compared as fuzzy search. Each attributes has its

own weight. Then values in user query and signature are matched and multiplies by their corresponding weights

or fuzzy values.

Result = weight * (query_1 ** signature_1) (10)

Weight is the corresponding fuzzy value and ** is the similarity measures we used. Then final score is the sum

of individual score of each component of signature.

Score_final = Score_individual1 + Score_individual2 + (11)

Once we found a signature that score pass the threshold value , we can recommend similar signature making not

just exhaustive fuzzy-search but even fuzzy recommendations easier in result.

6. Match-sort and Match-drop

Match-sort and Match-drop are the two optimization techniques used for fast and efficient records retrieval.

Signatures in every cluster or bin is sorted with respect to weight-age of each attribute or components of

signature. By default weights of all attributes are equal. The heuristics behind this technique is to reduced

processing time.

B. Match-Sort:

Signatures in each cluster/bin/file are sorted I-e vertical sort. Consider following are signatures in the any of the

clustering

signature1 = A11 | A12 | A13 | A14 | A15

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

130

signature2 = A21 | A22 | A23 | A24 | A25

signature3 = A31 | A32 | A33 | A44 | A45

signature4 = A41 | A42 | A43 | A44 | A45

signature5 = A51 | A52 | A53 | A54 | A55

Compare all signatures with first signature-tree, consider following scores with signature1

score { signature1, signature2} = 0.68

score { signature1, signature3} = 0.75

score { signature1, signature4} = 0.98

score { signature1, signature5} = 0.84

Sort signatures in descending order with respect to score against signature 1. Sort cluster file will be.

signature1 = A11 | A12 | A13 | A14 | A15

signature4 = A41 | A42 | A43 | A44 | A45

signature5 = A51 | A52 | A53 | A54 | A55

signature3 = A31 | A32 | A33 | A44 | A45

signature2 = A21 | A22 | A23 | A24 | A25

All similar signatures are clustered together using simple sorting. Now it’s time to apply Match-sort

(Horizontal)

Following is the one of the signature from cluster or bin

Compiled_Signature = Attr1 | Attr2 | Attr3 | Attr4 | Attr5

Weights = [0.3, 0.1, 0.4, 0.1, 0.1]

Sort each of the compiled signature in each cluster or bin w.r.t to weigh-age given.

Sorted_Signature = Attr3 | Attr1 | Attr2 | Attr4 | Attr5

After Match-sort (both vertical and horizontal), signatures in the file cluster are now sorted and well structured.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

131

If the matching threshold is let suppose 70%, and following query occurs

UserQuery = A1 | A2 | A3 | A4 | A5

C. Match-Drop Case 1:

If Attribute 3 (Attr3 and A3) didn’t matched, and all other attributes are same. Proposed technique will check

Attribute 3 first it didn’t match and 40% score is lost, Now remaining score is 60% in overall signature we can

achieve, this score I-e 60% plus score achieved is less than threshold (70%), simply drop this signature without

checking other attributes. This is faster the retrieval process. Condition for dropping signature is

Score_achieved + Score_remaining < threshold (12)

D. Match-Drop Case 2:

If Attribute 3 (Attr3 and A3) and Attribute 1 matched, and all other attributes are different.

Proposed technique will check Attribute 3 first it matched and 40% score is gained, Now remaining score is

60% in overall signature, this score I-e 60% plus achieved score 40% is not less than threshold (70%), so

continue matching second attribute.

Now check Attribute 1, this also matched, score achieved is 70% (40% + 30%), so stop matching and this

signature is candidate match against query. No need to compare other parts of signature. This also reduced

processing time. Criteria for match-stop (stop comparing same signature) further is

Score_achieved + Score_remaining >= threshold (13)

7. Results

Our techniques though not that modern and actually inspired, but based on ensemble methods used prove to

provide fast and efficient results. They prove retrieval is quicker than the full-scan searches. Here the proposed

technique is not traversing the whole search space for best match. Match-sort and Match-Drop enable us to

detect whether a record is good match or not early with out spending time on comparison. We have proved

proposed technique is efficient and effective in a very large data records. We have test our proposed technique

on different sizes of data.

Experiment is done on computer system having following specifications

Operating System : Ubuntu 16.04

RAM : 8 GB

Hard Drive : 150 GB

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

132

Intel core i5

Table 9: Different statistics related to algorithm

 Data Size (No of Records)

 1000 100000

Sig-Tree

creation time

3.2559 seconds 413.2589 seconds

Searching in

Sig-Tree

0.025 seconds 3.0235 seconds

Number of

clusters or

Sig-Files

Product of uniques

values of hard-filters

Product of uniques

values of hard-filters

Number of

attributes

7 10

Secondary

Memory

required

59.8 KB 6.2 MB

Number of

levels in tree

3 4

The number of Sig-Files or clusters equals to the product of hard-filters unique values.

Worst case Searching time T = O(h+n), Where “h” are number of hard-filters and “n” is the number of records

in that specific clusters or bin.

8. Conclusion

We have successfully implement our proposed technique and prove to be efficient and effective methods in a

very large collection of data records. The encoding i-e making signatures reduced the processing time. The only

operation that is time consuming is making signature tree and signature file (signatures in the signature files are

vertically and horizontally sorted), but this is one time operation. Records retrieval is very fast in Sig-tree.

Match-drop and Match-sort techniques further optimize the retrieval, hence retrieval in a very large or huge

records storage is very fast. The only problem we observed was, that this algorithm works perfect in case of

records having at least some discrete data. It cannot works in case of only continuous data. There at-least must

be some of the discrete fields in dataset to take advantages of proposed system.

9. Future Work

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

133

In future plan is to make signature comparison engine able to compare on the variety of advanced data-types of

features, like not just string, number, date but also Geo-coordinates and synonyms. Next in line is to do a

distributed query on the signatures, by splitting compiled signature trees into sub-trees and then storing them

into a distributed database/ grid, query will run concurrently to match the results. Work after that will be passing

the compiled signatures through a machine learning method, and then train it to recognize patterns in signatures,

so that based on partial signatures prediction of items that may append in signature can happen. This can let us

know what items in the signature have most likelihood to go along with. This will also improve

recommendations by 10 folds. We have already used current system on live service used for Recipe

Recommendation, next this will be tried on a Dating System, Film and Music Recommendation system, where

on the basis of few selected preferences and interests, best matching profiles/ media content will be

recommended respectively.

Acknowledgment

I am a strong believer of fact, that man needs a solid team in surrounding to achieve great results. And that the

difference between good and great is in the capability of your team. Thanks to my team, who has worked with

me to follow the vision and lead, also for them to bear my many requests of making different suggested updates

in algorithm in pursuit of accuracy and performance. I am very thankful for their respect and hard-work.

References

[1] Deppisch, Uwe. "S-tree: a dynamic balanced signature index for office retrieval." In Proceedings of the

9th annual international ACM SIGIR conference on Research and development in information

retrieval, pp. 77-87. ACM, 1986.

[2] Frakes, William B., and Ricardo Baeza-Yates. "Information retrieval: data structures and algorithms."

(1992).

[3] Faloutsos, Chris, and Stavros Christodoulakis. "Signature files: An access method for documents and

its analytical performance evaluation." ACM Transactions on Information Systems (TOIS) 2, no. 4

(1984): 267-288.

[4] Chang, Walter W., and Hans-Jörg Schek. A signature access method for the Starburst database system.

IBM Thomas J. Watson Research Division, 1989.

[5] Zezula, Pavel, Fausto Rabitti, and Paolo Tiberio. "Dynamic partitioning of signature files." ACM

Transactions on Information Systems (TOIS) 9, no. 4 (1991): 336-367.

[6] Lee, Dik Lun, and Chun-Wu Leng. "Partitioned signature files: Design issues and performance

evaluation." ACM Transactions on Information Systems (TOIS) 7, no. 2 (1989): 158-180.

[7] Snasel, Vaclav, Zdenek Horak, Milos Kudelka, and Ajith Abraham. "Fuzzy signatures organized using

S-Tree." In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pp. 633-

637. IEEE, 2011.

[8] Choi, Hyunsik, HaRim Jung, Ki Yong Lee, and Yon Dohn Chung. "Skyline queries on keyword-

matched data." Information Sciences 232 (2013): 449-463.

[9] Olaru, Cristina, and Louis Wehenkel. "A complete fuzzy decision tree technique." Fuzzy sets and

systems 138, no. 2 (2003): 221-254.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No 1, pp 120-134

134

[10] https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs710

[11] Yazdi, Hadi Sadoghi, Mohammad GhasemiGol, Sohrab Effati, Azam Jiriani, and Reza Monsefi.

"Hierarchical tree clustering of fuzzy number." Journal of Intelligent & Fuzzy Systems 26, no. 2

(2014): 541-550.

[12] De Felipe, Ian, Vagelis Hristidis, and Naphtali Rishe. "Keyword search on spatial databases." In Data

Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pp. 656-665. IEEE, 2008.

[13] Faloutsos, Christos. "Signature-based text retrieval methods: A survey." IEEE Data Eng. Bull. 13, no. 1

(1990): 25-32.

[14] Faloutsos, Christos. "Signature Files." (1992): 44-65.

[15] Chen, Yangjun. "Signature files and signature trees." Information Processing Letters 82, no. 4 (2002):

213-221.

[16] Helmer, Sven. "Evaluating different approaches for indexing fuzzy sets." Fuzzy Sets and Systems 140,

no. 1 (2003): 167-182.

[17] Tousidou, Eleni, Alex Nanopoulos, and Yannis Manolopoulos. "Improved methods for signature-tree

construction." The Computer Journal 43, no. 4 (2000): 301-314.

[18] Lee, Dik Lun, and Chun-Wu Leng. "A partitioned signature file structure for multiattribute and text

retrieval." In Data Engineering, 1990. Proceedings. Sixth International Conference on, pp. 389-396.

IEEE, 1990.

[19] Tousidou, Eleni, Panayiotis Bozanis, and Yannis Manolopoulos. "Signature-based structures for

objects with set-valued attributes." Information Systems 27, no. 2 (2002): 93-121.

https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs710

	A. Jaccard Similarity
	B. Cosine similarity
	C. Euclidean distance
	D. Manhattan distance
	E. Making Signature tree and signature files
	A. Records retrieval and recommendations
	B. Match-Sort:
	C. Match-Drop Case 1:
	D. Match-Drop Case 2:

