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Abstract 

This paper proposes a recommendation technique to avoid exhaustive search to be ran on the database with 

thousands of records, before coming to a conclusion or inference, where it can be said that recommended thing 

is matching up to a significant percentage of what was initially desired. Often such searches involve not just the 

simple full-match search based on indexes, but also the partial or nearby match searches where which 

percentage of match between entities is relevant enough for ultimate recommendation. Usually these problems 

are tackled by various methods like Fuzzy operations, Reg-Ex searches, Clustering, Similarity Analysis each 

having its own set of effectiveness as well as efficiency. Our goal here was to create a search and 

recommendation system which can perform fuzzy-search and fuzzy-similarity-analysis with near-match 

percentages in an effective, efficient as well as user-friendly manner on thousands of records/ files/ rows with 

100s of attributes/ features/ columns. Inspired from Google's Image Searching Algorithm, that search on the 

basis of signatures based on feature-extraction from each image, we have created Match engine, that read 

schema of data or files, compiles encoded signature and store them as an index. That index is then converted 

into a tree (S-Tree), on the basis of relevance of each field/ column and data frequency observed. After 

compilation done, system can now search and recommendation of best matches in very efficient manner. For 

further optimization we use heuristics like dividing feature sets into hard-filters and soft-filters, former demands 

full match and later demands fuzzy match. On arriving even one best match, we can retrieve other matches 

without searching.  

------------------------------------------------------------------------ 
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Our technique though not that modern and actually inspired, but based on ensemble methods used to provide 

fast and efficient results. We have proved quicker than full scan searches. In future we plan to make signature 

comparison engine on variety of advanced data types of features like Geo-coordinates and synonyms. And 

storing compiled signatures trees into distributed database/grid, query will run concurrently to match the results, 

or signatures passing through machine learning techniques. Currently system used for recipe recommendation 

and in future this will be used in applications like dating system’s, film and music recommendation. 

Keywords: Signature tree matching; Recommendation system’s; fuzzy recommendation system; Fuzzy 

Relevance Sorting. 

1. Introduction 

Problems of recommendation often require an exhaustive search (search through complete solution space) to be 

ran on the database with thousands/millions of records, before coming to a conclusion or inference, where it can 

be said that recommended thing is matching up to a significant percentage of what was initially desired. Often 

such searches involve not just the simple full-match search based on indexes, but also the partial or nearby 

match searches where which percentage of match between entities is relevant enough for ultimate 

recommendation. Usually such problems of matching and recommendations are tackled by various methods like 

Fuzzy operations, Reg-Ex (regular expression) searches, Clustering, Similarity Analysis each having its own set 

of effectiveness as well as efficiency.  

Our goal here was to create a search system and recommendation system which can perform fuzzy-search and 

fuzzy-similarity-analysis with near-match percentages in an effective, efficient as well as user-friendly manner 

on thousands of records/ files/ rows with 100s of attributes/ features/ columns. In searching each of the attributes 

has their owns importances or weight-age. Each of these having individual score and contributes to global score. 

May can diminished or enhance the importance of attributes/feature/columns as per requirements.  

Inspired from Google image searching based on signatures of images (features of image), we have created 

Match-Engine. Match Engine created signature tree (Sig-Tree) after  creating encoded signatures. Sig-tree is 

created on the basis of relevance of each filed or column and data frequency observed. After compilation, 

system can now make search and recommendation. Query is converted into encoded signature and then find best 

match in compiled signatures.  

We have also optimize technique by dividing features into hard filters and soft filters, former used for strict 

match I-e 100% and later used for fuzzy match I-e (0%-100%). Using hard filters we traverse to bins or clusters, 

then perform fuzzy match on soft-filters. To make searches faster we have used match-sort and match-drop 

techniques.  Hence if we have got even a one successful match crossing a threshold, then based on compiled 

index of signature similarity analysis, we will be able to retrieve similar signatures. Proposed techniques proves 

efficient in searching and recommendation in huge solution space, retrieval is quicker than full scan searches.  

Rest of the paper discussed the Related work, Similarity measures,  signature compilation, match-sort and 

match-drop technique, proposed methodology, Results, Conclusion, Future work. 
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2. Related work  

Multi-level signatures files can be constructed  to support relational queries having many AND predicates and 

generic text queries in databases [4]. 

Signature file used as filtering mechanism to reduce the query text when searching, but the signature files is 

searched exhaustively which degrade performance. In [6] they have proposed deterministic algorithms to get rid 

of such  exhaustively search of signature file. 

S-tree technique is used in [7] for the efficient organization of fuzzy signatures. Used content-based image 

retrieval system. Images from the dataset are described using a fuzzy set of features.  

For set of d-dimensional tuples or sets having textual descriptions, a technique is used to facilitate complex 

queries. And efficient algorithm is used names Keyword-Matched Skyline search is proposed that uses IR2-tree 

as an index structure. To retrieve query it uses nearest neighbor search in the branch and information of node. 

Technique has been proven very effective and efficient in term of combinatorial cost and Input-Output cost [8]. 

Hierarchical tree is used to clustering fuzzy data (they named it ET i-e extensional tree). Proposed technique in 

[11] has been compared with some of the algorithm used in literature review.  

3. Similarity Measures 

For find similarity between two data types, we can use different similarity measures mainly depend upon the 

type of data type. For example one can use simple subtraction to find similarity between two integers or float 

types, this measure cannot be use in case of tow strings or sets or dates. Some of the similarity measures found 

in literature are   

A. Jaccard Similarity 

This measure is usually used for finding similarity between two sets. Let suppose “A” and “B” are two sets, then 

similarity score between “A” and “B” is given by 

Similarity (A, B) = ( || A intersection B || ) / ( || A Union B || ) (1) 

B. Cosine similarity 

“A” and “B” are two vectors, then similarity between “A” and “B” given by 

Similarity (A, B) = cos (Q) = ( || A.B || ) / ( || A || . || B || ) (2) 

C. Euclidean distance 

Euclidean distance is the measure usually for finding  similarity between two vectors or points. Distance 

between two vectors “A” and “B” given by 
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Distance (A, B) = sqrt( (x2 - x1 )^2  +  ( y2 - y1 )^2)  (3) 

Similarity (A, B) = 1 / Distance(A, B)                             (4) 

D. Manhattan distance  

Manhattan distance between two points (or vectors) given by 

Distance (A, B) =  | x2 - x1 |  +  |y2 - y1 |                        (5) 

Some of the techniques used for string matching used for many years are Levenshtein distance formula, 

Damerau- Levenshtein, Hamming distance, Jaro-Winkler and strike a match. 

4. Proposed Methodology 

Proposed technique is consist of two modules 

1: Making Signature tree and signature files 

2: Records retrieval and recommendations 

Module 1 is a one time process for setup of the algorithm, it will only be recalled when underlying data has 

caught new feature. Module 2 is a recurring one, will be used time and when Match operation is called given 

input parameters. 

E. Making Signature tree and signature files 

This is one time process, user have to given either configuration data about data i.e. hard filters and soft filters, 

minimum, maximum of the values etc.  

If user will not provide, system is capable to do that. The setup algorithm globally analyzes the whole data in 

form of stats, like for unique values and data-type detection, it takes time depending up on the data size but 

eventually arrives at conclusions like based on typed values, what features can be considered hard/ categorical 

and features that can be considered soft/ quantitative. Here the signature tree is created in some similar fashion 

like decision tree.   

Sig-tree levels and signatures in  each cluster i.e. leaves of tree mainly depend upon the hard filters found in 

data. There will be as many levels as number of hard filters. And the number of children at each node depends 

upon the product unique values of each hard filters. 

A. Records retrieval and recommendations 

After Sig-tree is created now we can make queries for searching and recommendations. User query must be in 

same format as signatures. Apply hard filters first for strict match and then soft filters for fuzzy match. 
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Figure 1: Algorithm for Making Signature tree and signature files 

 

Figure 2: Algorithm for Records retrieval and recommendations 

The very first step of our proposed technique is signature compilation. When a thousand or millions of records. 

System automatically read the schema of data or files and try to extract the data types of each field. Different 

statistics like minimum, maximum etc are calculated, all the values are set in some standard format, data fields 

are encoded to achieve fast searching, hard filters and soft filters are decided from the nature of data. Or the 
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same configuration can be inputed to system along with data. Consider following data records,  

Table 1: An Example dataset 

Name Age  Degree subjects Experience Gender 

Ali 38 MBA (AI, DS) 16 Male 

Salman 37 MBA (DS) 19 Male 

Urooj 29 MBA (OS, AI) 10 Female 

Rafi 28 BSCS (AI, OS) 2 Male 

Faraz 27 BSCS (OS) 3 Male 

Athual 25 BSCS (DS,OS) 1 Male 

 

System encode the records for fast searching and matching. The proposed system detect the data types and 

encode the fields. After encoding records will be something like 

Encoded labels are stored as JSON file for later use when  

{ “Degree” : { “BSCS” : 1, “MBA” : 2}, “Gender” : {“male” : 1, “female” : 2}} 

Encoded records (Each record is actually a signature) 

Table 2: Encoded dataset given in table 1 

Name Age  Degree subjects Experience Gender 

1 38 2 (1, 2) 16 1 

2 37 2 (2) 19 1 

3 29 2 (3, 1) 10 2 

4 28 1 (1, 3) 2 1 

5 27 1 (3) 3 1 

6 25 1 (2,3) 1 2 

 

Now count the unique values in each of the column or attributes and the data types. 

Count(Name) = 6  
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Count(Age) = 6  

Count(Degree) = 2 

Count(subjects) = 6 

Count(Experience) = 6 

Count(Gender) = 2 

Attributes having count less than threshold (we have 5) are considered as hard filters and count greater than 5 

are considered as soft-filters.  

Take minimum of the count and split data like decision tree. Data will split into two partition (splitting here is 

dynamic). 

Gender = {male, 1} 

Table 3: Cluster of male records 

Name Age  Degree subjects Experience Gender 

1 38 2 (1, 2) 16 1 

2 37 2 (2) 19 1 

4 28 1 (1, 3) 2 1 

5 27 1 (3) 3 1 

 

Gender = {female, 2} 

Table 4: Cluster of female records 

Name Age  Degree subjects Experience Gender 

3 29 2 (3, 1) 10 2 

6 25 1 (2,3) 1 2 

 

Then iteratively split records in each of the partitions above with second minimum count, that is Degree. Repeat 

same process for all hard filters and make separate signature file. 
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Gender = 1(male) and Degree = 1(MBA) 

Table 5: Male and MBA  cluster 

Name Age  Degree subjects Experience Gender 

4 28 1 (1, 3) 2 1 

5 27 1 (3) 3 1 

 

Gender = 1(male) and Degree = 2(BSCS) 

Table 6: male and BSCS cluster 

Name Age  Degree subjects Experience Gender 

1 38 2 (1, 2) 16 1 

2 37 2 (2) 19 1 

 

Gender = 2(female) and Degree = 1(MBA) 

Table 7: female and MBA records 

Name Age  Degree subjects Experience Gender 

6 25 1 (2,3) 1 2 

 

Gender = 2(female) and Degree = 2(BSCS) 

Table 8: female and BSCS records 

Name Age  Degree subjects Experience Gender 

3 29 2 (3, 1) 10 2 

 

After all hard-filters signature will be split into different partition, place those signatures in their corresponding 

files. These files can be viewed as a decision tree when we will be retrieving and matching records. Sig-tree for 
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above example 

 

Figure 3: Making clusters from dataset 

This calculations can be avoid if we give configuration file at the time of compiling signatures.  

After records encoding, identifying hard-filters, place signature placement in their corresponding signature files. 

Then apply vertical-sort and horizontal sort with respect to weight on each signature file or cluster.  

These are the compilation steps.  

On user query rearrange user query in same format as signature, then go to that specific signature files with the 

help of hard-filters. And once we reach that specific signature file, match user query attributes with signature 

one by one using similarity measure depending on the type of data. Apply match-drop technique here to decide 

whether to go ahead or not? On finding signature that pass the threshold score. Then records lies near this 

signature will be recommended with even comparing and checking.  

Similarity measures, we have used for 

We use following formula for matching integers or float values  

Si =  ( upper_limit - signature_value) / (upper_limit - lower_limit)  (6) 

Q =  ( upper_limit - user_value) / (upper_limit - lower_limit)            (7) 

Result =  | Si – Q |                                                                    (8) 
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Result =  Result * fuzzyWeight                                                         (9) 

For set or we have Jaccard similarity, or we can use cosine similarity as well. For string if not encoded, we use 

cosine similarity.  

5. Hard and Soft Filters 

To further optimize it we use heuristics like dividing feature-sets into hard-filters and soft-filters, former 

demanding full-match and later one demanding the fuzzy ones. All soft-filters are granted relevance score, % 

weight-age.  

Algorithm that traverses the tree, traverses it on the basis of most relevant features first (hard filters), jumping 

directly into the bin/ tree cluster where nodes of specific relevance are located per index. User query is compare 

against signature using hard filters. These hard filters must be fulfilled to go signature file, otherwise signature 

file or bin will not be selected.  

Once we reach signature file, attributes that are soft filters are compared as fuzzy search. Each attributes has its 

own weight. Then values in user query and signature are matched and multiplies by their corresponding weights 

or fuzzy values.  

Result =  weight * (query_1 ** signature_1)                                   (10) 

Weight is the corresponding fuzzy value and ** is the similarity measures we used. Then final score is the sum 

of individual score of each component of signature. 

Score_final =  Score_individual1 + Score_individual2 + . . . . . .   (11) 

Once we found a signature that score pass the threshold value , we can recommend similar signature making not 

just exhaustive fuzzy-search but even fuzzy recommendations easier in result. 

6. Match-sort and Match-drop 

Match-sort and Match-drop are the two optimization techniques used for fast and efficient records retrieval. 

Signatures in every cluster or bin is sorted with respect to weight-age of each attribute or components of 

signature. By default weights of all attributes are equal. The heuristics behind this technique is to reduced 

processing time.  

B. Match-Sort: 

Signatures in each cluster/bin/file are sorted I-e vertical sort. Consider following are signatures in the any of the 

clustering 

signature1 = A11 | A12 | A13 | A14 | A15 
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signature2 = A21 | A22 | A23 | A24 | A25 

signature3 = A31 | A32 | A33 | A44 | A45 

signature4 = A41 | A42 | A43 | A44 | A45 

signature5 = A51 | A52 | A53 | A54 | A55 

Compare all signatures with first signature-tree, consider following scores with signature1 

score { signature1, signature2} = 0.68 

score { signature1, signature3} = 0.75 

score { signature1, signature4} = 0.98 

score { signature1, signature5} = 0.84 

Sort signatures in  descending order with respect to score against signature 1. Sort cluster file will be. 

signature1 = A11 | A12 | A13 | A14 | A15 

signature4 = A41 | A42 | A43 | A44 | A45 

signature5 = A51 | A52 | A53 | A54 | A55 

signature3 = A31 | A32 | A33 | A44 | A45 

signature2 = A21 | A22 | A23 | A24 | A25 

All similar signatures are clustered together using simple sorting. Now it’s time to apply Match-sort 

(Horizontal) 

Following is the one of the signature from cluster or bin  

Compiled_Signature = Attr1 | Attr2 | Attr3 | Attr4 | Attr5  

Weights  = [0.3, 0.1, 0.4, 0.1, 0.1] 

Sort each of the compiled signature in each cluster or bin w.r.t to weigh-age given.   

Sorted_Signature = Attr3 | Attr1 | Attr2 | Attr4 | Attr5  

After Match-sort (both vertical and horizontal), signatures in the file cluster are now sorted and well structured.  
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If the matching threshold is let suppose 70%, and following query occurs 

UserQuery = A1 | A2 | A3 | A4 | A5 

C. Match-Drop Case 1: 

If Attribute 3 (Attr3 and A3) didn’t matched, and all other attributes are same. Proposed technique will check 

Attribute 3 first it didn’t match and 40% score is lost, Now remaining score is 60% in overall signature we can 

achieve, this score I-e 60% plus score achieved is less than threshold (70%), simply drop this signature without 

checking other attributes. This is faster the retrieval process. Condition for dropping signature is 

Score_achieved  + Score_remaining <  threshold  (12) 

D. Match-Drop Case 2: 

If Attribute 3 (Attr3 and A3)  and Attribute 1 matched, and all other attributes are different. 

Proposed technique will check Attribute 3 first it matched and 40% score is gained, Now remaining score is 

60% in overall signature, this score I-e 60% plus achieved score 40% is not less than threshold (70%), so 

continue matching second attribute.  

Now check Attribute 1, this also matched, score achieved is 70% (40% + 30%), so stop matching and this 

signature is candidate match against query. No need to compare other parts of signature. This also reduced 

processing time. Criteria for match-stop (stop comparing same signature) further is 

Score_achieved  + Score_remaining >=  threshold  (13) 

7. Results 

Our techniques though not that modern and actually inspired, but based on ensemble methods used prove to 

provide fast and efficient results. They prove retrieval is quicker than the full-scan searches. Here the proposed 

technique is not traversing the whole search space for best match. Match-sort and Match-Drop enable us to 

detect whether a record is good match or not early with out spending time on comparison. We have proved 

proposed technique is efficient and effective in a very large data records. We have test our proposed technique 

on different sizes of data. 

Experiment is done on computer system having following specifications 

Operating System : Ubuntu 16.04 

RAM : 8 GB 

Hard Drive : 150 GB 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No  1, pp 120-134 

132 
 

Intel core i5 

Table 9: Different statistics related to algorithm 

 Data Size (No of Records) 

 1000 100000 

Sig-Tree 

creation time 

3.2559 seconds 413.2589 seconds 

Searching in 

Sig-Tree 

0.025 seconds 3.0235 seconds 

Number of 

clusters or 

Sig-Files 

Product of uniques 

values of hard-filters 

Product of uniques 

values of hard-filters 

Number of 

attributes 

7 10 

Secondary 

Memory 

required 

59.8 KB 6.2 MB 

Number of 

levels in tree 

3 4 

 

The number of Sig-Files or clusters equals to the product of hard-filters unique values. 

Worst case Searching time T = O(h+n), Where “h” are number of hard-filters and “n” is the number of records 

in that specific clusters or bin. 

8. Conclusion 

We have successfully implement our proposed technique and prove to be efficient and effective methods in a 

very large collection of data records. The encoding i-e making signatures reduced the processing time. The only 

operation that is time consuming is making signature tree and signature file (signatures in the signature files are 

vertically and horizontally sorted), but this is one time operation. Records retrieval is very fast in Sig-tree. 

Match-drop and Match-sort techniques further optimize the retrieval, hence retrieval in a very large or huge 

records storage is very fast. The only problem we observed was, that this algorithm works perfect in case of 

records having at least some discrete data. It cannot works in case of only continuous data. There at-least must 

be some of the discrete fields in dataset to take advantages of proposed system.  

9. Future Work 
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In future plan is to make signature comparison engine able to compare on the variety of advanced data-types of 

features, like not just string, number, date but also Geo-coordinates and synonyms. Next in line is to do a 

distributed query on the signatures, by splitting compiled signature trees into sub-trees and then storing them 

into a distributed database/ grid, query will run concurrently to match the results. Work after that will be passing 

the compiled signatures through a machine learning method, and then train it to recognize patterns in signatures, 

so that based on partial signatures prediction of items that may append in signature can happen. This can let us 

know what items in the signature have most likelihood to go along with. This will also improve 

recommendations by 10 folds. We have already used current system on live service used for Recipe 

Recommendation, next this will be tried on a Dating System, Film and Music Recommendation system, where 

on the basis of few selected preferences and interests, best matching profiles/ media content will be 

recommended respectively. 
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