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Abstract 

Software products lines (SPLs) are long living systems that undergo several evolutions throughout their lifetime 

due to many reasons related to technology, strategy, business, etc. These evolutions can be the source of several 

defects that impact the different artefacts of SPLs, namely requirements, models, architecture and code. Many 

studies in the literature have dealt with the correction of defects in software product lines, but to our knowledge, 

no reviews have been carried out to provide an extensive overview of these studies. In this paper, we present a 

literature review of model defects in software product lines. The purpose of this review is to enumerate the 

different defects discussed in literature and to present the approaches proposed to detect and correct them. The 

findings of this review reveal new research leads to explore in this issue. 
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1. Introduction

Software Product Line Engineering is a paradigm whose purpose is to reuse a set of core assets to develop 

specific software products for the benefit of different customers [1]. This paradigm has many advantages, 

namely the enhancement of software quality, the reduction of production cost, the promotion of reusability and 

the reduction of Time to Market [2]. Software product lines are long-lived systems that require inevitably 

permanent evolution. This evolution is mainly caused by new technologies, new customers’ needs and new 

business strategies. Works in literature have dealt with many issues related to SPL Evolution, such as evolution 

traceability [3,4,5], evolution modeling [6,7,8], co-evolution analysis [9,10,11] and change impact analysis 

[12,13,14,15]. 
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Software product line Evolution presents different challenges and may impact negatively the product quality. 

McConnell [16] distinguishes two main aspects to take into consideration regarding software quality, a 

functional aspect that consists of reducing the defect rate in the different artefacts of a software product, and a 

non-functional aspect that aims at enhancing certain characteristics such as performance, maintainability and 

robustness. The first aspect occupies an important place in literature. Indeed, a poor defect management may 

cause indirectly the deterioration of non-functional qualities. In addition, if defects are not detected in an early 

stage of a project, they propagate throughout the development lifecycle and their correction becomes difficult, 

costly and time-consuming. Consequently, several studies have dealt with the detection and correction of defects 

in software products. Specifically, there has been a great deal of research in this area in the context of software 

product lines.  

In this paper, we present a literature review on model defects in software product lines. The objective of this 

review is to summarize the state of the art in this area between 2010 and 2016 and to identify the quantity and 

the nature of contributions in the collected works. We believe this study will be a great support for both 

researchers and practitioners, because it provides an overview of the different defects discussed in literature and 

discusses the different approaches proposed to handle them. It also highlights the gaps in these approaches and 

suggests new research trends and some areas for improvement. 

The remainder of the paper is organized as follows. Section 2 explains our literature review methodology. In 

Section 3, we analyze and discuss the results found against the predefined research questions. Section 4 presents 

some limitations of the study.  Finally, Section 5 concludes the paper. 

2. Research Methodology 

Several solutions have been proposed in relation with model defects in Software product lines. At the aim of 

collecting and evaluating these solutions, we have carried out a systematic literature review (SLR) by following 

the protocol described in [17]. This protocol is composed of six main steps: 1) Identification of research 

questions, 2) Research in Databases, 3) Definition of Inclusion and Exclusion criteria, 4) Data Selection, 5) Data 

Extraction, and 6) Data Analysis. The first five steps of the followed protocol are detailed in the rest of this 

section, while the last step is detailed in Section 3. 

2.1. Search Questions and Search String 

The objective of this review is to search and analyze the studies dealing with model defects in evolving software 

product lines. In order to achieve this objective, we formulated the following research questions: 

• QR1. What are the different approaches proposed with respect to model defects caused by software 

product lines evolution? 

• QR2. What are the types of contributions regarding the detection and correction of model defects in 

software product lines? 

• QR3. What are the different artefacts impacted by defects and how are they handled in literature? 
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• QR4. What are the different defects of software product lines addressed in literature? 

In order to answer the research questions already defined, we constructed the research string using the keywords 

related to our topic. The basic keywords are: Software, Product Line, Model Defect and Evolution. To make the 

research more efficient, we defined a set of synonyms and alternatives for the different keywords. To link the 

alternative keywords, we used the Boolean “OR” and to interconnect the different parts of the string, we used 

the Boolean “AND”. As a consequence, we obtained the research string presented in Figure 1. 

 

Figure 1: The search string  

2.2. Search in Databases 

During this step, we performed a search in the most famous digital libraries using the constructed string. We 

considered publications retrieved from IEEE Xplore, ACM Digital Library, ScienceDirect, Springer Link and 

Google Scholar. Since every database has a particular search system, we had to derive many search strings and 

to carry out additional steps to have equivalent results from the different databases. 

• IEEE Xplore: In this database, the maximum number of keywords allowed in search strings is fifteen. Since 

our string contains more than fifteen keywords, we had to divide the base string into several strings then merge 

the results of the different searches.   

• ACM Digital Library: The notation used to construct search strings in ACM is different from the other 

databases. Hence, we had to transform the initial string to respect this notation. The symbol "+" is used instead 

of the Boolean AND, and the Boolean "OR" is replaced by a white space. 

• ScienceDirect – Elsevier: This database gives the possibility to refine search through many filters. In our 

case, we filtered the articles by date, search field and publication title. 

• SpringerLink: To simplify the search, we needed to overcome two difficulties: i) The filter concerning the 

search field contains interconnected filters, which makes the search complicated, ii) The maximum number of 

results that can be extracted is 1000. For this, we applied the same search string for the interconnected fields 

separately. We also filtered the publications by date to separate results over different periods.  

• Google Scholar: The search in this database is more complicated in comparison with the other databases for 

two reasons: i) Google scholar does not give the possibility to write a complete search string. We therefore had 

to use the basic search tool to conduct a search that is equivalent to the initial string. ii) There is no way in 

Google Scholar to extract search results. To overcome this gap, we used the open source tool "Outbit Hub" to 

extract results to Excel. 
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2.3. Data Selection 

As stated before, the objective of a systematic review is to collect relevant approaches proposed regarding a 

particular area. Hence, we defined a number of inclusion and exclusion criteria for our search to select only 

relevant articles. A paper is included if it fulfills the following criteria: 

• IC1: The paper is a full article, a book, a chapter, a technical report, a thesis, a presentation. 

• IC2: The title or the abstract of the paper contains the keywords related to the search.  

• IC3: The paper addresses one or more model defect in software product lines. 

The paper is excluded if it meets the following criteria: 

• EC1: The paper is written in a language other than English. 

• EC2: The publication date is previous to 2010. 

• EC3: The paper is a short article, a standard, a poster, an editorial, a tutorial. 

• EC4: The title, the keywords and the abstract do not correspond to the research subject. 

• EC5: The paper does not deal with model defects in software product lines. 

• EC6: Another recent paper is published by the same team for the same solution. 

The data selection activity was carried out in several stages as described in Figure 2. 

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

5340

3494Exclude papers based on language, publication date 
and type (EC1, EC2 and EC3)

Search the papers in data sources using the 
constructed search strings

162Exclude papers based on titles, keywords and 
asbtracts (EC4)

84Exclude papers based on the content (EC5)

75Exclude duplicated papers (EC6)
 

Figure 2: Data selection process 

The total number of papers initially retrieved is 5340, divided as follows: 1201 from IEEE Xplore, 72 from 

ACM Digital Library, 386 from ScienceDirect, 2685 from SpringerLink and 996 from Google Scholar. In order 

to ensure the effectiveness of our search, we made a first check on whether our papers published on the subject 

are retrieved in the performed search or not. At the end of the selection process, we obtained 75 papers.  
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After this first selection of papers, we carried out another phase of selection based on the quality of the collected 

studies. Thus, we defined three additional quality assessment criteria: the number of citations, the approach 

validation and the work continuity. 

• Number of citations: For each year of publication, we defined the lower number of citations required 

so that a paper is considered. 

• Approach validation: A paper is excluded if the approach proposed in it is validated by a case study, a 

quantitative or a qualitative evaluation, etc. 

• Work continuity: If the work described in a paper is not detailed or continued in recent papers, the 

paper is excluded.  

After applying the quality assessment criteria on the 75 papers, we finally kept the 48 papers presented later in 

Table 4. 

2.4. Data Extraction 

During this step, we designed a personalized form consisting of a number of attributes. Then, the form was filled 

by researchers for all the selected papers. Table 1 presents the list of these attributes. The objective of this action 

was to collect and synthesize the data in a way that helps us answer the predefined research questions.  

Table 1: Attributes used in data extraction 

Title Title of the paper 
Authors Authors of the paper 
Year Year of publication of the paper 
Type of the paper e. g. Journal paper, conference paper, thesis, book, chapter, workshop 

paper. 
Database e. g. IEEE, ACM, Springer, Elsevier, Google Scholar 
Source e. g. Journal name, conference name 
Research type e. g. Approach validation, approach evaluation, solution proposal, 

experiment, case study 
Keywords Keywords specified in the paper 
Objective Objective of the study 
Description Short description of the paper content 
Methodology Methodology followed in the study 
Contribution e. g. Model, Framework, Tool, Method, Algorithm 
Model defect Model defect addressed in the paper 
Domain of application Field in which the study was applied (if it exists) 

 

3. Results and Discussions 

During this step, the objective was to answer the research questions defined in the beginning of this review. For 

this, we studied the selected papers from different perspectives. First, we analyzed the metadata of these papers, 

then we focused on their contents. This section presents and discusses in details the results of this analysis. 
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3.1. Demographic Data 

Demographic data consists of the metadata of the selected papers. In our review, we focused on three types of 

metadata: the database, the year of publication and the source avenue. 

• Database and year of publication

 Figure 3: Percentage of papers vs. Database      Figure 4: Number of articles vs. year 

Figure 3 presents the percentage of papers in each database. Among the 48 papers retrieved from the five 

databases used in the systematic review, we identified 7 papers in Elsevier (15%), 9 papers in Google Scholar 

(19%), 9 papers in ACM (19%), 10 papers in IEEE (21%) and 13 papers in Springer (27%). We notice that 

Springer is the database that contains the largest number of papers with a percentage of 27%, then IEEE with 

21%, which can be explained by the large number of papers retrieved from these two databases (2685 for 

Springer and 1201 for IEEE). However, this hypothesis may only be rebutted by analyzing the other databases. 

Indeed, even if ACM contains the fewest papers in the first step with only 1,34 % of papers, the percentage of 

papers at the end of the review is 19%, which is same as Google Scholar and greater than Elsevier. Similarly, 

Google Scholar that represents 19% of the initially selected papers represents the same percentage at the end and 

Elsevier that had more papers than ACM represents at the end the minimum number of papers. Two conclusions 

are drawn. First, the quality of papers is not proportional to their number. Indeed, a database may contain a large 

number of papers related to a given area, but most of them can be of poor quality. Second, the search engines 

used in the digital databases are not perfect, which means that a significant number of papers retrieved in the 

first stage of the review do not correspond to the search scope. 

As mentioned before, the search was carried out for the period 2010-2016. The diagram presented in Figure 4 

shows the number of papers per year of publication. We notice that there is a consistent trend regarding the 

study of model defects in software product lines between 2011 and 2015, with a number of papers that oscillates 

between 6 and 10.  The peak year for model defects publications was 2014 with 10 published papers. 

• Source avenue

Table 2 presents the different source avenues of the selected papers and their types as well as the number and 

percent of papers for each source. According to this table, there are 26 source avenues, 12 journals, 9 
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conferences, 3 workshops and 3 books. The number of papers published in journals is 24, which represents 50% 

of the papers. The journals that contain the highest number of papers are the Elsevier journals « Information and 

Software Technology » and « Journal of Systems and Software » and the Springer journal « Lectures Notes in 

Computer Science ». The number of papers retrieved from conferences is 18 (37% of total papers), with 8 

articles published in SPLC (Software Product Line Conference). All these findings are logical because the 

majority of papers are published in important journals and conferences that accept only complete works detailed 

methods and validated solutions. Regarding the books, they were selected by the review because, besides the 

fact that they correspond to the search scope, they are also well cited (i. e. 225 citations for the book "Feature-

Oriented Software Product Lines"). 

Table 2: Source avenues 

Source avenue Type #Papers % 

ACM/IEEE International Conference on Model Driven Engineering 
Languages and Systems - MODELS 

Conference 1 2% 

Annual ACM Symposium on Applied Computing Conference 1 2% 

Autonomous Agents and Multi-Agent Systems Journal 1 2% 

Conference on Software Product Line Conference 8 17% 

Euromicro Conference on Software Engineering and Advanced 
Applications 

Conference 1 2% 

Expert Systems Journal 1 2% 

Expert Systems with Applications Journal Journal 1 2% 

Feature-Oriented Software Product Lines Book 1 2% 

IEEE Annual Computer Software and Applications Conference Conference 2 4% 

IEEE International Conference on Software Maintenance Conference 1 2% 

IEEE Transactions on Software Engineering Journal 1 2% 

Information and Software Technology Journal 3 6% 

Information Science Journal (ISJ) Journal 1 2% 

International Conference on Distributed Multimedia Systems Conference 1 2% 

International Conference on Software Engineering Conference 1 2% 

International Requirements Engineering Conference Conference 2 4% 

International Workshop on Model-Driven Requirements Engineering - 
MoDRE 

Workshop 1 2% 

Journal of Systems and Software Journal 3 6% 

Journal of Universal Computer Science Journal 2 4% 

Lectures Notes in Computer Science Journal 6 13% 

Relating Software Requirements and Architectures Book 1 2% 

Requirements Engineering Journal 2 4% 

Research Journal of Applied Sciences, Engineering and Technology Journal 1 2% 

Software and Systems Modeling Journal 2 4% 

Software Product Line - Advanced Topic Book 1 2% 
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Workshop on Emerging Ideas and Trends in Engineering of Cyber-
Physical Systems 

Workshop 1 2% 

Workshop on Variability Modelling of Software-intensive Systems - 
VaMoS 

Workshop 1 2% 

Total 48 100% 

3.2. Contributions Analysis 

After analyzing the metadata of the selected papers, we focused on the study of the papers contents, the nature 

of the provided solutions and the proposed contributions. As a result of this study, the first observation we made 

is that 80% of papers are solution proposals for model defects. The other 20% are shared between case studies, 

empirical studies and reviews of approaches. In each research type, several contributions are proposed. Table 3 

presents the number and the list of papers for the different types of contribution. The contributions can be 

classified into three categories: Analysis-oriented contributions, Design-oriented contributions and 

Implementation-oriented contributions. 

Table 3: Papers vs. contributions 

Category Type of contribution #Papers Papers 

Analysis-
Oriented 
Contributions 

Questionnaire / Survey / Interviews 3 [37], [57], [60] 

Analysis / Review 2 [20], [60] 

Heuristics 1 [30] 

Checklist 1 [26] 

Design-Oriented 
Contributions 

Method 16 
[18], [22], [25], [27], [32], [5], [15], 
[35], [43], [45], [48], [50], [51], 
[54], [55], [58] 

Process 5 [33], [38], [41], [8], [53] 

Model / Meta-model 6 [15], [8], [49], [34], [21], [42] 

Rules / Formulas 4 [28], [29], [14], [44] 

Algorithm 4 [35], [43], [52], [42] 

Ontology 2 [32], [36] 

Metrics / Measures 3 [10], [53], [30] 

Templates 1 [46] 

Implementation-
Oriented 
Contributions 

Tool / Tool Extension / Prototype 17 
[18], [19], [20], [27], [28], [5], [15], 
[34], [35], [37], [40], [45], [48], [8], 
[50], [53], [54], [42] 

Framework 7 [24], [38], [47], [8], [56], [59], [42] 

Language 3 [23], [31], [39] 
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• Analysis-Oriented Contributions

This category corresponds to the papers dealing with the review and analysis of existing studies or the 

evaluation of new approaches. For example, a quasi-systematic review carried out by [26] revealed that few 

approaches address software product line inspection. Thus, the paper proposes a checklist-based 

inspection technique (FMCheck) that assists inspectors in the detection of defects in feature models. Wnuk  

[57] present the results of an empirical study based on a survey of 219 participants from different companies. 

The study focuses on the phenomenon of obsolete requirements and aims at defining this 

phenomenon from the perspective of industry practitioners. It also analyses the impact of these requirements on 

projects and discusses how they are handled in industry.  [30] presents an exploratory study whose 

objective is to assess empirically the impact of stability on the effort of model composition and on the 

inconsistency rate. 

• Design-Oriented Contributions

These contributions encompass methods, processes, meta-models, ontologies, etc. Among design studies, [37] 

introduced the method PUM (Product line Use case modeling Method) for documenting the variability in use 

case diagrams and specifications and in the associated domain models. Inverardi and Mori [38] propose a 

model-centric software evolution process of context-aware adaptive systems. In this process, the system 

behavior is represented using feature diagrams, which supports foreseen and unforeseen evolution. The first type 

corresponds to the foreseen variations of context, while the second type deals with the new needs of customers 

that could occur during the execution of unforeseen changes of context. 

Within the context of modeling, [49] defined the model PL-CDM that includes the implementations, the features 

and the dependencies between them. This model can be used by both developers and managers in software 

product lines to detect inconsistencies between cloned products and synchronize the development and the 

updates via real-time notifications. In a traceability perspective, [5] aims at enhancing the relations between 

requirements by assigning them types and providing them semantics expressed in first-order logic formulas. For 

this, a meta-model for requirements is proposed with formal relation types. In the same vein, [32,36] propose 

ontologies to specify the concepts related to feature models, which enables to monitor the evolution of these 

models and facilitates the detection of inconsistencies. Neves [46] define generic safe evolution templates 

based on the analysis of the evolution history of different product lines. 

• Implementation-Oriented Contributions

This category includes tools, prototypes and frameworks proposed regarding the detection and correction 

of model defects in software product lines. As for tools, Alférez  [19] presents the VCC tool that enables the 

verification of constraint consistency between feature models and SPL base models through the expression of 

constraints in the form of propositional formulas. In the same way, [18] proposes the VCC4RE tool that helps 

verify consistency of semantic relations between features and the associated use scenarios. Kamalrudin   

[40] introduced Marama, an automated tracing tool that 
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allows users to capture requirements and generate automatically the corresponding essential use cases (EUC). 

This tool supports the detection of inconsistencies between textual requirements, abstract interactions and the 

EUCs. Another tool for the detection of inconsistencies is TRIC proposed by [5] then extended by [15]. At the 

aim of verifying the conformance between variability in the design level and variability in the requirement level, 

[45] introduced the SPLEnD tool. The FDDetector tool introduced by [42] enables the detection and correction 

of duplicated features during the evolution of feature-oriented software product lines. 

In addition to tools, several frameworks have been proposed. Indeed, [8] presented SPLEMMA, a generic 

evolution framework that enables the validation of controlled SPL evolution by following a Model Driven 

Engineering approach. This study focused on three main challenges: SPL consistency during evolution, the 

impact on the family of products and SPL heterogeneity. Vierhauser   [56] propose a generic framework for the 

verification of consistency between heterogeneous artefacts in a product line. The framework was integrated 

in the DOPLER product line tool suite. Khtira  [42] present a conceptual framework for feature deduplication 

whose main processes consists of unifying the input artefacts of a derived product and detecting the internal 

and external duplications using an approach based on natural language processing. 

3.3. Artefacts Discussed 

During software product line evolution, different artefacts may be impacted. The artefacts that we identified in 

the studied papers are: requirements, domain models, domain architecture and domain code. Figure 5 shows the 

aggregation of papers per artefact. 

Figure 5 : The number of papers by artefact 

Table 4 presents a comparison between papers depending on the artefact they handle and specifies the approach 

followed to model the problem addressed or the proposed solution. 
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Table 4: Comparison between approaches according to artefacts 

Requirements Domain 
Model 

Domain 
Architecture 

Domain 
Code 

[Alférez, 2011] [18] UML (UC, AD) FM X X 

[Alférez, 2014] [19] √ FM X X 

[Apel, 2013] [20] X FM X X 

[Bessling and Huhn, 2014] [21] √ FM X X 

[Boutkova and Houdek, 2011] [22] NL FM X X 

[Cordy, 2013] [23] X FM X X 

[Dam and Winikoff, 2011] [24] X X UML (CD) X 

[Dam, 2016] [25] X X 
UML 

(SD, CD, AD) 
X 

[de Mello, 2014] [26] X FM X X 

[Dhungana, 2010] [27] X VM X X 

[Egyed, 2011] [28] X X 
UML 

(SD, CD, AD) 
X 

[Elfaki, 2014] [29] X FM, FOL X X 

[Elfaki, 2016] [14] X FM, FOL X X 

[Farias and his colleagues in , 
2014] [30] X X UML (CD, CMD) X 

[Ferreira and Silva, 2012] [31] NL X X X 

[Filho, 2012] [32] X FM X X 

[Gamez and Fuentes, 2013] [33] X FM X X 

[Goknil, 2011] [5] √ X X X 

[Goknil, 2014] [15] √ X X X 

[Greenyer, 2013] [34] √ FM UML (SD) X 

[Groher, 2010] [35] X X UML (SD, CD) X 

[Guo, 2012] [36] X FM X X 
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[Hajri, 2015] [37] 
NL,  

UML (UC, US) 
X X X 

[Hellebrand, 2014] [10] X FM X √ 

[Inverardi and Mori, 2013] [38] √ FM X X 

[Jureta , 2010] [39] √ X X X 

[Kamalrudin , 2010] [40] NL, UML (UC) X X X 

[Käßmeyer , 2015] [41] X √ X X 

[Khtira , 2015] [42] NL FM X X 

[Manz , 2014] [43] X √ X X 

[Mazo , 2011] [44] X FM X X 

[Millo , 2013] [45] √ FM √ X 

[Neves , 2015] [46] X FM X X 

[Noorian , 2011] [47] X FM X X 

[Quinton , 2014] [48] X FM X X 

[Romero , 2013] [8] √ FM X X 

[Rubin , 2012] [49] X FM X CC 

[Rumpe , 2015] [50] X X SM X 

[Salikiryaki , 2015] [51] UML (UC, SD) √ X X 

[Salinesi and Mazo, 2012] [52] X FM X X 

[Schmorleiz and Lämmel, 2016] [53] X X X CC 

[Siedl , 2012] [54] X FM X X 

[Stephenson , 2011] [55] √ FM X X 

[Vierhauser , 2012] [56] X VM X X 

[Wnuk , 2013] [57] √ X X X 

[Yang , 2011] [58] NL X X X 

[Zhang and Becker, 2013] [59] X FM, PC X X 
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[Zhang  , 2012] [60] X X X CC 

      NL: Natural Language      UC: Use Cases     FM: Feature Model  

     VM: Variability Model      PC: Product Configurations     SD: Sequence Diagram 

     CD: Class Diagram      CMD: Component Diagram    AD: Activity Diagram 

     SD: State Diagram      FOL: First Order Logic          SM: Simulink Model 

     CC: Code Cloning      √: Handled     X: Not handled 

• Requirement Verification: In the works dealing with requirements verification, requirements are 

sometimes expressed as use cases [21,5,38,39,45] or in natural language specifications 

[42,22,31,37,40,58]. However, some papers do not specify how requirements are expressed 

[21,5,38,39,45]. Among solutions based on natural language processing, [22] proposes an approach to 

optimize the identification of features in natural language specifications, based on lexical analysis. The 

paper describes the results of applying manual and semi-automatic identification of features on the 

automotive industry. In order to improve the quality and rigor of natural language specifications, Ferreira 

and Silva [31] present an approach of information extraction based on linguistic patterns. Hajri  [37] 

propose an NLP-based tool for the verification of use cases and the associated models, whose 

variability is defined with the method PUM (Product line Use case modeling Method). Yang   [58] 

introduced an automated system that enables the identification of potential problematic ambiguities 

among anaphoric ambiguities existing in requirements documents. In addition, many tools of 

requirements verification have been proposed in literature such as RSLingo [31], TRIC [5] and Marama 

[40].

• Domain Model Verification: Among the 32 papers addressing domain models, 27 focus on feature

models such as [42,19,20,22,14,32,46], which is logical because most product lines in literature and

industry are feature-oriented. Several solutions have been proposed in this vein, namely tools like

VML4RE [18], VCC [19,20], FDDetector [42] and SPLEnD [45], extensions of the DOPLER tool [27,56],

frameworks such as SPLEMMA [8], models like PL-CDM [49] or techniques like FMCheck [26].

• Architecture Verification: There are 8 papers dealing with architecture among which 6 papers deal with

UML design models, namely class diagrams [24,25,28,30,35], sequence diagrams [25,28,34,35],

component diagrams [30] and activity diagrams [25,28]. The two other papers address different types of

models such as finite state machines [45] and the Simulink models [50].

• Code Verification: The number of papers handling code verification is 4. Among these papers, three focus 

on code cloning [49,60,53] and the fourth deals with co-evolution between feature models and code [10]. 

Rubin   [49] focus on the management of software product variants realized via cloning. For this purpose, 

the authors present a framework that consists of seven conceptual operators and validate their efficiency 

through three case studies from the automotive industry. Schmorleiz and Lämmel [53] describe a process 

for similarity management of cloned variants during software evolution. This process uses annotations 

to record developers’ intentions and to anticipate automatic change propagation.
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At the aim of analyzing and understanding the motivations behind code cloning, [60] presents the results of 

an industrial study that focuses on the reasons of cloning practices from technical, personal, and 

organizational perspectives. Hellebrand  [10] address the coevolution between feature models and code. 

More specifically, it proposes metrics that allow the detection of variability erosion between the two 

artefacts during SPL evolution. While [49] considers code cloning as a defect that may reduce the product 

quality and proposes a solution to correct inconsistencies it can generate, we notice that [60][53] see it as 

a normal phenomenon or even desirable in certain cases, it must only be well managed to benefit 

from it as much as possible. 

Figure 6: Number of papers for each defect per year 
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3.4. Model Defects Addressed 

Figure 6 illustrates the number of articles dealing with model defects over the studied period. Based on this 

figure, it is clear that the defect most addressed in literature is inconsistency, either in terms of number or 

continuity. Indeed, in all years, there is at least a paper about inconsistency (with 4 papers in 2010 and 5 papers 

in the years between 2011 and 2014). In total, 27 of the 48 selected papers deal with inconsistency. The second 

defect constantly addressed is ambiguity, with one paper per year between 2011 and 2014. In addition, we 

notice that unsafety starts getting the attention of researchers since 2014 (the number of papers dealing with this 

defect increases from one article in 2014 to 4 articles in 2015). Incorrectness was addressed 3 times (one paper 

in 2012 and 2 papers in 2014). The defects handled two times are dead elements, false-optional elements, 

incompleteness and non-conformance. The rest of defects, namely erosion, inaccessibility, extraneous 

information, uncertainty, false models, void models, obsolescence, omission and redundancy do not receive 

great attention in literature (one paper for each defect since 2010). A large number of these defects are defined 

by [52] and [26]. As for duplication, it is not constantly addressed, some papers dealt with it in 2012 and 2013 to 

reappear later in 2015. 

After reading the selected papers of the systematic review, we first extracted the different definitions of model 

defects addressed in these papers. Then, a unique definition for each defect was chosen or formulated as 

presented in Table 5. 

In general, when a model defect is handled in a paper, we start by giving it a definition, either generic or specific 

to the context of the approach in question. But in certain cases, we simply quote a definition proposed in another 

work. That’s why we find in Table 5 that some definitions are retrieved directly from the papers concerned by 

the systematic review, while others are referenced in other papers. 

As seen before, the model defect most addressed in literature is inconsistency. Hence, contrarily to other defects 

to which we gave a single definition, we have formulated different definitions for inconsistency according to the 

element considered inconsistent. These elements are: requirements, models, cardinalities, dependencies and 

implementations. Another observation is that inconsistency may be sometimes confused with other defects such 

as incorrectness [35], non-conformance [30] or duplication [40]. 

4. Limitations of the Review 

In this review, we tried our best to select pertinent studies regarding model defects in software product lines. 

However, the results of the review could have been affected by some limitations. First, the search systems of the 

different databases are not accurate, because a great number of papers found by the search do not correspond to 

the review scope.  Therefore, we had to apply many filters to exclude the irrelevant papers. In addition, every 

database uses a different search system. So we were obliged to construct different search strings and perform 

additional actions to have equivalent results at the end, but there is always a risk that these strings do not 

generate the intended results. Moreover, search in databases is generally based on keywords existing in the title 

or the abstract. If a paper dealing with model defects in software product lines but do not use the same keywords 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No  1, pp 20-41 

35 

defined in the search string, they could have been missed by the search. 

Table 5:  Definitions of Model Defects 

Model Defect Definition Source 

Ambiguity Some Information from the feature model is not clear, allowing multiple 
interpretations for the specified domain. [26] 

Duplication To have the same thing expressed in two or more places; duplication can 
happen in specifications, processes and programs. [61] 

False Optional 
Elements 

A reusable element is false optional if it is included in all the products of the 
product line despite being declared optional. [52] 

Dead Elements A reusable element is dead if it cannot appear in any product of the product 
line. [52] 

Erosion Erosion means that realization artifacts become overly complex due to 
unforeseeable changes. 

[Zhang 
Farias and 
his 
colleagues 
in , 2013] 

Non-attainable 
domains 

A non-attainable value of a domain is the value of an element that never 
appears in any product of the product line. [52] 

Uncertainty Requirements uncertainty refers to changes that occur to requirements during 
the development of software. [55] 

Incompleteness The lack of necessary information related to a feature or requirement. [62] 

Inconsistency 

Requirement 
An inconsistency is a situation where the co-existence of 
certain relations among requirements causes a contradiction in 
a specific context. 

[5] 

Model Some feature model element is not consistent with another 
element from the same feature model. [26] 

Cardinality A feature cardinality is considered as range inconsistent if no 
product exists for some values of its range. [48] 

Dependency A dependency is inconsistent when what is being provided by 
B does not match what entity A needs. [24] 

Implementation An implementation of a feature is inconsistent when products 
contain different sets of functionalities for a given feature. [49] 

Incorrectness Some information or behavior from the feature model contradicts its domain 
specification. [26] 

Extraneous 
information Some Information in the feature model is outside the domain scope. [26] 

Unsafety This happens when the behavior of existing products is affected by a new 
evolution. [63] 

False Model At most one valid product can be configured with it. [52] 

Void Model The Product Line Model (PLM) does not define any products. [52] 

Non-conformance 
Given a feature f, and a (FSMd, FSMr) pair corresponding to f, we say that the 
design of f conforms to the requirements of f, if every variant of the FSMd has 
a corresponding FSMr variant. 

[45] 
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Obsolescence An obsolete software requirement is a software requirement, implemented or 
not, that is no longer required for the current release or future releases. [57] 

Omission Some information from the domain was not properly included in the feature 
model. [26] 

Redundancy 
Redundancy in a PLM is about the presence of reusable elements and 
variability constraints among them that can be omitted from the PLM without 
loss of semantic on the PLM. 

[52] 

In the data selection process, we have defined many exclusion criteria and quality assessment criteria in order to 

select high quality papers. By applying these criteria, some interesting approaches might have been ignored 

because they are not well cited, because they are published in short papers, or because the corresponding papers 

are written in a language other than English, etc. 

In our review, the results were retrieved from five databases including Google Scholar. Hence, papers published 

in other digital libraries like Citeseer or Web of Science or in some specific journals must have been found if 

they are indexed in Google Scholar, but if this is not the case, they did certainly not appear in the results of the 

search. Our literature review may also have missed some industrial solutions that have not been published in 

literature.  

5. Conclusions 

In the world of today, customers are increasingly demanding, technology advances exponentially and new 

business strategies emerge. In order to keep up with these changes, all software products and specifically 

software product lines must evolve constantly, which makes them more and more complex. An inevitable result 

is the appearance of defects in the different artefacts of the software products lines. The verification process is 

thus necessary to ensure a satisfactory level of product quality. To make progress regarding the verification of 

model defects in software product lines, both practitioners and researchers need to have an overview on the 

work done in this area, the approaches proposed and the gaps to be tackled. The purpose of this paper was to 

carry out a systematic review that focuses on model defects in evolving software product lines. 

As a result of searching studies from 2010 and 2016 in five digital libraries, we identified at the beginning 5340 

papers. Based on a set of exclusion criteria and quality assessment criteria, 48 relevant papers were selected. 

The main objectives of this review was to investigate the different approaches proposed with respect to model 

defects in SPLs, to identify the nature of contributions in this area, to determine the different artefacts concerned 

by this issue and to enumerate all the model defects addressed in literature. 

Several findings have been drawn from this review. First, we noticed that contributions cover all the phases of a 

product, from analysis to implementation, but the focus was mainly on design and modeling. We believe that 

frameworks and tools must be given more attention because without proper tools, it is difficult to validate the 

proposed approaches. Concerning the artefacts handled by the selected papers, a large number of studies focus 

on the verification of feature models, which is normal in the case of software product lines, but it would be good 

to propose generic solutions that can be applied in all kinds of models. Similarly, the approaches proposed 

regarding the verification of architecture deal mainly with UML design models. Thus, more work remains to be 
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done to cover other types of design models. As for code, little attention has been given to this artefact in 

research and the defects that have been discussed in relation with it are limited (all the papers dealing with code 

focus on code cloning). Research should be encouraged in this way especially in the projects that concentrate on 

implementation where the code is the central artefact. 

An analysis of the defects addressed in the papers selected by the systematic review has shown that the most 

discussed model defect is inconsistency (27 out of 48 papers), while other defects are not thoroughly treated, 

such as erosion, inaccessibility, extraneous information, uncertainty, obsolescence and duplication. Researchers 

can therefore propose solutions to verify and correct these defects in the different artefacts of a software product 

line. 

During our review, many works have been eliminated because they do not validate their contributions using an 

industrial SPL, even if the solutions they propose can be promising. To overcome this problem, researchers and 

practitioners need to collaborate seriously to work on industrial problems and develop new tools and solutions, 

which would be of interest for both stakeholders. Moreover, the scope of this review was limited to software 

product lines, but a more general review of literature could help bring ideas and solutions from other fields and 

apply them to SPLs to verify model defects. 
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