
 

 

 

 

64 
 

 American Scientific Research Journal for Engineering, Technology,  and Sciences  (ASRJETS) 
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

© Global Society of Scientific Research and Researchers  
http://asrjetsjournal.org/  

 

Dynamic Fluid-Structure Interaction Analysis of Propeller 

Aircraft Wing 

Intizar Alia*, Abdul Hameed Memonb, M. Tarique Bhattic, Dileep Kumard, 

Ishfaque Ali Qazie, Sajjad Banghwarf 

aDeptt. of Mechanical Engineering, The Benazir Bhutto Shaheed University of technology and skill development 

Khairpur Mir’s, Pakistan 
bDeptt. of Mechanical Engineering, Hamdard University Karachi, Pakistan 

c,f,eDeptt. of Mechanical Engineering, Quaid-e-Awam University College of Engineering Science and 

Technology, Larkana, Pakistan 
dDeptt. of Mechanical Engineering, MUET, Shaheed Zulfiqar Ali Bhutto Campus, Khairpur Mir’s, Pakistan 

aEmail: intizar_tunio@hotmail.com, bEmail: hameed.memon@hamdard.edu.pk, cEmail: trqbhatti@hotmail.com  
dEmail: dileepkumar@muetkhp.edu.pk,   eEmail: ishfaque@hotmail.com, fEmail: sajjadbhangwar@gmail.com 

 

Abstract 

During flight, aircraft wing is subjected to time dependent loads resulting in wing deformation and 

oscillation which is a challenge to its structural design as well as safety.  At present, structural integrity and 

wing performance are mostly evaluated on the basis of static loading only. While dynamic loading has got 

minor attention due to this research work analyses structural and aerodynamic behavior of rectangular aircraft 

wing under time varying conditions. The effects of structural non-linearity were also taken into account. 

Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) codes were coupled to 

predict aerodynamic performance of deformable wing structure. To analyze and compare the performance of 

rigid and flexible Aluminum alloy 7075 T6 wing were simulated. Research results reveal that there is 5.64% 

decrease in Lift-to-Drag ratio by considering wing as flexible structure. The analysis of wing structural behavior 

by varying fluid forces showed that wing behavior is highly non-linear in nature; therefore dynamic loading 

conditions are highly important to consider. 

Keywords: Fluid-Structure Interaction; Propeller aircraft; Computational Fluid Dynamics; Computational 

Structural Dynamics. 
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1. Introduction  

In aircrafts, fluid-structure interaction is the direct interaction of deformable structure (such as wing, fuselage, 

tail etc.) with its surrounding fluid. Interaction between fluid and flexible structure have got extreme importance 

in many engineering applications, due to various undesired phenomena’s such as fluttering, buffeting and 

collapsing of bridges and cooling towers, fluid-excited vibration of tall building and wind turbine blades, wind-

plants interaction, as well as flutter in aircraft wings [1-8]. The number of researches was conducted to evaluate 

the need for FSI analysis in aircrafts components design. Their research  comes with this conclusion  that FSI 

analysis is highly important for the efficient and lightweight structure of various aircraft components especially 

wing, aileron as well as winglets [9, 10]. Research carried out aero elastic analysis of High Aspect Ratio (HAR) 

wing to analyze effect of wing deformation on aerodynamic characteristics. Showed that wing deformation 

causes decrease in flutter speed and aircraft safety [11]. Tielin, 2008 conducted research on (HAR) flexible wing 

to analyze aero elastic effects on its aerodynamic characteristic. His research revealed that lift/drag ratio is 

significantly affected by wing deformation [12] .Experimental  studies was conducted on (HAR) sweep forward 

wing to analyze effect of wing bending and its twisting on aerodynamic efficiency. This research showed that 

wing deformation cause drop in lift/drag ratio [13]. Static aero-elastic analysis of aircraft wing was carried out 

to analyze effect of wing deformation on its aerodynamic efficiency. It was found that elastic wing experience 

bending and twisting due to that 27.9% decrease in lift force was observed [14]. FSI analysis of (HAR) 

composite wing of Unmanned Arial Vehicle (UAV) was conducted under cruise time predict behaviour of 

composite material. The study concluded that composite wing is light in weight and possesses good bending and 

torsional properties [15]. Another research conducted static aero-elastic analysis of composite wing at various 

flight speeds results showed that deformation increases with increase in aircraft speed and angle of attack [16]. 

Study conducted to predict effect of hovering hoverflies wing deformation on lift, drag and power 

coefficient by considering camber deformation along with span wise twist. significant difference in lift 

and power coefficient of wings was noticed [17]. Variable camber airfoil was analyzed to find effect on 

aerodynamic efficiency due to deformation under gust wind. The results indicated that camber 

deformation affects aerodynamic efficiency and with increase in deformation results increase in mean 

thrust and propulsive efficiency [18].From literature review it was concluded that lot of research was 

conducted on fluid- structure interaction analysis of aircraft wing by but almost all the previous researches 

related to static fluid structure interaction analysis. But aircraft is flying under diverse atmospheric conditions 

where it is subjected to unpredictable time-dependent aerodynamic loads. Due to aerodynamic loads wing 

deforms which is highly dangerous for aircraft safety as well as for stability and it may also affects aircraft 

performance. Therefore this research was conducted to analyze effect of wing deformation of on aerodynamic 

efficiency of aircraft. 

2. Mathematical Modeling 

The coupled dynamic fluid-structure interaction problems is basically considered as three fields i.e. structural 

deformation, fluid flow and moving mesh [19, 20] as shown in Fig. 1. The governing equation for these types of 

problems can be written as. 
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Figure 1: dynamic fluid structure interaction analysis systems[21] 

For compressible flow general form of Navier-stokes equation is given below. 

( ) . . ( )i i i fu uu p u F t
t
ρ ρ µ∂

+∇ = −∇ +∇ ∇ +
∂        (1)

 

And associated continuity equation is   

. 0p u
t

ρ∂
+∇ =

∂          (2)
 

In case of dynamic mesh the velocity relative to the mesh movement can be written as:  

fluid meshu u u= − . 

Dynamic response of structural is governed by following equation which is written as following in matrix form  

( )sMd Cd Kd F t+ + =&& &          (3) 

Whereas 

intext
sF F F= +  

Here damping constant of structure is approximated by Rayleigh damping, where damping matrix C would be 

formed by linear combination of mass and stiffness matrix.    

r rC M Mα β= +
                        (4) 

Mesh movement may be modeled as a pseudo-structural problem with its own dynamics, with 
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a spring based mesh [22] then the governing equation will be: 

( )m m mK d f t=             (5) 

In the absence of any other boundary conditions, the method for integrating the flow equations should preserve 

the solution of the NS and continuity equations. This condition is Satisfied only when the method for solving the 

flow equations and the algorithm for updating the displacement and velocity of the mesh obey the geometric 

conservation law [20, 23].  

3. Dynamic mesh movement governing equation  

Dynamic mesh is used for those flows where domain shape is continuously changing with the time on the 

boundaries of domain. The volume mesh updates are automatically handled by FLUENT at each time steps 

according to new boundary positions. In those cases mesh movement is governed by static displacement Eq. (6) 

( )( )( )mK t f d tξ =
                     (6)

 

4. Aircraft wing Modeling 

In this research rectangular aircraft wing is designed because it is widely used in propeller aircraft. Wing is 

designed with airfoil NACA2412 whose co-ordinates are taken from National Advisory Space Administration 

(NASA) website.  

Wing is designed with chord and span of 200mm and 600 mm respectively. Three dimensional model of wing is 

imported to ANSYS software where the fluid domain around the wing is generated in ANSYS design modeler 

to simulate flow effects. Solid aircraft wing is then subtracted from fluid domain by preserving both fluid as 

well as structural domain 

4.1  CSD and CFD models  

In case of CSD only structural part is dealt, in this case that is simplified model of aircraft wing without flaps 

and it was considered as solid wing. Aircraft wing was meshed by using beam elements of tetrahedral shape. 

Non- conforming mesh algorithm was applied to generated staggered mesh so that high pressure gradient 

regions were mesh with highly fine elements.   

The one end of wing was clamped as it is fixed aircraft body, so wing behavior was studied by assuming it as 

cantilever beam. Wing was modeled and simulated by using Aluminum alloy 7075-T6 that is widely used in 

various aircraft parts.  

The Mechanical properties of Aluminum alloy 7075-T6 are given below. Fig. 5 presents wing model with 

applied loads and constrains.   
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Table1: Showing mesh information of fluid domain 

Domain Element type orthogonal quality Nodes Elements 

Fluid Tetrahedral 0.86 162497 920248 

    

Table 2: Mechanical properties of Aluminum alloy 7075-T6 [27]. 

Density 

Kg/m3 

Modulus of 

elasticity(GPa) 

Shear 

Strength 

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Tensile  

Strength,  

Yield (MPa) 

Creep  

Strength(MPa) 

Rupture  

Strength 

(MPa) 

2810 71.7 317 524 462 515  530 

 

Table 3: Showing mesh information of solid domain 

Domain Element type Orthogonal quality Nodes Elements 

Solid Wing Tetrahedral 0.80 5303 1924 

 

  

Figure 2: Mesh of fluid domain Figure 3: Named sections of fluid domain 

 

In case of CFD model simplified model of aircraft wing surrounded by fluid domain were modeled. Meshing of 

turbine was carried out in ANSYS ICEM where tetrahedral mesh elements were used to generate control 

volumes.  Non-uniform unstructured mesh was generated through applying non-conforming algorithm to 
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improve mesh quality in the region of high pressure gradients. Names to various boundaries of model were 

assigned in order to apply boundary conditions during simulation. Meshed model of wing in CFD model is 

presented in 2.  

 

 

Figure 4: Meshed model of solid Structural wing Figure 5: Applied constrained and loads on structural 

wing 

 

5. Computational Methodology 

In order to solve two-way-FSI problem solver of computational fluid Dynamics and computational solid 

dynamics are coupled. Loosely coupled partitioned approach was used to exchange the data between to solvers. 

Wing FSI analysis was carried out at free stream condition of M=0.4 and angle of attack α =5o because that is 

maximum speed at which propeller aircraft fly. In two way FSI analysis both the CFD and CSD solvers are 

running simultaneously, to transfer instantaneous data. In CSD three sides of wing receives fluid forces and 

deformation caused by those aerodynamic forces would be transferred to CFD model in order to evaluate effect 

of wing deformation. In CFD turbulences were modeled through k-ω SST model and compressibility effects 

was encountered by selecting density based model.  This study uses SST k-ω model is more suitable for near 

wall treatment to analyze boundary layer and flow separation problems [24-26]. Dynamic meshing is done and 

in which wing is allowed to deflect in correspondence of fluid forces. System coupling region is created to 

receive updated mesh from structural solver. Implicit scheme, pressure velocity coupling and second order 

discretization scheme is used to solve time dependent fluid domain. After completion of individual setup system 

coupling was updated to solve FSI problem through getting data from CFD and CSD solvers 

6. Results and Discussion 

In this section results of dynamic fluid structure interaction are presented separately for both structural and fluid 

flow parts.  

6.1 Structural analysis 
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Dynamic fluid structure interaction analysis is conducted in order to simulate and analyze effect of real flight. 

To carry out structural analysis fluid forces are transferred to structural module. Stresses and deformation occurs 

in aircraft wing was determined corresponding to those fluid forces. Simulation results are presented in table 

below for the time period of 4 seconds. By analyzing the variation in stresses and deformation it is clear that 

they are highly time-dependent in nature. Through careful analysis of Von-Mises stresses, maximum shear 

stresses and deformation during first four time steps they have achieved highest value of 165MPa, 90.8MPa and 

14.1mm respectively.    

Table 4: Shows the variation of stresses and deformation with flight time 

Simulation 
Time(s) 

Von-Mises 
stress (Pa) 

Max. Shear stress 
(Pa)  

Max: Principal 
stress (Pa)  

Total 
Deformation(m) 

0.1 1.65E+08 9.08E+07 1.98E+08 1.41E-02 
0.2 7.79E+07 4.29E+07 9.36E+07 6.67E-03 
0.3 3.49E+07 1.92E+07 4.20E+07 2.97E-03 
0.4 1.91E+07 1.05E+07 2.29E+07 1.63E-03 
0.5 7.71E+06 4.25E+06 9.30E+06 6.33E-04 
0.6 7.20E+06 3.97E+06 8.56E+06 6.05E-04 
0.7 2.55E+06 1.41E+06 3.12E+06 1.91E-04 
0.8 4.88E+06 2.69E+06 5.84E+06 4.06E-04 
0.9 1.94E+06 1.07E+06 2.41E+06 1.41E-04 
1 4.27E+06 2.35E+06 5.13E+06 3.52E-04 
1.1 2.06E+06 1.14E+06 2.55E+06 1.55E-04 
1.2 3.92E+06 2.16E+06 4.73E+06 3.22E-04 
1.3 2.29E+06 1.26E+06 2.82E+06 1.77E-04 
1.4 3.68E+06 2.03E+06 4.45E+06 3.02E-04 
1.5 2.51E+06 1.39E+06 3.09E+06 2.00E-04 
1.6 3.49E+06 1.93E+06 4.24E+06 2.87E-04 
1.7 2.69E+06 1.49E+06 3.31E+06 2.16E-04 
1.8 3.40E+06 1.87E+06 4.13E+06 2.78E-04 
1.9 2.92E+06 1.61E+06 3.58E+06 2.34E-04 
2 3.46E+06 1.91E+06 4.22E+06 2.81E-04 
2.1 3.23E+06 1.78E+06 3.95E+06 2.58E-04 
2.2 3.67E+06 2.02E+06 4.47E+06 2.94E-04 
2.3 3.61E+06 1.99E+06 4.41E+06 2.86E-04 
2.4 3.96E+06 2.18E+06 4.82E+06 3.14E-04 
2.5 4.01E+06 2.21E+06 4.89E+06 3.16E-04 
2.6 4.29E+06 2.37E+06 5.22E+06 3.38E-04 
2.7 4.37E+06 2.41E+06 5.32E+06 3.43E-04 
2.8 4.57E+06 2.52E+06 5.56E+06 3.60E-04 
2.9 4.68E+06 2.58E+06 5.68E+06 3.68E-04 
3 4.85E+06 2.68E+06 5.89E+06 3.82E-04 
3.1 5.00E+06 2.76E+06 6.06E+06 3.94E-04 
3.2 5.19E+06 2.86E+06 6.28E+06 4.10E-04 
3.3 5.35E+06 2.95E+06 6.47E+06 4.24E-04 
3.4 5.51E+06 3.04E+06 6.66E+06 4.37E-04 
3.5 5.63E+06 3.10E+06 6.80E+06 4.47E-04 
3.6 5.74E+06 3.16E+06 6.93E+06 4.55E-04 
3.7 5.85E+06 3.22E+06 7.07E+06 4.64E-04 
3.8 5.96E+06 3.29E+06 7.20E+06 4.73E-04 
3.9 6.09E+06 3.36E+06 7.36E+06 4.83E-04 
4 6.21E+06 3.43E+06 7.50E+06 4.93E-04 
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The following Fig.7, 8 and 9 show the variation of principal stress, max: shear stresses and deformation occurs 

in aircraft wing. In all of these Figures both deformed and un-deformed model of wing are shown, which is 

highly helpful in visualizing the wing deformation due to fluid pressure. In Fig. 8 the maximum and minimum 

shear stress points are highlighted which shown that maximum stresses occurs near the fixed edge of wing. In 

Fig.9 the wing deformation is shown throughout the wing and it can be observed that wing deformation is 

maximum at wing tip which has value of near about 14.1mm.          

  
Figure 7: Maximum Principal Stresses in wing Figure 8: Maximum Shear Stresses in wing 

 
 

Figure 9: Showing aircraft wing deformation Figure 10: Shows variation of stresses and 

deformation with time 

6.2 Fluid flow analysis 

In this second part of results and discussion, the results of fluid flow are presented. In dynamic fluid structure 

interaction time-dependent initial conditions are applied and realistic results were obtained through computer 

simulation. In dynamic FSI problems time varying meshing is introduced in fluent through updating mesh 

displacement and velocity to analyze effect of deformation on different flow properties. In turns effect of those 

flow properties influences the overall performance of system. From Fig. 11 & 12 through critically analysis and 

comparison of flow behavior around the wing is affected by wing deformation. Wing deformation can be clears 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No  1, pp 64-74 

72 
 

observed in highlighted ellipse shown near the wing edge. 

  
Figure 11: Shows flow behavior & wing deformation 

in fluid domain at time 0.1 second 

Figure 12: Shows flow behavior & wing deformation 

in fluid domain at time 2.5 second 

Fig. 11 is showing the flow behavior and wing deformation just after 0.1 second. From the structural results of 

deformation for whole time duration, the deformation and stresses are maximum just after simulation starts, 

because at the starting energy added by fluid to structure is much higher than that could be handled by structural 

damping. After some time structural damping would be sufficient to handle flow energy, hence structural 

deformation decreases with time. Fig. 13 shows the variation of fluid pressure near the deforming wing.    

 

Figure 13: Shows the Pressure variation near the deforming wing. 

The dynamic fluid structure interaction and CFD analysis of deformable and rigid was carried out repectivitly to 

analyze effect of wing deformation on aerodynamic forces. The result simulation reveals that given 

corresponding values of lift and drag was found for respected wing configuration. From results of simulation it 

is concluled that L/D ratio decrease as wing deform.    

Table 5: Shows the variation of lift and drag for rigid and deforming wing 

Wing 

material  

Lift Force 

(N) 

Drag Force 

(N) Lift/Drag ratio 

% Decrease in 

L/D ratio  

Weight of 

wing (Kg) 

Wing 

deformation 

(mm) 

Rigid  521.7735 39.744 13.128359     0 

Aluminium 491.0127 39.512 12.426926 5.644461073 4.654 14.15 
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7. Conclusion 

In this study dynamic fluid structure interaction analysis was carried out by combining  Computational Fluid 

Dynamics (CFD) and Computational Structural Dynamics (CSD) solver to predict effect of fluid forces on wing 

structural behaviour and of deformation on aerodynamic efficiency. Research results reveal that there is 5.64% 

decrease in Lift-to-Drag ratio by considering wing as flexible structure. From the structural results of 

deformation for whole time duration, the deformation and stresses are maximum just after simulation starts, 

because at the starting energy added by fluid to structure is much higher than that could be handled by structural 

damping. After some time structural damping would be sufficient to handle flow energy, hence structural 

deformation decreases with time. Through analyzing structural behaviour of the wing due to varying fluid forces 

it is concluded that wing behaviour is highly non-linear in nature, therefore dynamic loading conditions are 

highly important to consider. 
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