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Abstract 

In this paper, a comprehensive numerical study is presented for the fully developed two-dimensional flow of 

viscous incompressible fluid through a curved rectangular duct with different aspect ratios 2 and 3 for a constant 

curvature . Unsteady solutions are obtained by using a spectral method and covering a wide range of 

Dean number  and the Grashof number . The outer wall of the duct is 

heated while the inner wall is cooled. The main concern of this study is to find out the unsteady flow behavior 

i.e whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if the Dean number or the 

Grashof number is changed. For the aspect ratio 2, it is found that the unsteady flow is a steady-state solution for 

 and  but periodic at  and If the Dean number is 

increased i.e. at  , it is found the unsteady flow is periodic at  but chaotic at 

 If the Dean number is increased further i.e. at , the unsteady flow becomes 

chaotic for any value of Gr in the range. For the aspect ratio 3, however, it is found that the unsteady flow is a 

steady-state solution for  at and  but periodic at  and 

. If the Dean number is increased i.e. at Dn = 500 and 1000, the unsteady flow becomes 

chaotic for any value of Gr in the range. Contours of secondary flow patterns and temperature profiles are also 

obtained, and it is found that the unsteady flow consists of a single-, two-, three- , four-, five-, six-, seven- and 

eight-vortex solutions. It is also found that the chaotic flow enhances heat transfer more significantly than the 

steady-state or periodic solutions as the Dean number are increased.  

Keywords: Curved rectangular duct; secondary flow; unsteady solutions; Dean number; Taylor number; Grashof 

number; time evolution. 
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1. Introduction  

Fluid flow through curved ducts and channels has been extensively studied over a wide range of applications 

because of their enormous applications in fluids engineering. Such motivation has provided a fairly 

comprehensive knowledge of physics and numerical modeling addressing intrinsic vortex-structure promoting 

mixing and momentum transfer. Now a days, flows in curved ducts channels are extensively used in many 

engineering applications, such as in turbo-machinery, refrigeration, air conditioning systems, heat exchangers, 

rocket engine, internal combustion engines and blade-to-blade passages in modern gas turbines. Dean [1] was 

the first who formulated the problem in mathematical terms under the fully developed flow conditions and 

showed the existence of a pair of counter rotating vortices in a curved pipe. The readers are referred to [2–5] for 

some outstanding reviews on curved duct flows.  

The fluid flow in a rotating curved duct generates centrifugal and Coriolis force. Such rotating passages are used 

in many engineering applications e,g. in cooling system for conductors of electrical generators. For isothermal 

flows of a constant property fluid, the Coriolis force tends to generate vortices while centrifugal force is purely 

hydrostatic by (Zhang and his colleagues [6]). An early complete bifurcation study of two-dimensional (2-D) 

flow through a curved duct of square cross section was conducted by Winters [7]. He determined that the 

isolated symmetric 4-cell sub-branch is unstable while the isolated 2-cell sub branch is stable. The location of 

limit point and bifurcation points does not change much for curvature ratios less than 0.02, but at higher 

curvature ratios, they move to large Dn numbers. Mondal and his colleagues [8] performed comprehensive 

numerical study on fully developed bifurcation structure and stability of two-dimensional (2D) flow through a 

curved duct with square cross section and found a close relationship between the unsteady solutions and the 

bifurcation diagram of steady solutions. When a temperature induced variation of fluid density occurs for non-

isothermal flows, centrifugal type buoyancy forces can contribute to the generation of vorticity [9]. These 

effects counteract each other in a non-linear manner depending on the direction of wall, resistance coefficients 

and the flow domain. Therefore, the effect of counteract of the system is more subtle and complicated and yields 

new; richer features of flow and heat transfer in general, bifurcation and stability in particular, for non-

isothermal flows.  

Time dependent analysis of fully developed curved duct flows was initiated by Yanase and Nishiyama [10] for a 

rectangular cross section. In that study, they investigated unsteady solutions for the case where dual solutions 

exist. The time-dependent behavior of the flow in a curved rectangular duct of large aspect ratio was 

investigated, in detail, by Yanase and his colleagues [5] numerically. They performed time-evolution 

calculations of the unsteady solutions with and without symmetry condition and showed that periodic 

oscillations appear with symmetry condition while aperiodic time variation without symmetry condition. Wang 

and Liu [11] performed numerical as well as experimental investigations of periodic oscillations for the fully 

developed flow in a curved square duct. Flow visualization in the range of Dean numbers from 50 to 500 was 

conducted in their experiment. They showed, both experimentally and numerically, that a temporal oscillation 

takes place between symmetric/asymmetric 2-cell and 4-cell flows when there are no stable steady solutions. 

Recently, Mondal and his colleagues [12] applied spectral method to study non-isothermal flow through a 
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curved rectangular duct of aspect ratios 1 to 3 and showed that the steady-state flow turns into chaotic flow 

through various flow instabilities if the aspect ratio is increased. They also showed that the chaotic solution 

becomes weak for small Dn’s, while strong for large Dn’s. However, solution structure as well as transient 

behavior of the unsteady solution is not yet resolved for the flow through a curved rectangular duct with bottom 

wall heating and cooling from the ceiling, which motivated the present study to fill up this gap. 

One of the most important applications of curved duct flow is to enhance the thermal exchange between two 

sidewalls, because it is possible that the secondary flow may convey heat and then increases heat flux between 

two sidewalls. Chandratilleke and Nursubyakto [13] presented numerical calculations to describe the secondary 

flow characteristics in the flow through curved rectangular ducts that were heated on the outer wall, where they 

studied for small Dean numbers and compared the numerical results with their experimental data. Norouzi and 

his colleagues [14] investigated inertial and creeping flow of a second-order fluid with convective heat transfer 

in a curved square duct by using finite difference method. Chandratilleke and his colleagues [15] presented a 

numerical investigation to examine the secondary vortex motion and heat transfer process in fluid flow through 

curved rectangular ducts of aspect ratios 1 to 6. The study formulated an improved simulation model based on 3-

dimensional vortex structures for describing secondary flow and its thermal characteristics. Zhang and his 

colleagues [16] adopted finite volume method and SIMPLE algorithm to perform laminar and turbulent flow 

through a curved square duct at low Reynolds number. There was a good agreement between their numerical 

result and the experimental data.  

Recently, Mondal and his colleagues [17] investigated combined effects of centrifugal and Coriolis instability 

of the isothermal/non-isothermal flows through a rotating curved rectangular duct numerically. The secondary 

flow characteristics in a curved square duct were investigated experimentally by using visualization method by 

Yamamoto and his colleagues [18] . Three-dimensional incompressible viscous flow and heat transfer in a 

rotating U-shaped square duct were studied numerically by Nobari and his colleagues [19]. However, Unsteady 

Heat and Fluid Flow through a Curved Channel with Rectangular Cross-section for Various Aspect Ratios is not 

yet resolved. Very recently, Li and his colleagues [20] conducted a combined experimental and numerical study 

on 3D flow development in a curved rectangular duct with varying curvature. The flow fields were measured 

using Particle Image Velocimetry (PIV) and the numerical simulations were performed by solving the Reynolds 

Averaged Navier–Stokes (RANS) equations. Effects of curvature, Reynolds number and aspect ratio on Dean 

instability were discussed in that paper to accurately determine the core of secondary base vortices. To the best 

of the authors' knowledge, however, there has not yet been done any substantial work studying the solution 

structure as well as effects of unsteady solutions for the non-isothermal flow through a curved rectangular duct 

whose bottom wall is heated and cooling from the ceiling. But from the scientific as well as engineering point of 

view it is quite interesting because this type of flow is often encountered in engineering applications such as in 

gas turbines, metallic industry etc.   

Examining the unique features of secondary flow and heat transfer, the main objective of the present study is to 

investigate time-dependent behavior of the unsteady solutions through a curved rectangular duct where outer 

wall of the duct is heated while the inner wall is cooled. 
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2. Flow Model and Mathematical Formulations  

 

Figure 1: Coordinate system of the curved rectangular duct 

Consider a hydro-dynamically and thermally fully developed two-dimensional (2D) flow of viscous 

incompressible fluid through a curved square duct, whose height or width are 2d. The coordinate system with 

the relevant notation is shown in Figure 1, where x′ and y′ axes are taken to be in the horizontal and vertical 

directions respectively, and z’ is the axial direction. It is assumed that the lower (bottom) wall of the duct is 

heated while the upper (top) wall is cooled. The temperature of the lower wall is 0T T+ ∆  and that of the upper 

wall is TT ∆−0 , where T∆ > 0 . It is also assumed that the flow is uniform in the axial direction, and that it is 

driven by a constant pressure gradient along the center-line of the duct. The dimensional variables are made 

non-dimensional by using the representative length d, the representative velocity
d

U υ
=0 , where υ  is the 

kinematic viscosity of the fluid. We introduce the non-dimensional variables defined as 

2, , , , ,
Uo0 0

u v x y zu v w w x y z
U U d d d

d′ ′ ′ ′ ′′= = = = = =
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where vu,  and w  are the non-dimensional velocity components in the yx, and z  directions, respectively ; 

t is the non-dimensional time, P  is the non-dimensional pressure, δ  is the non-dimensional curvature defined 

as ,
L
d

=d  and temperature is non-dimensional zed by T∆ . Henceforth, all the variables are non-

dimensionalized if not specified.  
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Since the flow field is uniform in the z  direction, the sectional stream function ψ  is introduced as 
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+ ∂

 and      
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                                                                                                 (1) 

Then, the basic equations for ,w ψ  and T  are expressed in terms of non-dimensional variables as 
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The equations for ψ,w  and T  are actually benefited for numerical computation. The non-dimensional 

parameters Dn , the Dean number; Gr , the Grashof number; and Pr , the Prandtl number, which appear  in 

equation (2) to (4) are defined as: 

L
dGdDn 23

µυ
= ,

κ
υ

υ
β

=
∆

= Pr,2

3dTgGr                                                                                            (6) 

where µ , κβ ,  and g  are the viscosity, the coefficient of thermal expansion, the co-efficient of thermal 

diffusivity and the gravitational acceleration respectively is the viscosity of the fluid. In the present study, only 

Dn  and δ  are varied while Gr  and Pr  are fixed as, 100Gr =  and 0.7Pr = (water).  

The rigid boundary conditions for w  and ψ  are 

( 1, ) ( , 1) ( 1, ) ( , 1) ( 1, ) ( , 1) 0w y w x y x y x
x y
yy yy  ∂ ∂± = ± = ± = ± = ± = ± =
∂ ∂

                                          (7) 
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and the temperature T is assumed to be constant on the walls as  

( ,1) 1, ( , 1) 1, ( 1, )T x T x T y y= − = − ± =                                                                                           (8) 

There is a class of solutions which satisfy the following symmetry condition with respect to the horizontal 

plane 0y = . 

( , , ) ( , , ),
( , , ) ( , , ),
( , , ) ( , , )
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x y t x y t

T x y t T x y t
yy







⇒ −
⇒− −
= − −

                                                                                                                      (9) 

The solution which satisfies the condition (9) is called a symmetric solution, and that which does not an 

asymmetric solution. Note that, Equations (2) to (4) are invariant under the transformation of the variables 

( , , ) ( , , ),
( , , ) ( , , ),
( , , ) ( , , )

y y
w x y t w x y t
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
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⇒ −
⇒ −
⇒ −
⇒− −

                                                                                                    (10) 

Therefore, the case of heating the upper wall and cooling from the bottom can be deduced directly from the 

results obtained in this study. 

3. Numerical Calculations 

3.1. Method of numerical calculation 

In order to solve the Equations (2) to (4) numerically, the spectral method is used.  This is the method which is 

thought to be the best numerical method for solving the Navier-Stokes as well as energy equations [21].  By this 

method the variables are expanded in a series of functions consisting of the Chebyshev polynomials. That is, the 

expansion functions )(xnφ  and  )(xnψ  are expressed as  
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where, ( )1( ) cos cos ( )nC x n x−=  is the thn  order Chebyshev polynomial. ),,(),,,( tyxtyxw y  and 

),,( tyxT  are expanded in terms of the expansion functions ( )n xϕ  and )(xnψ  as: 

∑∑
= =

=
M

m

N

n
nmnm yxtwtyxw

0 0
)()()(),,( ϕϕ                                                                                       (12)

 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No  1, pp 71-99 

 

77 
 

0 0
( , , ) ( ) ( ) ( )

M N
m n m n

m n
x y t t x yyyyy  

= =
= ∑ ∑                                                             (13) 

0 0
( , , ) ( ) ( ) ( )

M N

m n m n
m n

T x y t T t x y yϕ ϕ
= =

= −∑∑                                                                            (14) 

where M  and N  are the truncation numbers in the x  and y  directions respectively, and   nmnmw ψ,  and 

nmT  are the coefficients of expansion. To obtain the steady solution, the time derivative terms ,
t
w
∂
∂

 ,
t∂

∂ψ
 

and
t
T
∂
∂

  are taken to be zero and the expansion series (12) - (14) with coefficients mnmnw ψ,  and ,mnT  being 

time independent, are substituted into the basic Eqs. (2), (3) and (4), and the collocation method (Gottlieb and 

Orszag, 1977) is applied. As a result, a set of nonlinear algebraic equations for  nmnmw ψ,  and nmT  are 

obtained. The collocation points ( , )i jx y  are taken to be  
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where 1,,1 += Mi K and 1,,1 += Nj K . Steady solutions are obtained by the Newton-Rapshon iteration 

method assuming that all the coefficients to be time independent. To avoid difficulty near the point of inflection 

for the steady solutions, we use the arc-length method [22]. In the arc-length method, the arc-lengths play a 

central role in the formulation. The arc-length equation is  
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The convergence is assured by taking sufficiently small pε ( pε < 1010− ) defined as 

( ) ( ) ( )1 1 12 2 2
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Finally, in order to calculate the unsteady solutions, the Crank-Nicolson and Adams-Bashforth methods together 

with the function expansion (12) to (14) and the collocation methods are applied to equations (2) to (4). 

3.2. Resistance coefficient 
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The resistant coefficient λ  is used as the representative quantity of the flow state. It is also called the hydraulic 

resistance coefficient, and is generally used in fluids engineering, defined as  

2*
*

*
21

*
1

2
1

*

〉〈=
∆
−

ωρλ

hz d
PP

(19) 

where quantities with an *
1P  be asterisk denote dimensional ones, 〉〈 stands for the mean over the cross 

section of the duct and  *
hd  is the hydraulic diameter. The main axial velocity 〉〈 *ω  is calculated by  
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−−

=〉〈
1

1

1

1

* ,,
24

dytyxdx
l

v ω
d

ω (20) 

Since ( ) λ,/ *
*

2
*

1 GPP z =∆−  is related to the mean non-dimensional axial velocity 〉〈 ω  as 

,2
24

w

Dnδλ = (21) 

where vl /2 * 〉〈=〉〈 ωδω . Equation (21) will be used to find the resistance coefficient of the flow evolution 

by numerical calculations.  

4.  Results and Discussion   

In this study, we have investigated time evolution of the resistance coefficient λ for the fluid flows through a 

curved channel with rectangular cross-section for the curvature 1.0=δ . We have studied the unsteady 

solutions of the flows at various Dean Numbers (Dn) for two cases of the aspect ratios; Case I: aspect 

ratio 2=l , Case II: aspect ratio 3=l . In addition to the time evolution of λ, the secondary flow patterns and 

temperature profiles at various Dean numbers are also discussed in detail. 

4.1. Case I: Aspect Ratio  

4.1.1. Time evolution of the unsteady solution 

We investigate time evolution of λ for Dn = 100, 500 and 1000 over a wide range of the Grashof number Gr, 

 for aspect ratio . In this section, we present the unsteady solutions for  at 

, and we find that the unsteady flow is periodic for ,  and 

, .  We found that the unsteady flow is multi-periodic for  We 

obtained the chaotic solution for  at . We also obtained the chaotic solution for 
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 and Gr  number varies from .                                                                                                                            

Time evolution of the resistance coefficient λ at time  for Dn = 100 and Gr = 100, 500, 1500, 2000 

for  are shown in Fig 3(a), 4(a), 6(a), 7(a) respectively. It is found that the flow is steady-state for these 

cases. Secondary flow patterns and temperature profiles are shown in Fig 3(b), 4(b), 6(b), 7(b) for Dn = 100 and 

Gr = 100, 500, 1500, 2000 respectively. Here it is seen that the solution oscillates between symmetric one and 

two vortex solutions.  To draw the contours of  and T for the aspect ratio l = 2, we use the increments ∆  = 

0.7 and ∆T = 0.2, respectively. The same increments of  and T are used for all the figures in this study for l = 

2, unless specified. The right-hand side of each duct box of ψ  and T is in the outside direction of the duct 

curvature. In the figures of the secondary flows, solid lines ( ) show that the secondary flow is in the 

counter clockwise direction while the dotted lines  in the clockwise direction. Similarly, in the figures 

of the temperature field, solid lines are those for and dotted ones for T< 0. We investigate time evolution 

of the resistance coefficient  λ at time  for Dn = 100 and Gr = 1000 as shown in Fig 5(a). We find 

that the flow is periodic for this case. From the contours of secondary flow and temperature profiles we observe 

that the unsteady flow is two-vortex solution, which is shown in Fig 5(b). In order to see the periodic oscillation 

more clearly, the phase space of the time evolution of λ is shown in Fig 5(c). 

t=24 

(a) (b) 
 

Figure 2: (a) Time evolution of  λ at time , (b) Secondary flow patterns (left) and Temperature 

profiles (right) for at time t = 24 
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    t=24   

    

(a) (b) 
 

Figure 3: (a) Time evolution of  λ at time , (b) Secondary flow patterns (left) and Temperature 

profiles (right) for at time t = 24 

(a) (b) 

  
  

T   

        t            30.40         31.50        32.60         33.70         34.80         35.90   
(c)  

Figure 4: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same at time  

  
  

T   
  t=16   
  

(a) (b) 
 

Figure 5: (a) Time evolution of  λ at time , (b) Secondary flow patterns (left) and Temperature 
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profiles (right) for at time t = 16 

(a) (b) 

 
 

 T 

  t=25 
 

 

Figure 6: (a) Time evolution of λ at time , (b) Secondary flow patterns (left) and Temperature 

profiles (right) for at time t = 25 

Time evolutions of  λ for Dn = 500, Gr = 100 and Dn = 500, Gr = 500 are shown in Fig 8(a), 9(a) respectively. 

It is found the solution is chaotic for both the cases. Secondary flow patterns and temperature profiles are shown 

in Fig 8(b) and 9(b) respectively. As seen in Figs. 8(b) and 9(b), the unsteady flow is symmetric two-, three- and 

four-vortex solutions. In order to see the chaotic behavior more clearly, the phase space of the time evolution of 

λ is also obtained as shown in Figs. 8(c) and 9(c) respectively. It is found that the unsteady solution of the flow 

is periodic for  and  at time  as shown in Fig 10(a). Secondary flow patterns 

and temperature profiles are shown in Fig 10(b). We observe that asymmetric three-vortex solution is available. 

In order to see the periodic behavior more clearly, the phase space of the time evolution of λ is shown in Fig. 

10(c). It is also found that the unsteady solution of the flow is multi-periodic for  and  at 

time  as shown in Fig. 11(a).  Secondary flow patterns and temperature profiles are shown in Fig. 

11(b). We observe asymmetric two vortex solutions for this case. In order to see the periodic behavior more 

clearly, the phase space of the time evolution of λ is obtained as shown in Fig. 11(c). Time evolution of the 

resistance coefficient λ at time  for Dn = 500 and Gr = 2000 is shown in Fig. 12(a). We found that 

the flow is chaotic for Dn = 500 and Gr = 2000 at l = 2. Secondary flow patterns and temperature profiles are 

shown in Fig. 12(b). Here we found that there occur symmetric two- and three-vortex solutions. In order to see 

the chaotic behavior in more clearly, the phase space of the time evolution of λ is also shown in Fig. 12(c). 
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(a) (b) 

        
(c) 

 
 

T 

       t          23.00       23.20       23.40      23.60      23.80     24.00 

 

Figure 7: (a) Time evolution of  λ at time , (b) Phase space for , 

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 

(a) (b) 

(c) 

 
 

T 

       t        24.20        24.30       24.40       24.50       24.60       24.70 

 

Figure 8: (a) Time evolution of  λ at time , (b) Phase space for  
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(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at  time  

(a)   (b)   

(c)   

    
    

T       

t                23.43      23.62        23.81        23.99       24.18        24.37       

 

Figure 9: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  

(a) (b) 

(c) 

 
 

T 

       t      27.72       27.88         28.03        28.19       28.24       28.50 

 

Figure 10: (a) Time evolution of  λ at time , (b) Phase space for , 

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 
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same  at time . 

(a) (b) 

(c) 

 
 

T 

       t      40.00        40.50       41.00         41.50       42.00      42.50 

 

Figure 11: (a) Time evolution of  λ at time , (b) Phase space 

for (c) Secondary flow patterns (top) and Temperature profiles (bottom) for 

one period of oscillation for same   at time  

Time evolution of the resistance coefficient λ at time  for Dn = 1000 and Gr = 100 is shown in Fig. 

13(a).We found that the solution is chaotic. Secondary flow patterns and temperature profiles are shown in Fig. 

13(b). As seen in Fig. 13(b), the unsteady flow is symmetric five- and six-vortex solutions. In order to see the 

chaotic behavior more clearly, the phase space of the time evolution of λ is shown in Fig. 13(c). Unsteady 

solution of the flow is chaotic for  and  at time  is shown in Fig 14(a). 

Secondary flow patterns and temperature profile is shown in Fig 14(b), where we observe that the flow is 

asymmetric four-, five- and six-vortex solution. In order to see the chaotic behavior more clearly, the phase 

space of the time evolution of λ is also drawn as shown in Fig. 14(c). Time evolution of λ at time  

for D  and  is shown in Fig 15(a), 16(a) respectively for the aspect ratio 2 and we 

find that the unsteady solutions are chaotic. Secondary flow patterns and temperature profiles are shown in Figs. 

15(b) and 16(b) respectively. Here we found symmetric four-, five- and six-vortex solutions. We also drew the 

phase spaces of the time evolution of λ as shown in Figs. 15(c) and 16(c) respectively.  It is found that the 

unsteady solution of the flow is chaotic for  and , l = 2 is shown in Fig. 17(a).  Secondary 

flow patterns and temperature profiles are shown in Fig. 17(b), where we observe that the flow is an asymmetric 

four- and five- vortex solution. In order to see the chaotic behavior more clearly, the phase space of the time 

evolution of λ is obtained as shown in Fig. 17(c) for for  and , l = 2. 
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(a) (b) 

(c) 

 
 

T 

       t      26.00        26.50       27.00         27.50       28.00      28.50 

 

Figure 12: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 
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Figure 13: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  

 

Figure 14: (a) Time evolution of  λ at time , (b) Phase space 

for  (c) Secondary flow patterns (top) and Temperature profiles (bottom) for 

one period of oscillation for same  at time . 
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(a) (b) 

(c) 

 
 

T 

       t        14.40        14.50       14.60       14.70       14.80      14.90 

 

Figure 15: (a) Time evolution of  λ at time , (b) Phase space 

for  (c) Secondary flow patterns (top) and Temperature profiles (bottom) for 

one period of oscillation for same  at time 90 

(a) (b) 

(c) 

 
 

T 

       t        23.10        23.20       23.30       23.40       23.50      23.60 

 

Figure 16: (a) Time evolution of  λ at time , (b) Phase space 

for  (c) Secondary flow patterns (top) and Temperature profiles (bottom) for 

one  period of oscillation for same  at time . 
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4.2. Case II: Aspect Ratio  

4.2.1. Time evolution of the unsteady solutions 

We investigate time evolution of λ for the Dean numbers Dn = 100, 500 and 1000 for the Grashof numbers 

 for aspect ratio . We obtained the steady state solution for  and 

. But at and  the solution is periodic. We obtained the chaotic 

solution for  at We also obtained the chaotic solution at  for 

.                                                                                                                                

 Time evolution of the resistance coefficient λ at time  for Dn = 100 and Gr = 100 is shown in Fig. 

18(a). We found that the flow is a steady-state solution. Secondary flow patterns and temperature profiles are 

shown in Fig. 18(b). We observe asymmetric two vortex solution for this case. It is found that the unsteady flow 

is periodic for  and  at time , which is shown in Fig. 19(a). Secondary flow 

patterns and temperature profile. are shown in Fig. 19(b). We observe that the flow is an asymmetric two-vortex 

solution.  In order to see the periodic behavior more clearly, the phase space of the time evolution of λ is also 

obtained as shown in Fig. 19(c). Time evolution of λ at time  for  and  is 

shown in Fig. 20(a) . It is found that the solution is multi-periodic oscillation. Secondary flow patterns and 

temperature profiles are shown in Fig. 20(b). Here we found asymmetric two-vortex solutions. In order to see 

the multi-periodic behavior more clearly, the phase space of the time evolution of λ is obtained as shown in Fig. 

20(c). We find that the unsteady solution of the flow is periodic for  and  as shown in Fig. 

21(a).  Secondary flow patterns and temperature profiles are shown in Fig. 21(b). We observe that the flow is an 

asymmetric two-vortex solution. In order to see the periodic behavior in more clearly, the phase space of the 

time evolution of λ as shown in Fig. 21(c). Time evolution of λ for Dn = 100 and Gr = 2000 is shown in Fig. 

22(a).We found that the solution is steady-state solution. Secondary flow patterns and temperature profiles are 

shown in Fig. 22(b) for . We observe asymmetric two-vortex solution for this case. 

 

Figure 17: (a) Time evolution of  λ at time , (b) Secondary flow patterns (left) and Temperature 
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profiles (right) for at time t = 15 

(a) (b) 

(c) 

 
 

T 

       t        35.20       35.40      35.60       35.80       36.00      36.20 

 

Figure 18: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time   

(a) (b) 

(c) 

 
 

T 

       t        15.50      17.20     18.90       20.60       22.40       24.10 

 

Figure 19: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 
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same  at time . 

(a) (b) 

(c) 

 
 

T 

       t        12.33       13.08       13.80      14.55       15.30      16.03 

 

Figure 20: (a) Time evolution of  λ at time 6 , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 

(a) (b) 

  T 
t=18 

 

Figure 21: (a) Time evolution of  λ at time , (b) Secondary flow patterns (left) and Temperature 
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profiles (right) for at time t = 18. 

Time evolution of the resistance coefficient λ at time  for Dn = 500 and Gr = 100 is shown in Fig. 

23(a). We found that the solution is a chaotic flow. Secondary flow patterns and temperature profile are shown 

in Fig. 23(b). Here we found symmetric four-, five- and six-vortex solutions. In order to see the chaotic behavior 

more clearly, the phase space of the time evolution of λ is shown in Fig. 23(c). It is found that the unsteady 

solution of the flow is chaotic for  and , which is shown in Fig. 24(a).  Secondary flow 

patterns and temperature profile are shown in Fig. 24(b). We observe asymmetric three, four and five vortex 

solution. In order to see the chaotic behavior in more clearly, the phase space of the time evolution of λ as 

shown in Fig 24(c). Time evolution of the resistance coefficient λ at time  for Dn=500 and Gr.=.1000 

is shown in Fig. 25(a). We found that the solution is chaotic. Secondary flow patterns and temperature profile is 

shown in Fig 25(b). Here we found symmetric four-, five- and six-vortex solutions. In order to see the chaotic 

behavior more clearly, the phase space of the time evolution of λ is also drawn as shown in Fig. 25(c). Next, we 

obtained the unsteady solution of the flow and we find that the flow is chaotic for  and  as 

shown in Fig. 26(a).  Secondary flow patterns and temperature profile is shown in Fig 26(b). We observe that 

the flow is an asymmetric five-, six- and seven-vortex solution. In order to see the chaotic behavior more 

clearly, the phase space of the time evolution of λ is shown in Fig. 26(c). Then we calculate the unsteady 

solution of the flow for  and and we find that the flow is chaotic, which is shown in Fig. 

27(a).  Secondary flow patterns and temperature profile is shown in Fig 27(b). We observe that there occurs 

asymmetric five-, six- and seven-vortex solution. In order to see the chaotic behavior more clearly, the phase 

space of the time evolution of λ is also obtained as shown in Fig. 27(c). 

(a) (b) 

(c) 

 
 

T 

       t         8.80         9.00        9.20         9.40         9.60        9.80 

 

Figure 22: (a) Time evolution of  λ at time 6 , (b) Phase space for  
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(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same at time . 

(a) (b) 

(c) 

 
 

T 

       t        14.20      14.30       14.40       14.50      14.60       14.70 

 

Figure 23: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  . 

(a) (b) 

(c) 

 
 

T 

       t        7.20         7.40        7.60         7.80         8.00        8.20 

 

Figure 24: (a) Time evolution of  λ at time 6 , (b) Phase space for   (c) 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No  1, pp 71-99 

 

93 
 

Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  . 

(a) (b) 

(c) 

 
 

T 

       t       26.80      27.00      27.20       27.40      27.60       27.80 

 

Figure 25: (a) Time evolution of  λ at time 6 , (b) Phase space for       

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 

(a) (b) 

(c) 

 
 

T 

       t       22.30      22.40     22.50       22.60        22.70     22.80 

 

Figure 26: (a) Time evolution of  λ at time 15 , (b) Phase space for  



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No  1, pp 71-99 

 

94 
 

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  . 

Here we investigate time evolution of the resistance coefficient λ for Dn=1000 and Gr=100 as shown in Fig 

28(a). We found that the flow is chaotic. Secondary flow patterns and temperature profile are shown in Fig. 

28(b). Here we found symmetric five and six vortex solutions. In order to see the chaotic behavior more clearly, 

the phase space of the time evolution of λ is shown in Fig. 28(c). We investigate the unsteady solution of the 

flow for  and  and it is found that the flow is chaotic as shown in Fig. 29(a) for time 

. Secondary flow patterns and temperature profile are shown in Fig 29(b). We observe asymmetric 

six and seven vortex solution. In order to see the chaotic behavior in more clearly, the phase space of the time 

evolution of λ as shown in Fig 29(c). Time evolution of the resistance coefficient λ at time  for 

 and  are shown in Figs. 30(a) and 31(a) respectively. We found that the solution 

is chaotic. Secondary flow patterns and temperature profile are shown in Fig 30(b) and 31(b) respectively. Here 

we found symmetric five, six and seven vortex solutions. In order to see the chaotic behavior in more clearly, 

the phase space of the time evolution of λ as shown in Fig 30(c) and 31(c) respectively. Unsteady solution of the 

flow is chaotic for  and  at time  is shown in Fig 32(a).  Secondary flow 

patterns and temperature profile is shown in Fig 32(b). We observe asymmetric five, six and seven vortex 

solution. In order to see the chaotic behavior more clearly, the phase space of the time evolution of λ is obtained 

as shown in Fig. 32(c). 

(a) (b) 

(c) 

 
 

T 

       t      51.50      52.00       52.50        53.00      53.50       54.00 

 

Figure 27: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time  . 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 46, No  1, pp 71-99 

 

95 
 

(a) (b) 

(c) 

 
 

T 

      t        10.50       11.00       11.50        12.00      12.50       13.00 

 

Figure 28: (a) Time evolution of  λ at time , (b) Phase space for  

(c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same   at time  for l =   3. 

(a) (b) 

(c) 

 
 

T 

      t        33.80       34.00       34.20       34.40     34.60      34.80 

 

Figure 29: (a) Time evolution of  λ at time , (b) Phase space 

for  (c) Secondary flow patterns (top) and Temperature profiles (bottom) for 

one period of oscillation for same  at time . 
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(a) (b) 

(c) 

 
 

T 

      t        34.60       34.80       35.00       35.20     35.40      35.60 

 

Figure 30(a): Time evolution of  λ at time  for  for the aspect ratio l = 

3, (c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 

(a) (b) 

(c) 

  
  

T   

        t            30.60       30.80       31.00       31.20     31.40       31.60   

 

Figure 31(a): Time evolution of  λ at time  for  for the aspect ratio l = 

3, (c) Secondary flow patterns (top) and Temperature profiles (bottom) for one period of oscillation for 

same  at time . 
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4.2.2. Unsteady solutions in Dean vs Grashof Plane 

Here, the distribution of the unsteady solutions, obtained by the time evolution calculations of the solutions, are 

presented in the phase diagram in the Dn-Gr plane for  and  for the aspect 

ratios 2 and 3 in Figs. 33(a) and 33(b) respectively. In these figures, the circle denotes steady-state solution, the 

cross periodic solutions and the triangle chaotic solutions. As seen in Fig. 33(a), the steady-state solution turns 

into chaotic solution for small (Gr = 100, 500) and large Grashof numbers (Gr = 2000) for the case of aspect 

ratio 2, for moderate Grashof numbers, however, steady-state solution turns into chaotic solution through 

periodic solution, if the Dean number  is increased. For the aspect ratio 3, we find that the steady-state solution 

turns into chaotic solution for Gr = 100, 500, 1500 and 2000, but at Gr = 1000, the steady-state solution turns 

into chaotic solution through periodic solution, if the Dean number  is increased. Thus we get a through 

knowledge about the complete unsteady flow behavior of the present study from Figure 33. 

(a) (b) 
 

Figure 32: Graphical representation of unsteady solutions for  and (a )for 

aspect ratio 2 and  (b) for aspect ratio 3 respectively. 

5. Conclusion  

Here, we have studied a comprehensive numerical study of the time dependent solutions of the flow 

characteristics through a curved rectangular cross-section for various aspect ratios. Numerical calculations are 

carried out by using the spectral method over a wide range of the Dean number for a fixed curvature . In 

the present study, however, we performed time evolution calculations of the unsteady solutions through a curved 

rectangular flow for the aspect ratios 2, and 3. 

  In the present article, we studied the time-dependent solutions of the resistance coefficient λ over a wide range 

of the Dean number  for the rectangular cross-section of aspect ratio 2=l  and .  At 

first, we investigated the unsteady solutions of the curved rectangular cross-section flow of aspect ratio l = 2. 

We found that the unsteady flow is steady-state for Dn =100 at . But only the flow 
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is periodic for  at . We find that the unsteady flow is periodic for  and 

. The unsteady flow is multi-periodic for and . It is also found that the solution 

is chaotic for at . Here we find that the flow is chaotic for at  

number varies from . We obtained secondary flow patterns and temperature profiles for all 

types of solution and for the steady-state solution, we found two vortex solutions, while for the periodic flow, 

we obtained two vortex solution. In this regard, it should be noted that, the multi-periodic solution, obtained in 

the present study at the above-mentioned Dean numbers, they do not possess the same characteristics. When the 

flow is chaotic we get four- and five- vortex solution. 

Then we studied the time evolution of λ for a wide range of the Dean number  and the range 

of Grashof Number for the curved rectangular cross-section  flow of aspect ratio 3 and we 

found that the unsteady flow is steady-state solution for . However, the unsteady 

flow is periodic for  at.  

We found that the unsteady flow is chaotic for  for all the grashof numbers investigated in this 

study. Contours of secondary flow patterns and temperature profiles are also obtained for all solutions. It is 

found that the periodic solution oscillates between asymmetric two-, and four-vortex solutions. When the flow is 

chaotic we get five, six and seven vortex solutions. The temperature distribution is consistent with the secondary 

vortices generated at the outer wall of the duct. It is found that the temperature passes significantly from the 

heated wall to the fluid as the secondary vortices increases. 
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	3.2. Resistance coefficient
	The resistant coefficient  is used as the representative quantity of the flow state. It is also called the hydraulic resistance coefficient, and is generally used in fluids engineering, defined as

