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Abstract 

Regression analysis is one of the necessary strategies utilized in statistical inferences, that is employed to 

estimate the relationship between variables. One way to measure the efficiency of the regression model is to 

estimate the prediction error, the best model is to have the lowest prediction error. During this paper we are 

going to estimate the prediction error using bootstrap methods, we will use two different bootstrap methods, 

Efron’s bootstrap and Banks’ bootstrap methods. They are resampling strategies but in a different manner. We 

will review them later thoroughly during this paper. We will find that Banks’ bootstrap will be a good choice in 

most cases. 

Keywords: Banks’ bootstrap; Bootstrap methods; Efron’s bootstrap method; Prediction error; Regression 

models. 

1. Introduction  

Regression models are one of the most important statistical methods which used to estimate the relationship 

between dependent and independent variables [1]. Here we will use a simple linear regression models, which 

implies that is one dependent variable and another independent, and also the relationship between them is linear. 

This model is used for prediction and prediction error is one of the measures used to verify the model’s ability to 

predict the dependent variable. The prediction error is that the expected square of difference between a future 

response (dependent variable) and its prediction from the model. During this paper we will use two methods of 

bootstrap to estimate the prediction error, the Efron’s bootstrap and the Banks’ bootstrap. 
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The Efron’s bootstrap method [2] is a “computer-based” approach for assigning measures of accuracy to 

statistical estimates and based on independent observations, Efron in that article introduced the bootstrap 

method and praised it in finding solutions to the problems of estimation. He used the bootstrap method to 

estimate the variance of the sample median, and explained that it is an excellent alternative to the jackknife 

method which failed with this estimate. The basic idea of the bootstrap is estimating the properties of the 

probability distribution for a random variable of interest. The Efron’s bootstrap sample is obtained via sampling 

with replacement from the original sample. This method has been used extensively in numerous statistical 

inference methods. The Banks’ bootstrap method [3] is the smoothed version of Efron’s bootstrap, it is smooth 

the Efron’s bootstrap by linear interpolation histospline smoothing among the jump points of empirical 

distribution. Banks’ created n+1 intervals and then sample the observations from them. Banks’ used confidence 

regions to compare his method to other bootstrap methods. He estimated the confidence region at different 

values of α and used the chi-square test of goodness of fit to compare between methods. During this paper we 

will estimate the prediction error using these two methods of bootstrap and discuss the performance of this 

process. This study uses real valued observations on a finite interval to generate bootstrap samples and estimates 

the prediction error of the simple linear regression model. 

In Section 2 we show an overview of the regression models, and therefore the two methods of bootstrap with 

how they are used to estimate a prediction error of the simple linear regression model. Section 3 will discuss the 

approach used in this paper with some results achieved. Section 4 shows the conclusions of this study. 

2. Materials and Methods 

Regression models are one of the most important methods used in statistical inference. It is used to estimate the 

relationship between dependent and independent variables and widely used for prediction. Regression models 

involves the unknown parameters β, independent variable X and dependent variable Y. In simple linear 

regression, there are one independent variable and two parameters, for modeling n data points: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖   ,  𝑖𝑖 = 1, … ,𝑛𝑛                       (1) 

where 𝜖𝜖𝑖𝑖 is an error term. In case of dealing with sample, the simple linear regression model is estimated by: 

𝑦𝑦�𝑖𝑖 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑥𝑥𝑖𝑖     ,    𝑖𝑖 = 1, … . ,𝑛𝑛                        (2) 

The least squares estimate of β is  

𝛽̂𝛽 = (𝑥𝑥𝑇𝑇𝑥𝑥)−1𝑥𝑥𝑇𝑇𝑦𝑦                                                  (3) 

The residual 𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖, is the difference between the value of the dependent variable predicted by the model 

and the true value of the dependent variable. For more details about regression models see [1,4]. Prediction error 

is a way that measure how properly a model predicts the value of dependent variable of a future observation, it 

is used to select the best model which is the model that has the lowest prediction error. In regression models the 

prediction error is the expected square of difference between a future response (dependent variable) and its 
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prediction from the model 

𝑃𝑃𝑃𝑃 = 𝐸𝐸(𝑦𝑦 − 𝑦𝑦�)2                                                 (4) 

There are many ways that to estimate the prediction error and one of these methods is the bootstrap method. In 

this paper, two methods of bootstrap will be used, the Efron’s bootstrap and Banks’ bootstrap, below we will 

review the two methods generally. In [2,5,6] Efron outlined a bootstrap method that depends on sampling with 

replacement from the original sample, and used it to estimate the bias and standard error of ant estimator. Efron 

explained that the bootstrap method is more efficient than the Monte Carlo method. By generating B bootstrap 

samples, the distribution of any statistic will be estimate by calculating the statistic from every bootstrap sample. 

The Efron’s bootstrap method can be used with different statistical inferences, see [7,8], these references give a 

broad picture of the bootstrap method and it is various applications in all applied statistical and mathematical 

aspects. Now we show the basic steps of the Efron’s bootstrap: 

• Construct 𝐹𝐹𝑛𝑛 , the empirical probability distribution by putting probability 1 𝑛𝑛�  to each value 

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, 𝐹𝐹𝑛𝑛(𝑥𝑥) = ∑ 𝐼𝐼(𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥) 𝑛𝑛⁄𝑛𝑛
𝑖𝑖=1 . It is the number of elements which are less than or equal to x 

in the sample divided by size of this sample. 

• Resample B samples of size n from the original sample, with replacement.  

• Calculate the statistic of interest 𝑇𝑇𝑛𝑛 from each sample to get 𝑇𝑇𝑛𝑛1∗ ,𝑇𝑇𝑛𝑛2∗ , … ,𝑇𝑇𝑛𝑛𝑛𝑛∗ . 

• Construct the empirical distribution of 𝑇𝑇𝑛𝑛1∗ ,𝑇𝑇𝑛𝑛2∗ , … ,𝑇𝑇𝑛𝑛𝑛𝑛∗  by placing probability 1 𝐵𝐵�  at each one of them. 

Banks [2] described new version of Efron’s bootstrap method, which we will refer to by Banks’ bootstrap. 

In this method Banks’ smooths Efron’s bootstrap by linear interpolation histospline smoothing among 

the jump points of empirical distribution. Histospline is a smooth density estimate based on the 

information in a histogram. This procedure is: 

• Take n observations which are real valued, one dimensional on a finite interval. 

• Create n+1 intervals between the n observations 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛+1 where 𝑥𝑥0 and 𝑥𝑥𝑛𝑛+1 are the end 

points of the possible data range. 

• Put uniformly distributed probabilities 1 (𝑛𝑛 + 1)⁄  over each interval. 

• Sample n observations from the distribution. 

• Calculate the statistic of interest. 

• Repeat the last two steps B times, to get B Banks’ bootstrap samples. 

In Banks’ bootstrap, the empirical distribution function is smoothed using linear interpolation histospline 

smoothing among the jump points. It spreads the probability 1 (𝑛𝑛 + 1)⁄  uniformly over any interval 

between two values of observations. 

3. Results and Discussion 

Here we will use the bootstrap methods we mentioned earlier to estimate the prediction error. Efron [7] 
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described the bootstrap estimate of prediction interval, this method resamples B bootstrap samples to estimate 

the model on each, and then fit the model to the original sample to get B estimates of prediction error. The 

average of B estimates is the overall estimate of prediction error. He shows the prediction error when the model 

(2) estimated from the bootstrap samples is applied to the original sample “error 1” and to the bootstrap sample 

itself “error 2”, but Efron improved the bootstrap estimate of prediction error by focusing on the difference 

between the two errors, it is called “optimism error” and added it to the average residual squared error, and 

called it “apparent error” ∑ (𝒚𝒚𝒊𝒊 − 𝒚𝒚�)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏 𝒏𝒏⁄ . The total of two errors is the bootstrap estimate of prediction error. 

In this paper we are studying more than one case, the first one when applying the Efron’s method which 

described earlier, and we will refer to it by “Method 1”, see [7]. The second case when applying the same model 

to the Banks’ bootstrap sample instead of original sample and called it “method 2”, which means we use two 

types of bootstrap in one process in “Method 2”. And use 𝑩𝑩 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 bootstrap samples to fit simple linear 

regression model with these cases. The Banks’ bootstrap method used here to resample the independent variable 

which has simple linear relationship with dependent variable. Data used here from Uniform (0,1), Beta (2,5) and 

Beta (5,2), to study the symmetric and skewed data, with different sample sizes. The size of bootstrap sample 

can be chosen different to the size of original sample but here we use the bootstrap sample the same size as the 

original sample. The Tables below illustrate the results of this study, each table shows the optimism error, 

apparent error and their total which represents the bootstrap estimate of prediction error. This was done with 

Method 1 and Method 2. 

Table 1: Prediction error if data is drawn from Uniform (0,1) 

 Method 1 Method 2 

n optimism          apparent          total optimism           apparent             total   

20 0.0053              0.0272             0.0325 0.0039               0.0198                0.0237 

50 0.0015              0.0201             0.0216 0.0183               0.0015                0.0198      

150 0.0005              0.0227             0.0232 0.0004               0.0170                0.0174 

200 0.0004              0.0214             0.0218 0.0003               0.0211                0.0214 

500 0.0002              0.0213             0.0215 0.0002               0.0211                0.0213 

1000 8.07𝑒𝑒−5            0.0203             0.0204 8.3𝑒𝑒−5               0.0202                0.0203 

2000 2.2𝑒𝑒−5              0.0207             0.0207 2.3𝑒𝑒−5               0.0208                0.0208 

5000 2.4𝑒𝑒−5              0.0209             0.0209 2.6𝑒𝑒−5               0.0207                0.0207 

 

Given the tables here, we see that judging the quality of the model using one type of the mentioned error types 

can be very optimistic or vice versa. So, it is best to use the total of the two types of error, optimism and 

apparent errors, to be the bootstrap estimate of the prediction error as indicated in [7]. We are able to see from 

the tables that the optimism error, generally, decreases as the sample size increases with all distributions 

discussed here, whereas the apparent error moves between increase and decrease, making the total follow the 

same path. In Table 1 we find that the lowest value of apparent error is 0.0015 with n=50 when using Method 2, 

while the lowest value of this error using Method 1 is 0.0201 with n=50. Tables 2 and 3 show that the smallest 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No  1, pp 274-279 

 

278 
 

value of apparent error is at sample size n=50 with Method 2 and at n=20 with Method 1.  

Tables 1 and 2 show that the use of Method 2 gives better results because the bootstrap estimate of prediction 

error is less in most cases.  

This is different from the results shown in Table 3 which show that sometimes Method 1 is better and 

sometimes the Method 2 is a better. Given Table 1 we find that the smallest value of the total is 0.0204 when 

using Method 1 and 0.0174 when using Method 2.  

In Table 2 the lowest value of the total is 0.0062 when dealing with the two methods, while the Table 3 shows 

us that the minimum value of the total is 0.0059 when using Method 1 and 0.0051 when using Method 2. This 

shows that the use of Banks’ bootstrap often produces better results most of the time. 

Table 2: Prediction error if data is drawn from Beta (2,5) 

 Method 1 Method 2 

n optimism          apparent          total optimism           apparent             total   

20 0.0013              0.0055             0.0068 0.0026               0.0111                0.0137 

50 0.0007              0.0064             0.0071 0.0004               0.0062                0.0066      

150 0.0002              0.0076             0.0078 0.0002               0.0064                0.0066 

200 0.0001              0.0071             0.0072 0.0001               0.0064                0.0065 

500 7.7𝑒𝑒−5              0.0069             0.007 2.8𝑒𝑒−5               0.007                  0.007 

1000 2.9𝑒𝑒−5              0.0065             0.0065 3.8𝑒𝑒−5               0.0062                0.0062 

2000 1.2𝑒𝑒−5              0.0068             0.0068 5.2𝑒𝑒−6               0.0065                0.0065 

5000 6.6𝑒𝑒−6              0.0062             0.0062 9.5𝑒𝑒−6               0.0063                0.0063 

 

Table 3: Prediction error if data is drawn from Beta (5,2) 

 Method 1 Method 2 

n optimism          apparent          total optimism           apparent             total   

20 0.0011              0.0050             0.0061 0.0013               0.0059                0.0072 

50 0.0008              0.0102             0.0110 0.0004               0.0047                0.0051      

150 0.0002              0.0057             0.0059 0.0002               0.0069                0.0071 

200 0.0001              0.0067             0.0068 0.0001               0.0065                0.0066 

500 7.7𝑒𝑒−5              0.0071             0.0072 4.9𝑒𝑒−5               0.0067                0.0067 

1000 3.7𝑒𝑒−5              0.0065             0.0065 9.7𝑒𝑒−6               0.0063                0.0063 

2000 1.3𝑒𝑒−5              0.0061             0.0061 1.1𝑒𝑒−5               0.0067                0.0067 

5000 5.7𝑒𝑒−6              0.0062             0.0062 7.9𝑒𝑒−6               0.0064                0.0064 
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4. Conclusion 

In this paper we discussed the methods of estimating prediction error of the simple linear regression model using 

two methods of bootstrap, Efron’s bootstrap and Banks’ bootstrap. The first method used the Efron’s bootstrap 

to fit the model and then apply it to the original sample, and the second one applies the same model to the 

Banks’ bootstrap sample. In both methods we used the total of optimism error and apparent error to be the 

bootstrap estimate of prediction error. We found that using Banks’ bootstrap sample instead of the original 

sample often gives better results, this gives us a better way to estimate the prediction error.  

5. Recommendations 

As we explained earlier, this study discusses estimating the prediction error of the simple linear regression 

models using bootstrap methods. This study can be extended in different ways, such as using bootstrap samples 

sizes which differ from the original sample size. Additionally, this study could be applied to different 

distributions or different regression models, this may require applying of a generalization of the Banks’ 

bootstrap method to work with real valued observations on infinite interval. 
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