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Abstract 

This paper presents an intelligent Model Reference Adaptive Control (MRAC) strategy based on a Simplified 

Recurrent Neural Network (SRNN) for nonlinear dynamical systems. This network is an enhanced version of a 

previously reported modified recurrent network (MRN). More precisely, the enhancement in the SRNN 

structure was realized by employing unity weight values between the context and the hidden layers in the 

original MRN structure. The newly developed Gbest-guided Gravitational Search Algorithm (GGSA) was 

adopted for optimizing the parameters of the SRNN structure. To show the efficiency of the proposed SRNN-

based MRAC, three different nonlinear systems were considered as case studies, including complex difference 

equations and the water bath temperature control system. From an extensive set of evaluation tests, which 

includes a control performance test, a disturbance rejection test, and a generalization test, the proposed SRNN-

based MRAC system demonstrated its effectiveness with regards to precise control and good robustness and 

generalization abilities. Furthermore, compared to other Neural Network (NN) structures, including the original 

MRN and the Multilayer Perceptron (MLP) NN, the SRNN structure attained superior results due to the 

utilization of a reduced set of parameters. From another study, the GGSA accomplished the best optimization 

results in terms of control precision and convergence speed compared to the original Gravitational Search 

Algorithm (GSA). 

Keywords: Modified Elman neural network; modified recurrent neural network; artificial neural network; gbest-

guided gravitational search algorithm; model reference adaptive control.  
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1. Introduction 

With the increased ability to understand aspects about systems, external disturbances, and operating conditions, 

intelligent control has become an effective strategy in various engineering and industrial applications. Heuristic 

reasoning and learning from previous experiences are the main features that enable intelligent control methods 

to achieve a human-like processing in solving a particular problem. In particular, Artificial Neural Networks 

(ANNs), fuzzy logic, and Evolutionary Algorithms (EAs) are the most popular techniques for developing 

intelligent control systems. Due to their generalization and learning capabilities, many control and identification 

problems have been successfully addressed with the aid of ANNs. However, static ANNs suffer from some 

limitations due to the absence of dynamical characteristics, which negatively affect the overall network 

approximation ability. For this reason, recurrent neural networks (RNNs) have attracted extra attention among 

researchers recently, particularly in the process control field [1, 2]. RNNs are used to acquire sequential or time-

varying patterns. In essence, a RNN has feedback (closed loop) connections [3]. RNNs can be farther divided 

into two types, depending upon the connections between layers as fully and partially recurrent networks. In 

Fully Recurrent Networks (FRNs), each node is connected to all other nodes. In addition, there might be self-

feedback connections in some nodes. On the other hand, in Partially Recurrent Networks (PRNs), only certain 

nodes have feedback connections with other nodes or with themselves. In fact, PRNs combine the advantage of 

feedforward and recurrent networks [3, 4], and they have been widely used in linear and nonlinear control 

design for many control problems.  

In the literature, one of the most widely used neural network types is the Elman Network (ELN), which was 

proposed by Elman [5]. Aiming at improving the dynamic characteristics and the approximation capability of 

the original ELN, Pham and Liu [6] proposed a modified ELN structure, which was called the Modified Elman 

Neural Network (MELN). The MELN was successfully employed for solving different modelling and control 

problems. For instance, Shiltagh [4] proposed to use adjustable weights that connect the hidden and the context 

layers to improve the performance of the MELN. This network structure, which was called the Modified 

Recurrent Network (MRN), was exploited to control nonlinear dynamical systems. Shyu and his colleagues [7] 

presented a neural networks based on a model reference adaptive speed control. To establish the training 

patterns, the robust observer-based model reference tracking control technique was used. Then, to robustly track 

a reference model for an induction motor drive, the trained neural network was used as the adaptive speed 

controller. Ge and his colleagues [8] utilized the MELN to control the speed of an ultrasonic motor. In another 

work, Thammano and Ruxpakawong [9] suggested a new strategy in defining the weights of the original ELN. 

More specifically, the authors suggested to use multi-valued weights based on the value of the input samples. 

Ma and Zhang [10] designed a model reference adaptive control (MRAC) system for the aero-engine based on 

the neural network sliding mode variable structure decoupling controller. Specifically, the Radical Basis 

Function (RBF) neural network was used as the output of the sliding mode control, and the sliding mode 

switching function was used as the neural network input. The weights of the RBF network were adjusted 

adaptively by the error between the reference model output and actual output. Zhou and his colleagues [11] 

designed a control method to control the air chamber pressure in the slurry shield tunneling utilizing the MELN. 

In order to accomplish a fast response for the real power control in hybrid generation systems, Huang [12] 

suggested an intelligent controller which combines a RBF neural network and a MLEN to achieve maximum 
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power point tracking in the power generation system. Fang and his colleagues [13] proposed 

a RBF NN to control the single-phase active power filter (APF) 

 using a model reference adaptive sliding mode structure. The RBF NN was utilized to approximate the 

nonlinear function and eliminate the modeling error in the APF system. Reference [14] proposed the application 

of the RBF based on a special type of neural networks which belongs to a class of associative memory neural 

networks. The RBF NN was used in a new method as a controller in the MRAC. In another work, Lutfy and 

Dawood [15] proposed another type of recurrent networks, namely a Self-Recurrent Wavelet Neural Network, 

which was used in the MRAC to control some nonlinear systems. 

It is worth to highlight that the above works used the general MELN structure that contains several sets of 

connection weights, which adds a complexity to the control system design.   

With regards to the training process, gradient-based methods are the most widely used techniques for training 

the ELN and the MELN [16]. Nevertheless, these training techniques have slow convergence speed and they 

might easily trapped at local minima of the optimization problem [11-17]. As better alternative training 

methods, Evolutionary Algorithms (EAs) are increasingly utilized to avoid the limitations of gradient-based 

optimization methods.  

As a newly developed optimization algorithm, the gravitational search algorithm (GSA), which was proposed by 

Rashedi and his colleagues [18], is a population-based search algorithm that uses Newton’s universal law of 

gravitation, mass interaction, and law of motion [19]. The GSA uses certain objects, which are known as agents, 

to perform the optimization process. The positions of these agents represent possible solutions for the 

optimization problem and the agent's performance is measured by the size of its mass. In this context, agents 

with heavy masses, which move slowly, apply strong gravitational forces and attract other agents with smaller 

masses. This process causes all agents to gradually move towards the global optimal solution [18, 20]. In the 

present work, to improve the approximation ability of the MRN proposed in [4], a Simplified Recurrent Neural 

Network (SRNN) is proposed and used within the MRAC structure. More precisely, the improvement was 

attained by using unity values for the weights that connect the context and the hidden layers in the original MRN 

structure. The proposed SRNN structure is used within the MRAC to control nonlinear systems. Moreover, to 

avoid drawbacks of gradient-based optimization methods, the newly developed Gbest-guided Gravitational 

Search Algorithm (GGSA), which is classified as an EA, is employed for optimizing the weights of the SRNN 

structure. The remaining parts of the paper are arranged as follows: Section 2 explains the structure of the 

proposed SRNN-based MRAC. A background of RNNs and an overview of training the SRNN are given in 

Section 3. Basic concepts of the GSA, the GGSA, and the procedure of applying the latter are discussed in 

Section 4. In order to show the efficiency of the proposed SRNN-based MRAC, an extensive set of evaluation 

tests and two comparative studies are conducted in Section 5. Finally, a few remarks are provided in Section 6 to 

conclude the paper. 

2. The SRNN-based MRAC Structure 

The idea of the MRAC is to define the required response of the controlled system by a reference model, which is 
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simply a plant of a known dynamical structure. The task of this model is to provide the desired output by 

applying a given input signal. Subsequently, by utilizing a suitable optimization technique, the main goal of 

MRAC design is to regulate the controller parameters by minimizing the difference between the outputs of the 

reference model and the controlled system [21]. Based on this design approach, the SRNN structure was used in 

this study as the controller to realize a nonlinear MRAC scheme.  

Figure 1 illustrates a schematic diagram of the suggested SRNN-based MRAC system. From this figure, it is 

clear that 𝑟𝑟(𝑘𝑘) is the reference input, 𝑢𝑢(𝑘𝑘) is the control action, 𝑦𝑦𝑚𝑚(𝑘𝑘 + 1) is the reference model output, 

𝑦𝑦(𝑘𝑘 + 1) is the actual system output, and 𝑒𝑒(𝑘𝑘 + 1) is the error between the outputs of the reference model and 

the system [21]. 

 

 

 

 

Figure 1: A schematic diagram of the SRNN-based MRAC 

It is important to notice that the design of the SRNN controller within the MRAC depends on the generalized 

inverse control technique. Hence, the SRNN structure is trained to act as an inverse controller, as demonstrated 

in Figure1. To illustrate this idea, consider the following nonlinear autoregressive moving average (NARMA) 

model, which is utilized for representing single-input single output (SISO) nonlinear systems [21-23]: 

 

𝑦𝑦(𝑘𝑘 + 1) = 𝑓𝑓�𝑦𝑦(𝑘𝑘),𝑦𝑦(𝑘𝑘 − 1),…,𝑦𝑦(𝑘𝑘 − 𝑛𝑛 + 1),𝑢𝑢(𝑘𝑘),…,𝑢𝑢(𝑘𝑘 − 𝑚𝑚 + 1)�, 

where 𝑦𝑦(𝑘𝑘) is the system output and 𝑢𝑢(𝑘𝑘) is the system input, 𝑓𝑓(.) is a nonlinear function, 𝑛𝑛 and 𝑚𝑚 are the 

orders of the system, and 𝑘𝑘 represents the discrete-time instant.  In order to derive the control law, it is assumed 

that Equation (1) above is invertible, which results in the following equation:  

 

𝑢𝑢(𝑘𝑘) = ℎ�𝑦𝑦𝑚𝑚(𝑘𝑘 + 1),𝑦𝑦(𝑘𝑘),𝑦𝑦(𝑘𝑘 − 1),…,𝑦𝑦(𝑘𝑘 − 𝑛𝑛 + 1),𝑢𝑢(𝑘𝑘 − 1),…,𝑢𝑢(𝑘𝑘 − 𝑚𝑚 + 1)�, 

where,  𝑦𝑦𝑚𝑚(𝑘𝑘 + 1) represents the reference model output at time instant (𝑘𝑘 +  1) and ℎ(.) is the inverse 

function of 𝑓𝑓 in Equation (1), such that: ℎ(.) = 𝑓𝑓−1(.). In order to realize the control law given in Equation (2), 

a suitable function approximator must be used to approximate the inverse function, ℎ(.). In particular, due to its 

remarkable nonlinear function approximation capability, the SRNN is employed in this work to achieve this 
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task. It can be seen from Figure (1) that the training of the SRNN structure is accomplished by decreasing the 

error signal between the outputs of the reference model and the actual system. More specifically, this signal of 

the error is given by the following equation [24]: 

𝐸𝐸 = 1
2
∑ (𝑦𝑦(𝑘𝑘 + 1) − 𝑦𝑦𝑚𝑚𝑁𝑁
𝑘𝑘=1 (k + 1))2,                                            (3) 

where 𝑁𝑁 represents the samples number. In particular, this error signal is employed as the performance index to 

be reduced by a suitable optimization method, specifically the GGSA in this work, as illustrated in Figure 1. 

3. Background of Recurrent Neural Networks 

This section clarifies the structure of the SRNN controller. At first, an outline of the basic and the modified 

Elman networks is given. After that, the structure of the SRNN is explained in details.  

3.1 Basic and Modified Elman Networks 

The most commonly known architecture of RNNs is the ELN. This network extends the feedforward network 

using context nodes whose task is to remember the network's previous action. At a specific time k, the input 

nodes take the first input pattern and together with the context nodes activate the nodes in the hidden layer. 

Then, the hidden layer nodes activate the output nodes and at the same time activate the context nodes. At the 

next time step, k+1, the above steps are repeated and this time the context nodes store the previous outputs of the 

hidden nodes at time k. In the original ELN, the feedback connection weights between the hidden and the 

context layers are fixed and all the other connection weights in the network are adjustable [4, 5, 25, 26]. 

To improve the approximation capability of the basic ELN, a modified version has been proposed in [6], which 

was called the Modified Elman Network (MELN). The idea of the MELN is to add other feedback connections 

to the context units, which are known as the "self-feedback" links, each of which with a fixed gain to boost the 

approximation capability of the basic ELN. Specifically, each self-feedback connection gain is fixed, and can be 

found manually from 0 to 1 [4]. 

3.2 The Simplified Recurrent Neural Network (SRNN)  

The problem of finding suitable values for the gains, 𝛼𝛼, in the self-feedback connection in the MELN is 

inconvenient and time consuming, particularly when the network has a large number of hidden layer nodes. 

Hence, a suggestion was made to find the optimal gain values by a particular optimization method, and 

moreover to adopt adjustable weights between the hidden and context layers [4]. This network structure was 

called the Modified Recurrent Network (MRN). As a matter of fact, the MRN structure includes a large number 

of parameters which might negatively affect the network approximation ability, since more parameters cause 

more uncertainty. Thus, it was suggested to use unity values for the weights connecting the context and the 

hidden layers in the original MRN structure. This structure is called the simplified recurrent neural network 

(SRNN), which can be considered as a simplified version of the original MRN. The SRNN structure is shown in 

Figure 2. 
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Figure 2: Structure of the SRNN controller. 

Evidently, Figure 2 shows that the SRNN structure consists of an input layer, a hidden layer, and an output 

layer, which are explained below.  

Layer 1: This layer is the input layer, which consists of two parts, namely real inputs and context units. The real 

units convey the input variables, (𝑥𝑥1, 𝑥𝑥2,…, 𝑥𝑥𝑛𝑛), to the hidden layer. The output of each context node is 

calculated by the expression below: 

mc
co(k)=βc(k)mc

co�k-1�+ξc(k)hC�k-1�,            (4) 

Where c=1, 2, ⋯, C, and C is the number of nodes in the context layer. Beta (𝛽𝛽) and Zeta (𝜉𝜉) are adjustable 

connections from context and hidden layers, respectively. ℎ𝑐𝑐(𝑘𝑘 − 1) and 𝑚𝑚𝑐𝑐
𝑐𝑐𝑐𝑐(𝑘𝑘 − 1) are past outputs of the 

hidden and the context layers, respectively. 

Layer 2: This is the hidden layer whose task is to activate both the output and the context layers. The 

response of the 𝑚𝑚𝑡𝑡ℎ hidden node is expressed as follows: 

ℎ𝑚𝑚(𝑘𝑘) = 𝑓𝑓 ��𝑚𝑚𝑐𝑐
𝑐𝑐𝑐𝑐(𝑘𝑘)

𝐶𝐶

𝑐𝑐=1

 + �𝑤𝑤𝑚𝑚𝑚𝑚ℎ𝑥𝑥𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑘𝑘)� , 

 

where m=1, 2, ..., C, and C is the number of nodes in the hidden layer which is also equal to the number of 

nodes in the context layer, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ input variable, where i = 1, 2, …, n and n represents the number of nodes 

5)( 

 

 

 

𝑦𝑦(𝑘𝑘) 

ℎ𝑚𝑚(k) 

 ℎ1(k) 

𝑚𝑚𝑐𝑐𝑐𝑐(k) ℎ(𝑘𝑘) 

𝑣𝑣   
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in the input layer, f(.) represents a nonlinear activation function, and 𝑤𝑤𝑚𝑚𝑚𝑚
ℎ𝑥𝑥  represents a weight between the ith 

input node and the mth hidden node. 

Layer 3: There is a single node in this layer, known as the output layer, which produces the output of the SRNN 

structure using the following equation: 

y(k) = ∑  vjhj(k)m
j=1 , 

 

where 𝑣𝑣𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ  connection weight between the𝑗𝑗𝑡𝑡ℎhidden node and the output node, while 𝑦𝑦(𝑘𝑘) denotes the 

control action at time instant (k). 

3.3 Training the SRNN controller   

In light of the preceding discussion, it is obvious that the SRNN structure possesses different modifiable 

weights, as shown below: 

 

𝑆𝑆 = [𝛽𝛽𝑗𝑗𝜁𝜁𝑗𝑗𝑤𝑤𝑚𝑚𝑚𝑚ℎ𝑥𝑥𝑣𝑣𝑗𝑗] 

For achieving the required SRNN performance, the optimal values for the weights in Equation (7) must be 

obtained. To achieve this objective, the GGSA is utilized in this work as the optimization method for the SRNN-

based MRAC controller.  

4. Gravitational Search Algorithm  

To explain the GSA optimization method, assume that there are N agents, each with a dimension D, that are 

scattered in a particular search space. In this search space, each agent has a specific position, as shown below: 

 

xi
 =[xi

1, …,xi
d,…,xi,

D],  

 

where xi
d denotes the ith agent position in the 𝑑𝑑𝑡𝑡ℎdimension. 

The top 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 agents apply a gravitational force that can be determined by the following formula [18]: 

 

(8) 

6)( 

(7) 
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Fi
d(t)=∑ Randj  .  Fij

d(t)j∈Kbest , j≠i                   (9) 

 

Fij
d(t)=G(t). Mi(t) . Mj(t)

Rij(t)+ ε
 . �xj

d(t)  -  xi
d(t)�                     (10) 

where i = 1, 2, . . . , N and j = 1, 2, . . . , D. Randj is a random number from [0, 1], G(t) is the gravitational 

coefficient, Mi(t) and Mj(t) signify masses of solutions i and j, respectively, Rij(t) is the Euclidian distance from 

solution i to solution j, ε  is a small constant, and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 denotes a set with the first K agents having the best 

fitness values.  

The parameters 𝐺𝐺(𝑡𝑡) and Rij(t) in Equation (10) are obtained as given below: 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺0 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛿𝛿 ∗
𝐿𝐿

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
) 

 

Rij(t)=�xi
d(t),xj

d(t)�
2
 

where 𝐺𝐺0 is the initial gravitational constant, 𝛿𝛿 is the decrease coefficient,  𝐿𝐿 is the current iteration, and 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  is 

the maximum number of iterations, respectively. Additionally, for the 𝑖𝑖𝑡𝑡ℎ solution 𝑋𝑋𝑖𝑖 , its mass is defined by: 

 

𝑀𝑀𝑖𝑖
 =

𝑆𝑆𝑖𝑖 (𝑡𝑡)
∑ 𝑆𝑆𝑗𝑗 (𝑡𝑡)𝑁𝑁
𝑗𝑗=1

 

 

𝑆𝑆𝑖𝑖 (𝑡𝑡) =
𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖(𝑡𝑡) −   𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) −   𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) 
, 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖(𝑡𝑡) represents agent's i fitness at time t, and worst(t) and best(t) represent the minimum and the 

maximum fitness values (for a minimization problem) at time t. In particular, worst(t) and best(t) are found 

according to the following expressions [18]: 

worst(t)= minj∈[1,….,N] Fitj(t)                    (15) 
 

 

 

(11) 
 

(12) 

(13) 
 

(14) 
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best(t)=𝑚𝑚𝑚𝑚𝑚𝑚j∈[1,….,N] Fitj(t)                     (16) 
 

Then, the next step is to find the acceleration of each agent, as given below [18]: 

aij
d=

Fij
d

Mi
                                                (17) 

 

Subsequently, the new velocity and position of each agent are determined as follows: 

vij
 𝑑𝑑(t+1)=randi*vij

d(t)+aij
d(𝑡𝑡)                        (18) 

 

 

xij
𝑑𝑑(t+1)=xij

d(t)+vij
d(𝑡𝑡)                   (19) 
 

4.1 Gbest-Guided Gravitational Search Algorithm  

Population-based heuristic algorithms are built using two main operations, namely exploration and exploitation. 

Expanding the search space is the task of exploration, while further searching the promising solution areas to 

find the optimal solution is the objective of the exploitation. In general, exploration is performed during the 

early iterations. With progression of iterations, exploration gradually decreases while exploitation gradually 

increases to avoid the problem of getting stuck at local minima. To ensure the best possible optimization 

performance, there should be a reasonable compromise between the exploration and the exploitation operators 

[18]. Nonetheless, several studies proved that the original GSA has a relatively slow and ineffective exploitation 

[27- 29]. Therefore, the authors in [27] proposed a modified variant of the GSA and they called it the Gbest-

Guided Gravitational Search Algorithm (GGSA) for enhancing the exploitation of the GSA using a low-cost 

method. Specifically, the GGSA preserves and utilizes the position of the best agent, which is known as the 

global best (gbest) solution, achieved so far to guide the movement of other agents towards the global optimal 

solution. This is done by adding an additional velocity component related to the gbest agent, which aids in 

preventing the agents from stagnation in local minima of the search space. Therefore, two advantages are gained 

from the above searching strategy. Firstly, unlike the procedure in the original GSA, the agent with the best 

fitness function, i.e. the gbest, obtained thus far is saved. Secondly, this gbest agent is used to accelerate the 

movement of the other agents towards the global solution of the optimization problem. In more details, this 

searching proposal is provided as follows: 

vi(t+1)=  rand  *  vi(t) +  𝑞́𝑞1  *  aci(t)  +  𝑞́𝑞2  *  (gbest  -  xi(t)), 

 

where vi (t) is agent's i velocity at time t,  𝑞́𝑞1 and  𝑞́𝑞2 are accelerating coefficients, rand denotes a random 

number between [0, 1], aci (t) is agent's i acceleration at time t, and gbest represents the best solution position 

(20) 
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obtained thus far.  

In the GGSA, all the agents are randomly initialized. Then, the gravitational force and the gravitational constant 

are obtained utilizing Equations (9) and (11), respectively. Next, Equation (17) is used to find the acceleration of 

each agent. After updating the position of the gbest achieved until the current iteration, Equation (20) is used to 

compute the velocity of each agent. Finally, Equation (19) is used to update the position of each agent. This 

process terminates by satisfying a certain stopping condition [27].  

4.2 The Procedure of Applying the GGSA for Optimizing the SRNN Controller 

In this work, the proposed SRNN-based MRAC controller is trained by the GGSA. Figure 3 shows the 

flowchart of the GGSA [27]. The following steps clarifies the procedure of the optimization method:  

Step 1: Specify the agents' number, the maximum number of iterations, and the coefficients of the gravitational 

constant, namely G0 and 𝛿𝛿.  

Step 2: Randomly generate an initial population of N agents within specific limits. Each of these agents is the 

complete modifiable weights of a single SRNN controller. 

Step 3: Set t = 1, where t is the iteration counter.  

Step 4: Determine each agent's cost function utilizing the Integral Square of Error (ISE) having the following 

expression: 

ISE=0.5  � e2(k),
T

t=1

 

Where 𝑒𝑒(𝑘𝑘) represents the control error between the reference signal and the actual system output at time 

sample k and T is the total number of time samples. Subsequently, the fitness of each agent is obtained as 

follows:  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
1

𝐼𝐼𝐼𝐼𝐼𝐼 + 𝜀𝜀
  

where ε is a small number for evading the zero division. 

Step 5: For the first iteration, the agent with the largest fitness function is considered as the global best solution. 

However, for the remaining iterations, if an agent achieves a larger fitness function compared with the global 

best solution, this agent is assigned as the current global best solution. 

Step 6: Update the gravitational constant according to Equation (11) and find the mass of each agent utilizing 

Equation (13).  

(22) 
 
 
 

(21) 
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Step 7: For each agent, obtain the gravitational force applied by the top Kbest solutions using Equation (9). 

Step 8: Determine the acceleration of each agent utilizing Equation (17). 

Step 9: Find the velocity of each agent utilizing Equation (20). 

Step 10: Update the position of each agent using Equation (19).  

Step 11: When the maximum number of iterations is achieved, then the current gbest position represents 

the final optimized SRNN weights. Otherwise, set t = t + 1 and go back to Step 4. 

5. Simulation Results 

Several simulation tests and comparative studies have been conducted in this section to investigate the 

effectiveness of the proposed SRNN-based MRAC, as depicted in Figure 1. By adopting the training procedure 

described in Section 4.2, the GGSA was employed to optimize the parameters of the SRNN controller. The main 

parameters in the GGSA including number of iterations, initial gravitational constant, and decrease coefficient 

were set to 500, 10 and 10, respectively. Moreover, for all controlled systems, only six hidden layers were used 

for the SRNN structure. The above settings for the GGSA and the SRNN controller were satisfactory to 

guarantee accurate control results.  

5.1 Normal Control Tests 

The efficiency of the proposed SRNN-based MRAC controller is evaluated in controlling three different 

nonlinear systems including a nonlinear non-minimum phase system, a water bath temperature control system, 

and a nonlinear minimum phase system. 

Case Study 1: 

As a first case study to evaluate the control system, the SRNN controller is used to control a nonlinear non-

minimum phase system described by the following discrete-time equation [30]: 

 

𝑦𝑦(𝑘𝑘 + 1) =
𝑦𝑦(𝑘𝑘)𝑦𝑦(𝑘𝑘 − 1)

1 + 𝑦𝑦2(𝑘𝑘) + 𝑦𝑦2(𝑘𝑘 − 1)
+ 𝑢𝑢(𝑘𝑘) + 1.5(𝑘𝑘 − 1) 

The SRNN-based MRAC, shown in Figure (1), is required to track the following reference input: 

 

𝑟𝑟(𝑘𝑘) = 0.5𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
150

� + 1.2𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
250

� 

(23) 
 
 
 

(24) 
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The following formula is used as the reference model for the system, 

 

𝑦𝑦𝑚𝑚(𝑘𝑘 + 1) = 0.6𝑦𝑦𝑚𝑚(𝑘𝑘) + 𝑟𝑟(𝑘𝑘) 

 

Figure 3: The Aflowchart of the GGSA 

As a control objective, it is desired to force the system output to track the reference signal. Figure 4 illustrates 

the system response, the control action, and the best objective function against iterations. Specifically, Figure 

4(a) demonstrates the remarkable capability of the suggested SRNN-based MRAC controller in controlling the 

nonlinear system model, where it is evident that the system response tracks the desired reference signal. The 

control signal can be clearly seen from Figure 4(b). Figure 4(c) illustrates the best objective function against 

iterations.  

 

(25) 
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(a) 

 

(b) 

 

(c) 

Figure 4: Case Study 1 (a) system's output and reference signal (b) control action (c) best cost function against 

iterations. 

Case Study 2: 

This is a nonlinear plant expressed by the following difference equation [30]: 

𝑦𝑦(𝑘𝑘 + 1) =
𝑦𝑦(𝑘𝑘) + 𝑦𝑦(𝑘𝑘 − 1)

1 + 𝑦𝑦2(𝑘𝑘) + 2𝑦𝑦2(𝑘𝑘 − 1)
+ 𝑢𝑢(𝑘𝑘)       (26) 

The reference signal is as follows: 

r(k)=0.5[sin(10πk) +sin(25πk+0.5)]      (27) 
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While the required system behavior is given by the following reference model equation: 

ym(k+1)=0.5ym(k)+0.3ym�k-1�+r(k)     (28) 

The simulation results of this case study are given in Figure (5). With a zero steady-state error and with no 

oscillations, Figure 5(a) shows that the SRNN-based MRAC controller has achieved a good performance in 

controlling this system. As for the control signal, it was indicated in Figure 5(b). Minimization of the 0.5ISE 

criterion is illustrated in Figure 5(c). 

 

(a) 

 

(b) 

 

(c) 

Figure 5: Case Study 2 (a) system's output and reference signal (b) control action (c) best cost function against 

iterations. 
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Case Study 3: 

In this case study, the water bath temperature control system is considered with the following equation [31, 32]: 

𝑦𝑦(𝑘𝑘 + 1) = 𝑎𝑎(𝑇𝑇𝑠𝑠)y(k) + 𝑏𝑏(𝑇𝑇𝑠𝑠)
1+𝑒𝑒0.5𝑦𝑦(𝑘𝑘)−𝑦𝑦 𝑢𝑢(𝑘𝑘) + [1 − 𝑎𝑎(𝑇𝑇𝑠𝑠)]𝑌𝑌0,     (29) 

where 𝑦𝑦(𝑘𝑘) is the output temperature of the system in ℃, 𝑢𝑢(𝑘𝑘) is the control input, Y0 represents the room 

temperature in ℃, 𝑎𝑎(𝑇𝑇𝑠𝑠) = 𝑒𝑒−𝛼𝛼𝑇𝑇𝑠𝑠 , and 𝑏𝑏(𝑇𝑇𝑠𝑠) = 𝛽𝛽
𝛼𝛼

(1 − 𝑒𝑒−𝛼𝛼𝑇𝑇𝑠𝑠). Specifically, the following settings were 

used: 𝑎𝑎=1.00151 x 10-4, β=8.67973 x 10-3,𝛾𝛾 = 40, 𝑌𝑌0 = 25 C  and 𝑇𝑇𝑠𝑠 = 30𝑠𝑠. These values correspond to a real 

water bath system [32].  

The desired water temperature in ℃ is described by the following signal: 

r (k)=

⎩
⎪
⎨

⎪
⎧

34                                              
34 + 0.4(𝑘𝑘 − 30)                       
44 + 0.8(𝑘𝑘 − 50)                       
60 + 0.5(𝑘𝑘 − 70)                       
70,                                                  

           𝑘𝑘 ≤ 30
30 ≤ 𝑘𝑘 ≤ 50
50 ≤ 𝑘𝑘 ≤ 70
70 ≤ 𝑘𝑘 ≤ 90

  90 ≤ 𝑘𝑘 ≤ 120

         (30) 

The following reference model was used [33]:  

𝑦𝑦𝑚𝑚(𝑘𝑘 + 1)=0.6𝑦𝑦𝑚𝑚(𝑘𝑘) + 0.4𝑟𝑟(𝑘𝑘)          (31) 

Figure 6 illustrates the output response, the control signal, and the best 0.5ISE against the iterations. In 

particular, Figure 6(a) illustrates the excellent performance of the SRNN-based MRAC controller, where it is 

obvious that the system response is practically identical to the reference signal. Figure 6(b) shows the control 

action, while the decrease in the 0.5ISE against 500 iterations is depicted in Figure 6(c).  

 

(a) 
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(b) 

 

(c) 

Figure 6: Case Study 3 (a) system's output and reference signal (b) control action  (c) best cost function against 

iterations. 

5.2 Robustness Tests 

The aim of these tests is to examine the robustness of the SRNN-based MRAC system in handling unexpected 

external disturbances. Particularly, these tests were performed by injecting external disturbances of 50 percent 

of the controlled system response during only the testing phase. During different periods of the simulation time, 

these disturbances last a period of 10 samples. More precisely, these disturbances were encountered during the 

following intervals: "161 ≤ k ≤ 171, 361 ≤ k ≤ 371, 561 ≤ k ≤ 571 and 761 ≤ k ≤ 771", for plant 1, 

and at the intervals 30 ≤ 𝑘𝑘 ≤ 39 𝑎𝑎𝑎𝑎𝑎𝑎 60 ≤ 𝑘𝑘 ≤ 69, for Plant 3. For the water bath temperature control 

system, a disturbance of −3℃ was applied at the 50th sample. As an important issue in these tests, the above 

disturbances have been only applied throughout the controller testing stage and not throughout the training 

stage, which further complicates the SRNN-based MRAC controller since it is not trained to deal with such 

unexpected disturbances. Figure 7(a), (b), and (c) clearly shows the robustness of the proposed controller in 

attenuating the disturbances applied for Plants 1, 2, and 3, respectively, where it is clear that the controller has 

done well both during and after the effect of each disturbance.      
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(a) 

 

(b) 

 

(c) 

Figure 7: Robustness tests for (a) system 1 (b) system 2 (c) system 3. 

5.3 Generalization Tests 

These tests were made for demonstrating the generalization capability of the proposed controller by following 

testing signals that are completely different from the training signals. In this regard, the same training signals 

defined in Equations (24), (27) and (30) were used for Plants 1, 2 and 3, respectively. 
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On the other hand, the controller testing phase was made by the following signals: 

𝑟𝑟(𝑘𝑘)=0.5𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
25

� + 1.2𝑠𝑠𝑠𝑠𝑠𝑠 �
2𝜋𝜋𝜋𝜋
100

�                    (32) 

𝑟𝑟(𝑘𝑘) = 0.5[𝑐𝑐𝑐𝑐𝑐𝑐(15𝜋𝜋𝜋𝜋) + 𝑐𝑐𝑐𝑐𝑐𝑐(35𝜋𝜋𝜋𝜋 + 0.5)]       (33) 

r (k)=

⎩
⎪⎪
⎨

⎪⎪
⎧

25,                                                   
25 + 0.4(𝑘𝑘 − 20)                       
33                                                   
33 − 0.2(𝑘𝑘 − 50)                       

29                                                   
29 + 0.5(𝑘𝑘 − 80)                       

39                                                   

            𝑘𝑘 ≤ 20
 20 ≤ 𝑘𝑘 ≤ 40
  40 ≤ 𝑘𝑘 ≤ 50
  50 ≤ 𝑘𝑘 ≤ 70
70 ≤  𝑘𝑘 ≤ 80

   80 ≤ 𝑘𝑘 ≤ 100
100 ≤  𝑘𝑘 ≤ 120

 

Equations (32), (33) and (34) represent the testing signals for Plants 1, 2 and 3, respectively. Figure 8(a), (b), 

and (c) illustrates generalization results of Plants 1, 2, and 3, respectively. From these results, it can be inferred 

that the SRNN-based MRAC successfully followed the testing signals, which were entirely unrelated to the 

training signals for all the plants.   

 

(a) 

 

(b) 

(34) 
 
 
 
 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2019) Volume 51, No  1, pp 103-125 

121 
 

 

(c) 

Figure 8: Generalization tests for (a) Plant 1 (b) Plant 2 (c) Plant 3. 

5.4 Comparing the Performance of the SRNN Controller with those of other Controllers  

The performances of the proposed SRNN controller, the Modified Recurrent Network (MRN) controller, and 

the Multilayer Perceptron (MLP) controller are compared in this section in terms of control accuracy and 

execution time. The same optimization steps described in Section 4.2 were used for optimizing the parameters 

of each of the above networks to attain a fair and accurate comparative study.  

Due to the utilization of several random operators by the GGSA, the final optimization results might slightly 

change in different runs. In order to deal with this issue, 10 runs have been conducted for each controller to 

account for the stochastic nature of the optimization method. The average of the 10 runs was then used to assess 

the result of each controller. As it is evident from Table 1, which summarizes the comparison results, the SRNN 

controller achieved a superior performance in comparison to the MRN and the MLP controllers. As an 

indication for the control accuracy, the SRNN controller produced the least values for the performance index 

compared to the other controllers. Moreover, as an indication for the processing speed, the SRNN controller 

took the shortest times among the times achieved by the other controllers. 

5.5 Comparing the GGSA Optimization Performance with those of other Methods 

This section is dedicated for comparing optimization results of the GGSA and the original GSA as the 

optimization methods for the proposed controller.  

As was done in the previous section and for a fair comparison, 10 runs have been conducted for each 

optimization method and the average result has been taken. Obviously, Table 2, which illustrates the comparison 

results, demonstrates the advantage of using the GGSA algorithm compared to the original GSA. Specifically, 

the GGSA algorithm has accomplished the best control accuracy by producing the least ISE values for all the 

plants. Moreover, the GGSA has required the shortest processing times in comparison with the original GSA for 

all the plants. 
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Table 1: Comparison results of the MLP, the MRN, and the proposed SRNN. 

NETWORK 

TYPE 

CRITERION 

(AVERAGE OF  

TEN RUNS) 

CONTROLLED PLANT 

Plant 1 Plant 2 PLANT 3 

MLP ISE 12.68119 3.14045 6.36437 

Time (sec) 45.0728 13.1157 13.6983 

MRN ISE 2.9485 2.0952 3.17774 

Time (sec) 40.2345 12.5567 12.8119 

SRNN ISE 0.01912 0.079 0.46011 

TIME (SEC) 33.7519 9.9078 9.845 

 

Table 2: Comparison results of the GSA and the GGSA in training the proposed SRNN controller. 

NETWORK 

TYPE 

CRITERION 

(AVERAGE OF  

TEN RUNS) 

CONTROLLED PLANT 

Plant 1 Plant 2 PLANT 3 

GSA ISE 40.6841 27.2595 31.1224 

Time (sec) 39.2053 10.0862 11.2893 

GGSA ISE 0.01912 0.079 0.46011 

TIME (SEC) 33.7519 9.9078 9.845 

 

6. Conclusions 

In this paper, a SRNN-based MRAC controller was proposed for controlling nonlinear dynamical systems. The 

structure of the SRNN is an enhanced version of a previously published MRN structure. The enhancement has 

been attained by using unity values for the weights connecting the context and the hidden layers in the original 

MRN structure. For the purpose of optimizing the weights of the proposed controller, the recently suggested 

GGSA was exploited. This training method has done well by reducing the ISE to the least values for all the 

considered plants. By controlling three different nonlinear systems, the results of an extensive assessment tests 

clearly indicates the efficiency of the proposed controller with regards to precise control, robustness ability, and 

generalization ability. Compared with other controllers, the SRNN structure has shown its superiority with 

regards to control performance and processing time. In addition, compared to the original GSA, the GGSA has 

achieved the best control precision and the shortest processing time.   
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