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Abstract 

Uganda is the second largest global producer of bananas and the industry generates different waste residues both 

at production and processing levels. This study aimed at assessing the state of banana processing, waste 

generation and its characterization for evaluation as feedstock for biogas production. The study was undertaken 

through a reconnaissance visit to western Uganda, one of the most banana producing regions. The information 

was collected following standard qualitative methods and laboratory analysis. Results revealed that processing 

of banana fruits mainly involved manual peeling of fruits to generate fresh pulp and large quantities of banana 

waste. The waste contained more than 80 % moisture content and volatile solids. It also had higher carbon 

content than total nitrogen that translated into a high C:N ratio of 41:1. The lignocellulose content comprised 

cellulose 21.16 %, hemicelluloses 10.46 % and lignin 11.31 %. The Biochemical Methane Potential (BMP) test 

showed a methane yield of 0.436 m3 CH4/KgVS which was higher than 0.340 m3 CH4/KgVS for grass. The 

highest methane production of 79.9 ml CH4/gVS/day was recorded at a retention time of 24 days. These results 

showed that banana waste was a favorable feedstock for biogas production through anaerobic digestion. 

Appropriate pre-treatment of lignocellulose would be required to enhance feedstock digestibility to improve 

biogas yield. The study concluded that utilization of banana waste via anaerobic digestion to produce biogas was 

the most economically viable option to alleviate the industry’s energy scarcity. 
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1. Introduction  

Banana production systems and banana fruit processing accumulate large quantities of waste residues due to 

high quality demands of the markets [23]. The East African highland cooking banana subgroup (AAA-EA 

group) locally called matooke, is the major grown variety and a leading staple food [49]. Studies on banana 

production have shown that over 70% of the farmers in major producing districts within the Lake Victoria basin 

grow bananas as a primary crop and over 50% depend on banana for food and income security [9]. Uganda is 

the second largest global producer of bananas after India and the leading in Africa, with annual production 

estimated at 9.77 million tonnes [22, 48]. Generally, crop production and processing produce huge amount of 

waste termed as agricultural waste [38]. Banana production, post-harvest handling (market value chain) and the 

ultimate processing to generate edible fruit pulp are all accompanied by release of large volumes of inedible 

residues that constitute the banana waste. Banana waste (BW) comprises: rotten/damaged fruits, peels, fruit-

bunch-stem (stalks), leaves, fibers, pseudo-stem, and rhizome [1]. As a matter of fact, it is estimated that more 

than three million tonnes of banana waste are generated annually in the country [45, 49]. Studies on banana post 

harvest losses (PHL) by Asha and his colleagues [6] revealed that poor banana handling methods along the 

market value chain can lead to a loss of 9.6% of mature banana fruits mainly as a result of short green shelf life 

and rapid ripening. Such PHL that mainly occur during high production with limited market, can be 

circumvented by industrial banana processing into dried banana chips that can serve as the raw material for 

value-added products such as starch and flour, for both export and local food security. Thus, the production and 

processing that release major waste streams remain the major challenge. However, Uganda’s banana 

industrialization relies mainly on costly imported petroleum products for fuel energy and is grappling with 

inadequate and expensive energy [24]. Hence, utilization of banana waste as feedstock for energy production to 

relieve the banana industry from both energy scarcity and reliability can be the best option and first priority for 

managing banana waste in Uganda. Among the applicable waste-to-energy technologies, anaerobic digestion to 

generate biogas has been recommended as the most appropriate for banana waste due to it being rich in organic 

matter with high moisture content [24, 47]. 

In biogas milieu, the term feedstock is defined as any substrate that can be converted to methane by anaerobic 

bacteria [46].  Generally, biogas feedstock comprises of all compounds with a substantial amount of organic 

matter that is finally converted to mainly methane and carbon dioxide through anaerobic digestion. Biogas 

feedstocks range from readily degradable animal manure, wastewater sludge, and agricultural wastes to 

complex lignocellulosic biomass that contains high-solid content. Besides, toxic compounds that contain 

organic matter may also be biomethanised depending on the technology applied [46]. Nevertheless, traditional 

feedstock for anaerobic digestion has mainly been associated with animal manure (pig, cattle, and poultry) 

and sewage sludge from wastewater treatment plants. The use of these feedstocks in anaerobic digestion has 

been mainly to promote good sanitation and local utilization of biogas. However, the increased craving for 

renewable energy forms for industrial purposes accompanied by the demand for new eco-friendly waste 

management strategies has broadened the search for alternative biogas feedstocks. This has introduced 

new field of feedstock sources such as energy crops and the industrial wastes such as residues from 

agro-processing, slaughterhouses and diaries as well as organic fraction of municipal solid wastes 

(OFMSW) as shown in Figure 1. Clearly, agriculture accounts for the largest potential sources of 
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feedstocks for biogas production and includes the harvest remains, animal manure, weeds and energy 

crops. 

 

Figure 1: Major sources of feedstocks for anaerobic digestion (adapted from Steffen and his colleagues 

[46] 

Animal manure, as feedstock for biogas production, is popular mainly due to the biotechnological ease of 

handling during anaerobic digestion. For instance, cow slurry has inherent microbial flora necessary for 

anaerobic digestion of the feedstock to generate biogas. Typically, cow’s rumen is one of the excellent rich 

sources of methanogenic bacteria required for bioreactor start-up and hence using such animal manure offsets 

the requirement for feedstock inoculation. However, using animal manure as biogas feedstocks generates less 

biogas when compared with fresh plant biomass. This low biogas yield may be attributed to the fact that animal 

manure, probably is not well balanced in other nutrients required for balanced microbial growth, but rather 

containing complex polysaccharides such as lignocelluloses. These are not only hard to digest, but they also 

require consortia of microorganisms for complete breakdown. The high ligno-cellulose content of waste 

substrate such as plant biomass has been reported to slow down the bio-gasification process primarily due to 

limited microbial hydrolysis of complex polysaccharides abundant in such waste [39]. A research study by 

Martin-Ryals, [31] however, reported that an eco-friendly and inexpensive way of effective hydrolysis of ligno-

cellulosic biopolymers can be achieved by microbial pre-treatment. Effective hydrolysis is only by synergistic 

interactions and co-metabolism of different microbial strains mainly of fungal origin and a few rare bacterial 

strains [53]. 

Moreover, anaerobic digestion has a superior advantage of coupling energy (biogas) generation along with plant 

organic fertilizer (bioslurry) generation at minimal net operational energy requirement. Other advantages of 
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anaerobic digestion (AD) process are: reduction in wastes’ pathogens, smaller land suitability and decrease in 

waste’s pollution potential to levels that are non toxic to the environment. However, physical-chemical nature of 

the feedstock influences the bioreactor configuration (bioreactor design and operational parameters) and has a 

comprehensive effect on liquor microbial biochemistry that ultimately alters the overall AD process. 

Thus banana waste must be characterized prior to use as feedstock for biogas production. Banana waste 

characterization and use as substrate feed for biogas production is limited to biovalorization studies by Salyeem 

and his colleagues [41] and co-digestion experiments by Kirtane and his colleagues [28,49]. However, thorough 

characterization of banana waste from mixed streams containing fruit bunch stalks, pseudo-stems and stem 

fibers was never investigated. Besides, the composition of banana waste varies considerably depending on the 

variety/cultivar grown, soil, agronomic practices, type of processing, season, geographical origins and also 

the varying degree of ripeness and post-harvest handling [41]. As such, each waste fraction from banana 

processing needs to be characterized separately, to provide baseline data for future value addition. Hence, a 

comprehensive assessment of the quantity and composition (quality) of the feedstock is required prior anaerobic 

digestion. The objective of this research study was to assess the key steps in processing of green bananas into 

pulp, and auditing and characterization of the major resulting residual wastes namely peels, peduncle (fruit-

bunch stalk) and fruit discard, in order to evaluate their potential as feedstocks for biogas production. Therefore, 

the physicochemical analysis of composite banana waste and the biochemical quality and feasibility for use of 

banana waste as a feed stock for biogas production are reported.  

2. Methodology  

2.1. Assessment of banana processing and banana waste audit 

A banana waste audit was done through a reconnaissance visit to western Uganda, one of the most banana 

producing regions in the country [6]. Information regarding the nature and type of processing, quantity and 

quality of waste generated, and current waste management methods was collected through guided survey along 

the processing plant, open-ended interviews, photography and sampling for laboratory analysis [37]. Waste 

quantification and characterization was done by integration of qualitative and quantitative methods, and 

ultimately laboratory analysis for evaluation of biochemical composition. Banana waste generated from 

processing of banana fruit bunch into pulp was quantitatively estimated over a period of six months, based on 

five commonly cultivated varieties of bananas locally known as Mporogoma, Kishansha, Kibuzi, Mbwazirime 

and Enyeru. The fruit bunches were weighed prior to processing and subsequently de-bunched and fruit-fingers 

peeled to obtain the fresh pulp as the product. The generated waste residue fractions were weighed using a 

precision balance and their percentage composition determined. Banana waste samples for laboratory analysis 

were collected from different processing streams and transported to the laboratory for analysis and biogas 

production experimentation at the Department of Biochemistry, Makerere University, Kampala-Uganda. 

Sampling was done four times at an interval of three months for one year; between January and December 2015, 

following standard methods described by [5, 50]. 

2.2. Physico-chemical Characterization  
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a) Banana Waste Sample Preparation for Analysis 

At the laboratory, raw banana waste samples were shredded into a homogeneous paste (Figure 2) using an 

organic shredder (TR 200: Organic Shredder, BrazAfric Enterprises LTD). The samples were frozen if not used 

immediately and were thawed for 24 hours at room temperature (26±2 oC) before analysis and use in the 

subsequent studies.  

 

Figure 2: Sample preparation for physico-chemical analysis and feedstock for anaerobic digestion 

b) Laboratory  Analysis 

Laboratory analysis of the samples was done in triplicates for physico-chemical parameters namely: moisture 

content (MC), total solids (TS), volatile solids (VS), ash content (AC), organic carbon (OC), organic matter 

(OM), total Kjeldahl nitrogen (TKN) and percentage composition of proteins, starch,  sugars, crude fat,  cellulose, 

hemicelluloses and lignin content. 

MC, TS, VS and AC were determined gravimetrically by the hot air oven-drying and ignition method according 

to standard methods described in [5]. Analysis for MC and TS was done by drying pre-weighed fresh samples in 

a hot air oven (model: Gallenkamp & Co. Ltd, and London, UK) for 24 hours at 105°C to get consistent constant 

weights [18, 29]. VS and AC were determined by ignition of the previously oven-dried samples for 2 hours at 550 
oC in a muffle furnace (Model: Carbolite 1100 oC furnace, Chelmsford, England). The ash containing crucibles 

were cooled in the desiccator to room temperature (25 0C) before re-weighing [25] using a precision balance.  

OC was determined by dry combustion method [3], in which one gram of the oven-dried ground sample was 

heated at 600 oC for 5 hours in a muffle furnace and thereafter cooled in the desiccator to room temperature (25 
0C) and the weight of the ash recorded. The OC was calculated as a quotient of percentage weight deficit divided 
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by a factor of 1.8 to correct for organic matter lost to organic carbon during combustion. 

OM content was also determined gravimetrically by the dry combustion method previously described by [30], in 

which one gram of ground sample previously dried at 80 oC for 24hours in hot air oven (model: Gallenkamp & Co. 

Ltd, and London, UK) was heated at 550 oC for 4 hours in the muffle furnace. The total organic matter content 

was calculated as the difference in weight between dry weight at 80 oC and ash weight at 550 oC. 

TKN was determined by the Kjeldahl acid digestion block method as described by [29, 50]. One gram dry 

ground sample  was subjected  to  Kjeldahl  acid  digestion (combination  of 25  mL  H2SO4 and  Kjeldahl  

catalysts) using Gerhardt Kjeldatherm digester and allowed to cool for 1 hour and subsequently subjected to 

distillation (32% NaOH and 2% H3BO3  combination) and finally titration using 0.1 N HCl. Crude protein was 

obtained by multiplying TKN by a factor of 6.25 [4, 18, 41]. Crude fats were determined by ether extraction 

method as described by [50]. Fats in dry samples were extracted using diethyl ether and dried at 105 0C in an 

oven for 1 h and finally quantified gravimetrically [18]. 

Sugars were determined according to Dubois and his colleagues [17] by the phenol-sulphuric acid (Anthrone 

reagent) method with glucose standard. Diluted solution from homogenized sample was mixed with phenol-

sulphuric acid reagent and after colour development; the concentration of sugars was measured colorimetrically 

at 490 nm [16] using a spectrophotometer. 

Starch content was estimated by iodine-starch colorimetric assay according to Hovenkamp-Hermelink and his 

colleagues [26]. Fresh homogenised samples were extracted to remove free glucose, pigments and dissolution 

of cell membranes by boiling in 80% ethanol [44]. Ethanol-treated samples were solubilized by boiling with 

90% dimethyl sulfoxide. The soluble extracts were mixed with iodine solution for colour development and 

starch content measured colorimetrically at 620 nm, with standard starch solutions [21, 26]. 

Lignocellulosic compositional analysis for cellulose, hemicelluloses and lignin was done using gravimetric method 

according to Ayen and his colleagues [8]. Dried ground sample was weighed and loaded into a cellulose thimble 

and extractives (sucrose, nitrate/nitrite, protein, chlorophyll and waxes) removed by Soxhlet extractor using 

boiling acetone (70 0C) for 4 hours. The extractive-free biomass was oven dried at 105 0C for 24 hours prior to 

re-weighing using a precision balance. The difference in weight between the raw extractive-laden biomass and 

extractive-free biomass was expressed as the percentage content of extractives.  

To determine the percentage of Hemicellulose, one gram of extractive-free sample was digested by boiling with 

0.5M NaOH for 3.5 hours [7]; cooled down and washed with distilled water to neutral pH prior to vacuum 

filtration. The residue was dried to a constant weight at 105 0C in a convection oven and reweighed using a 

precision balance.  The difference in sample weight before and after alkali treatment, expressed as a percentage 

was the hemicellulose content in the sample. 

To determine the percentage of Lignin, the dried extractive-free sample was weighed into glass test tube and 

digested with 72% H2SO4 in an autoclave for 1 h at 121 0C; 15 psi. The slurry was cooled at room temperature, 

residues filtered through vacuum using a filtering crucible. The lignin content was determined by oven drying 
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the residues at 105 0C for 24 hours prior to re-weighing. The ash content was determined by ignition of the dried 

acid hydrolyzate residues at 575 0C in a muffle furnace for 2 hours [43]. 

The percentage of Cellulose in the sample was estimated as a percentage difference from total summation of % 

extractives, % hemicellulose and % lignin. 

All the samples of were analyzed in three replicates and the recorded results were the average of the three 

recordings. 

c) Determination of Biochemical Methane Potential (BMP) of banana waste 

The bioreactor 

Anaerobic digestibility of mixed banana waste was tested using a biochemical methane potential (BMP) assay 

carried out in batch bioreactors as described by Mshandete and his colleagues [35] and Gumisiriza and his 

colleagues [25]. The reactors were made from 150ml mouth Erlenmeyer conical flasks with a working volume 

of 100ml at a substrate concentration of 5.0 gVS/L [40]. A solution of 5ml NaHCO3 was added to the each 

reactor to buffer the pH changes during anaerobic digestion, since banana waste had a high C:N ratio. The 

outside of the flasks was covered with black polythene bags to cut off light and thus prevent the growth of 

anaerobic phototrophs that could release oxygen, which is toxic to methanogens [25, 52].  

The inoculum 

The inoculum was collected from a highly active fixed-dome anaerobic digester receiving a mixture of cow 

dung and pulverized hey residues as feedstocks, at a dairy cattle farmer in the vicinity of Makerere University. 

The inoculum was pre-incubated in anaerobic jars for two weeks to deplete the residual biodegradable organic 

matter prior to use in this experiment. The total solids of the inoculum at the time of loading were 22g/L.  

The inoculum-to-Substrate loading (ISL) ratio  

The substrate was seeded at an ISL ratio of 1:1, gVS basis according to Gumisiriza and his colleagues [25] and 

moody, [34] following the calculations below: 

 

If;   Total Solids (TS) of Substrate (g/L)  = A  

   Total Solids (TS) of Inoculum (g/L)  = B F 

   Volatile Solids (VS) of Substrate (% of A)  = C  

   Volatile of S of Inoculum (% of B)  = D  
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Then;   gVS/L of inoculum     = D × B 

   gVS/L of Substrate    = C × A                              

And if   the volume (in Litres) of Inoculum used      = Vi. 

 Thus;   gVS in Vi of inoculum  = [D × B] × Vi. 

Hence, for bioreactor ISLR of 1:1 (gVS basis); 

   The gVS of the substrate = gVS of the Inoculum. 

Implying that;          gVS of the substrate       = [D × B] × Vi 

                   [D × B] × Vi 

Therefore; Volume of substrate (in Litres) loaded  =  

         C × A 

 

All the experiments were carried out in triplicates including a control without substrate to account for any 

endogenous biogas r e s id ua l  produced from the inoculum. The calculated biogas production was corrected 

for blank biogas production before data recording. Each bioreactor was manually shaken once a day and further 

swirled for 1 minute prior to biogas volume measurement.  

Measuring biogas production and methane content 

The biogas production was measured by water displacement method [28, 42]. A tube connected to the reactor 

delivered the produced biogas to an inverted 250 mL graduated measuring cylinder immersed in a 1000 mL 

beaker filled with water. Biogas produced was collected in the graduated cylinder connected with a water 

reservoir which allowed volumetric biogas measurements at atmospheric pressure [40]. The methane content 

was estimated according to Erguder and his colleagues [19] and Mshandete and his colleagues [35], by the 

concentrated alkaline absorption method. Each bioreactor was manually shaken by swirling for 1 minute prior to 

biogas volume measurement.  

Comparison BMP of banana waste with other potential substrates 

In addition, the digestibility of banana waste was compared with grass and fish waste (animal waste) by carrying 

out a BMP of hey grass and fish waste following similar method as for banana waste. The fish waste comprised 
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of trimmings, skin and viscera was collected from the fish market waste bins. Hey grass mainly comprised of 

Chloris gayana residues was obtained from the dairy cattle barn yard at the time of inoculum collection. 

Samples were pulverized prior to loading into the bioreactor.  

3. Results  

3.1. Banana processing and waste generation 

A survey of the major banana producing regions revealed that processing of banana fruit bunches is carried out 

manually by peeling of fruits to generate fresh pulp for domestic consumption, and is usually done by women 

(Figure 3). The banana waste streams generated at production level mainly include pseudo-stem, leaves, fibers 

and corm (rhizome) that remain in the garden after cutting off fruit-bunches. The survey also revealed that 

processing of fruit bunches into fruit-pulp generates residue fractions mainly comprising peels, fruit-bunch-stem 

(peduncle or stalk) and rotten/damaged fruits.  

 

Figure 3: Banana peeling; a traditional method for banana processing in Uganda 

It was further noted that the Government of Uganda had initiated industrial banana processing, through a 

organization called Presidential Initiative on Banana Industrial Development (PIBID), into banana chips that 

could serve as the raw material for value-added products such as starch and flour, for both export and local food 
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security.  

At this industry, banana processing start with receiving of mature banana fruit bunches that were subsequently 

de-bunched to separate fruit-fingers from the peduncle (Figure 4). 

Fingers were peeled to get the pulp that was sliced, and finally dried into banana chips. The major waste   

fractions generated at the banana processing industry mainly comprised peels, peduncle and fruit rejects (Figure 

5). Banana peels constituted the major percentage of the industrial waste stream followed by the peduncle and 

lastly, the fruit rejects. 

 

Figure 4: Steps for banana industrial processing and major waste streams 
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Figure 5: Major waste fractions generated from industrial banana processing 

3.2. Current in-situ methods for management of banana waste 

The field survey also noted that banana waste was not utilized properly, both ecologically and economically. 

The major methods employed in utilization of banana waste (Table 1) were, direct application as mulches, 

dumping on the ground and feeding to animals especially dairy cows.  
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Table 1: Current methods for management of banana waste 

 Waste stream  Current Management   Major Challenge  

Process wastes 
Peels   Animal feed 

supplement 
 Only small fraction  used 
 Spread of plant disease  such 
as Banana Bacterial Wilt 

 Dumping    Emission of GHGs  
 Water-body eutrophication 
by leachate 
 Spread of plant Disease  such 
as Banana Bacterial Wilt  

Peduncle   Dumping   Water-body eutrophication 
by leachate 
 Emission of GHGs 
 Spread of plant Disease such 
as Banana Bacterial Wilt   

 Mulching    Spread of plant Disease such 
as Banana Bacterial Wilt   

 Direct use of dried 
materials for  Fuel 

 Air-pollution by smoke 
emissions 

Fruit rejects   Animal feed 
supplement  

 Spread of plant Disease such 
as Banana Bacterial Wilt  

Cultural (Production)Wastes 
Leaves, Pseudo-stem, Fibre and 
Corm  

 Mulching  Spread of plant Disease such 
as Banana Bacterial Wilt 

 Dumping  Water-body eutrophication 
by leachate 
 Emission of GHGs 
 Spread of plant Disease such 
as Banana Bacterial Wilt 

 Direct use of dried 
materials for  Fuel  Air-pollution by smoke 

emissions 

 

3.3. Estimation of banana waste generation per unit fruit-bunch 

All the banana waste fractions generated from processing of banana fruit bunches into pulp were quantitatively 

estimated by weighing all the residue fractions and pulp, repeated over a period of six months.  

The results as shown in table 2, were expressed as a percentage per unit bunch and indicated that processing of a 

bunch of green bananas generates 40% as pulp and 60% as total waste residues with peel / pulp ratio of 1.3. 
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Table 2: Percentage residual fractions generated from industrial processing of green bananas 

Residues per unit fruit bunch %  wet weight 

Pulp 40.1 ± 3.5 

Peels 50.2 ± 3.4 

Peduncle 7.1 ± 1.7 

Reject Fruits 2.6 ±  1.4 

Total waste 59.9 ± 1.5 

Total Waste: Pulp Ratio 1.5 ± 0.4 

Peel: Pulp Ratio 1.3 ± 0.2 

Peduncle: Pulp ratio 0.2 ± 0.1 

 

Results of percentage residual fractions generated from common banana varieties locally grown in the region 

(Mporogoma, Kishansha, Kibuzi, Mbwazirime and Enyeru) are shown in table 3. The results indicated that 

Mporogoma had most of the fruit rejects at 8 %, followed by Kishansha at 4.4 % while  Kibuzi, Enyeru and 

Mbwazirime had the least at  0.9 %, 0.7 % and 0.5 %, respectively. 

Table 3: Common banana varieties and percentage waste fraction per unit fruit bunch 

Banana 

Variety 

Residues per unit fruit bunch 

Pulp   Peels   Peduncle Fruit 

Reject  

Total 

Waste  

Peel/pulp 

ratio 

Total Waste/ 

Pulp ratio 

Mporogoma 36.8 ± 3.1 48.0 ± 1.5 7.2 ± 1.1 8.0 ± 1.8 63.2 ± 2.8 1.3 ± 0.2 1.7 ± 0.2 

Kishansha 40.0 ± 0.9 50.0 ± 1.6 5.6 ± 0.9 4.4 ± 2.8 60.0 ± 2.2 1.3 ± 0.2 1.5 ± 0.2 

Kibuzi 36.5 ± 3.7 56.5 ± 0.9 6.1 ± 0.9 0.9 ± 0.2 63.5 ± 0.8 1.5 ± 0.1 1.7 ± 0.1 

Mbwazirime 38.9 ± 2.9 50.6 ± 1.5 10.0 ± 1.0 0.5 ± 0.2 61.1 ± 1.0 1.3 ± 0.2 1.6 ± 0.1 

Enyeru 38.5 ± 1.8 54.1 ± 1.1 6.7 ± 0.6 0.7 ± 0.2 61.5 ± 1.0 1.4 ± 0.1 1.6 ± 0.1 

 

3.4. Physico-chemical analysis  

Pulverized samples comprising peels, peduncle, fruit rejects, a mixture and pulp were analyzed at the 

Department of Biochemistry, Makerere University for physico-chemical content analysis. The results (Table 4) 

revealed that banana waste has high moisture content of over 80 % making it unsuitable for direct 

thermochemical conversion without considerable drying, but rather a high potential substrate for biochemical 

conversions such as anaerobic digestion for biogas production. 
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Table 4: Physico-chemical composition of residues from industrial processing of green bananas 

 Parameters  Process streams 

Peels Peduncle Fruit reject Mixed waste Pulp 

MC wb   83.30 ± 3.04  90.50 ± 2.70 78.61 ± 2.21   85.47 ± 0.35  70.31 ± 4.62 

TS wb   16.71 ± 2.33 9.51 ± 3.10 21.40 ± 2.02 14.55 ± 0.35  29.68 ± 3.11 

VS db 86.78 ± 2.33 80.91 ± 3.02 88.71 ± 2.11 91.79 ± 0.16  96.11 ± 1.12 

Ash db  13.22 ± 2.00 19.11 ± 3.53 11.32 ± 1.91 8.21 ± 0.16  3.90 ± 0.40 

OC db 41.03 ± 4.31  40.02 ± 0.81 53.09 ± 4.71 51.99 ± 0.26  56.13 ± 2.10 

OM db  89.04 ± 1.44 81.12 ± 1.01   87.11 ± 4.32 87.00 ± 0.50  89.83 ±3.33 

TKN db  1.20 ± 0.09 1.93 ± 0.21 0.89 ± 0.32 1.26 ± 0.50  0.74 ± 0.11 

C:N ratio  34.19 ± 1.31   20.74 ± 2.11 59.65 ± 1.38 41.26 ± 0.02  75.68 ± 1.10 

Protein db 7.53 ± 1.21  12.06 ± 2.00   5.56 ± 1.81 7.88 ± 0.01  4.63 ± 0.62 

Starch db  40.11 ± 2.22 1.73 ± 0.97 51.21 ± 2.13 50.30 ± 2.01 80.70 ± 2.30 

Sugars db 1.42 ± 0.11  0.01 ± 0.01 3.61 ± 0.51 0.29 ± 0.03 4.11 ± 2.11 

Cellulose db 13.09 ± 0.09 31.21 ± 1.50 4. 11 ± 0.13 21.16 ± 2.00 Nil 

Hemicellulose db  14.66 ± 0.31 8.83 ± 0.13 4.88 ± 0.46 10.46 ± 0.51 1.21 ± 0.01 

Lignin db 13.97 ± 0.02 18.77 ± 1.9 4.20 ± 0.20 11.31 ± 1.33 Nil 

Crude Fat db 1.52 ± 0.22 0.33 ± 0.10 1.16 ± 0.19 1.43 ± 0.11 0.71 ± 0.16 

 

MC = Moisture Content; TS = Total Solids; VS= Volatile solids; OC= Organic Carbon; OM= Organic 

Matter; TKN= Total Kjeldahl Nitrogen; wb = wet basis (% wet weight); db = dry basis

3.5. The BMP of banana waste  

The digestibility of banana waste was carried out in batch bioreactor and the results compared with animal 

waste and grass. Generally daily methane yield showed variable peaks as a function of retention time (Figure 

6). Fish waste had one optimal peak at day 10 corresponding to 106 ml CH4/gVS/day and then the gas 

production dropped drastically to 23 ml ml CH4/gVS/day at day 35. The BMP of banana waste and grass 

showed double peaks with related trend. The first peak of daily methane production appeared at day 8 

corresponding to 51.2 and 37.4 ml CH4/gVS/day, respectively for banana waste and grass. In the second peak, 

both banana waste and grass produced higher methane than first peak. Banana waste produced highest volume 

of methane at day 24 (79.9 ml CH4/gVS/day) while hey grass produced 69.7 ml CH4/gVS/day at day 20. This 

was in agreement with other reported related research on anaerobic digestion of banana waste and grass [10, 

40]. Moreover, banana waste showed highest methane yields at 436.6 ml CH4/gVS, followed by fish waste at 

427 ml CH4/gVS and least by grass at 340 ml CH4/gVS as shown in figure 7. 
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Figure 6: Effect of retention time on methane production from banana waste, grass and fish waste 

 

Figure 7: Comparison of methane yield from banana waste with grass and fish waste 

4. Discussion  

4.1. The waste survey  

Results from the survey indicated that banana processing in Uganda is done manually and there is less value 

addition to the fruits to enhance their shelf life by farmers. A recently installed banana processing factory under 
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Presidential Initiative on Banana Industrial Development (PIBID) is the only industrial enterprise adding value-

addition to green bananas through pulp drying and conversion into banana flour. However, a challenge of lack 

of a 24hour supply of cheap and reliable sufficient energy for complete drying of banana pulp into dried 

products with consistent standard quality was prominently noted for both industry and local farmers. Local 

farmers need such energy for drying of banana pulp to sell to the banana industry as a raw material in form of 

dried chips. Indeed, this survey found out that most of the rural areas with high banana production were not 

connected to the electricity grid power. For the ones connected, the cost of the grid energy was considered 

costly and cannot be afforded for use in produce drying. Alternatively, the use of wood and petroleum fuels was 

undesirable due to high costs and adverse environmental impact. As a result, solar drying of banana pulp by 

directly spreading the fresh pulp on a mat and exposing it to sunshine was practiced by some rural farmers. This 

method cannot be easily controlled and its output is not reliable. The practice is considered unhygienic leading 

to inconsistent and substandard product quality, characterized by rotting and infestation with moulds that 

produce aflatoxins [24]. On the other hand, large quantities of banana waste were generated both at farm 

production level and during the processing of fruit-bunch into pulp. This was in agreement with findings from 

previous researchers [23] and is attributed to the high quality standards desired for the market demands of green 

bananas. Moreover, the short shelf life of mature bananas leads to quick quality deterioration resulting into huge 

piles of damaged/spoilt fruit waste fraction. The methods for management of banana waste residues were mainly 

by dumping, reuse as mulching materials and animal feeds, as well as use of dried fibrous fraction for fuel. 

While these methods are cheap and convenient, they are being discouraged owing to their association with the 

spread of plant diseases, especially the Banana Bacterial Wilt, as well as their lack of economic value to 

farmers. The use of dried banana waste as fuel by direct burning was an indication that there was scarcity of 

energy for both domestic usage and drying of pulp. However, since banana waste has high moisture content it 

cannot be appropriately utilized via such a waste-to-energy process especially during the rainy season [24]. 

4.2. Physico-chemical analysis  

Quantitative analysis based on percent weight by residual fraction revealed that processing of a unit bunch of 

green bananas generates 40% as pulp and 60% as total waste residues with total waste to pulp ratio of 1.5:1 and 

peel to pulp ratio of 1.3:1. The high waste to pulp ratio is attributed to high moisture content of peduncle (MC of 

90 %) and peels (MC of 83 %) in freshly harvested fruit bunches [15, 41, 49]. The high waste to pulp ratio 

implied that the waste contained more water than the pulp. Indeed, when bunches were left at room temperature 

for a day before processing, the fruits lost more moisture from peels than pulp consequently lowering peel to 

pulp ratio to 1:1. The high moisture of content banana waste suggests that the waste is more amenable to 

biochemical conversion than thermal technologies and would require minimal additional water thus reducing 

biogas production costs. On the other hand, the high moisture content of pulp suggests that it requires a lot of 

energy to achieve complete dryness.   

Qualitatively, wastes generated at production level (on farm) are more fibrous and hence highly lignocellulosic. 

This must be pre-treated for effective energy harnessing through anaerobic digestion. Physical-chemical analysis 

of banana waste fractions from the industrial processing indicated that the residues had organic matter of over 

80 %, suggesting that they were highly organic and thus amenable to value addition through bioconversion 
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technologies such as anaerobic digestion. The high moisture content is favorable for biochemical conversion 

technologies that proceed without any additional water requirement thus reducing on water use and costs. 

Furthermore, analysis results showed that more than 80 % of the total solids in banana wastes were volatile. 

This confirms reports by previous researchers [10, 28, 49, 51]. Such waste characteristic indicates that these 

solids were of organic origin and have high potential energy production, if efficiently biodegraded through 

anaerobic digestion. However, the mixed waste had high organic carbon with low nitrogen content resulting into 

a C:N ratio of 41. This ratio is above the range of 20-32 recommended for optimal anaerobic digestion [12, 14, 

24, 54]. The high C:N ratio implies that optimal anaerobic digestion of banana waste requires co-digestion with 

nitrogen-rich feed substrate such as fish waste, slaughterhouse waste and chicken manure [24]. The high ratio 

was attributed to high starch content from fruit reject and the high lignocellulosic content of peduncle. The high 

carbon content and low TKN was translated into higher carbohydrate content than protein of 50.3 % and 7.8 %, 

respectively for mixed waste. The sugar content varied depending mainly on the maturity of the fruit bunches 

and time lag from harvesting to processing. The lipid content was higher in peels than other fractions but 

generally lower than sugars and protein contents. These findings compare well to the ones reported by Essien 

and his colleagues [20] and Salayeem and his colleagues [41]. Besides, the process of anaerobic digestion of 

substrates with high C:N ratio is susceptible to failure mainly due to acidification [36, 11, 24]. The 

lignocelluloses content of mixed waste comprised 21.16 %, 10.46 % and 11.31 % for cellulose, hemicelluloses 

and lignin, respectively. The results of lignocellulose content of banana waste agree with similar analysis 

reported by previous researchers [2, 27, 33, 51], and imply that banana waste can generate more biogas through 

anaerobic digestion, if appropriately pre-treated to optimally solubilize the lignocellulose content. 

4.3. The BMP of banana waste  

Results from BMP assays showed that banana waste has high anaerobic digestibility. The peaks in daily 

methane production represent retention times that gave optimal gas production of digested substrates. The first 

peak in both banana waste and grass was likely due to quick microbial assimilation of soluble sugars released 

from the substrates during pulverization process while the second peak was related to the lag microbial 

solubilization of starch and other complex biomolecules in waste substrate [49]. The banana waste gave a 

methane yield of 0.436 m3 CH4/KgVS which was higher than 0.340 m3 CH4/KgVS for grass. Moreover, the 

daily methane production curve appears superimposed over the one for grass.  This was due to the different 

nature of VS in the two phytomass substrates. That is, the VS in banana waste contained higher starch and 

sugar content than in grass, in addition to more lignocellulosic content in the latter [40].  The values of methane 

yield from all the wastes assayed were below the theoretical maximum methane production of 0.490 m3 

CH4/KgVS but slightly higher than 0.332 m3 CH4/KgVS previously reported for grass [40]. This could have 

been due to the inoculum that was already pre-adapted to digest hey at the fixed dome digester. Besides, the 

single peak for daily methane production exhibited by the BMP assay of fish waste indicated that the nature of 

VS in such waste has a nearly similar complexity. Implying that, it could be digested continuously once the 

reactor microorganisms have acclimatized to the substrate. The peak for digestion of fish waste coincided with 

the retention time at lower methane production from banana waste. This suggested that the fish waste could be 

a good substrate for co-digestion with banana waste to yield more methane at lower retention time of less than 

15 days. 
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5. Conclusion  

This study aimed at assessing banana processing, auditing of banana waste generated from banana processing 

activities in Uganda and evaluation of the waste management options as well as potential for value-addition 

through biogas production. Findings revealed that the banana industry in Uganda is faced with a challenge of 

lack of cheap, reliable and sufficient energy for complete drying of banana pulp into chips with consistent 

standard quality. The huge banana wastes generated and currently underutilized were rich in organic matter with 

high moisture content and thus a good substrate for biogas production through anaerobic digestion. The high 

moisture content makes banana waste a better feedstock for biogas production since it would require minimal 

additional water thus reducing the cost of bioenergy production. The biochemical methane potential assay 

showed that banana waste has a higher methane yield than grass and fish waste due to high starch and sugar 

content. The high lignocellulosic content in banana waste however suggested that application of appropriate pre-

treatment is necessary to increase nutrient bioavailability that enhance anaerobic digestion and ultimately 

improves biogas yield from the substrate.  

Never the less, this study faced the following general limitations:1);The peeling of banana fruits was done manually by 

different persons giving varying sizes of peels and resulting into large variation of waste to pulp ratio and 2);  Other 

banana varieties were not studied, mainly due to lack of fruits during the study period.  

6. Recommendations  

• The peeling process needs to be standardized by either using standard tools or using an automated 

peeling machine 

• The fraction of banana fruit-rejects can be reduced by harvesting the banana bunches at early maturity 

stage as compared to late maturity stage where ripening is at on-set. 

• Anaerobic digester should be installed to utilize the banana waste for energy (biogas) generation as 

well as reduction of the risk of spreading plant diseases especially banana bacterial wilt. 
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