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Abstract 

Software reliability is one of the major metrics for software quality evaluation. In reliability engineering, testing 

phase specifying the process of measuring software reliability. In this paper; we examine the effect of 

incorporating the autonomous errors detected factor and learning factor in enhancing the prediction accuracy 

with application to software failure data. For this purpose, Non-Homogenous Poisson Process (NHPP) model 

with the perspective of learning effects based on the Log-Logistic (LL) distribution is proposed. The parameter 

estimation using the Non-Linear Least Squares Estimation (NLSE) method is conducted. Two goodness-of-fit 

tests are used to evaluate the proposed models. This paper encourages software developers to consider the 

learning effects property in software reliability modeling. 

Keywords: Non-homogeneous Poisson process; log-logistic distribution; learning effects; goodness-of-fit 

performance; non-linear least squares estimation. 

1. Introduction 

A recently settled software system prior to its use is exposed to a robust testing in order to reduce the likelihood 

of failure manifestation and guarantee that the system will behave as expected. Software solutions for 

critical application fields demand a much intensive amount of testing. Software Reliability Growth Models 

(SRGMs) are the models that attempt to predict software reliability using data from testing phase. Over the 

years, many SRGMs that belong to the Non-Homogeneous Poisson Process (NHPP) have been suggested. Many 

researchers aim to better describe the failure phenomena by incorporating some representative factors to these 

models [1]-[4]. Learning effects perspective can be stated to predict failures that are expected to occur in 

specified operations, recognizing spots of which faults that need the most efforts to be fixed. Several NHPP 

SRGMs have been enhanced by incorporating learning effects [5]-[7].  
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In this article, NHPP SRGM with the concept of learning effect based on the Log-Logistic (LL) distribution is 

proposed. The Non-Linear Least Squares Estimation (NLSE) method is used for the proposed model parameter 

estimation. The validity of the proposed models is illustrated through six software failure data sets. The Mean 

Square Error (MSE) and coefficient of determination criteria R2 are employed for model prediction accuracy. 

The rest of the paper is arranged as follows: Section 2 introduces the NHPP models, the NHPP LL model, and 

the improved NHPP LL model. Section 3 discusses parameter estimation using the NLSE method. Section 4 

presents the selected model evaluation criteria. Section 5 illustrates the results and offers comparative analysis 

on the basis of six real data sets. Section 6 presents the conclusion. 

2. The NHPP Models 

The NHPP models assist to express the failure occurrence during the testing phase of a software system, N(ti) 

which represents the cumulative number of errors detected by time ti;   i = (1, 2, … , n) follows the Poisson 

distribution as follows: 

                             P(N(ti) = k) =
[m(ti)]𝑘

k!
e−m(ti),   where k = 0,1, …   ,                                                             (1) 

m(ti) indicating the expected number of errors found within time (0, ti) and described by:  

                                m(ti) = ∫ λ(s)ds
ti  

0
,                                                                                                               (2) 

where λ(s) is the intensity function which conversely can be written as:   

                                𝜆(ti) =
dm(ti)

dt
.                                                                                                                        (3) 

Any NHPP model can be defined completely by knowing either its mean value function or intensity function. 

This type of modeling has several reliability characteristics among them the Mean Time Between Failure 

(MTBF) which assesses the length of time that a software system remains in operation. The instantaneous and 

cumulative MTBF can be respectively given as: 

                       MTBF𝐼(ti) =  
1

𝜆(ti) 
.                                                                                                                         (4) 

                       MTBF𝑐(ti) =  
ti

m(ti) 
.                                                                                                                        (5) 

Some of the essential assumptions of the NHPP models are:  

1. The failure phenomenon is modeled by the NHPP. 

2. During execution of a software system, failure occurrence is caused by faults latent in the system. 

3. The number of detected errors is proportional to the number of remaining errors in the software system. 

4. Faults remaining in the software system evenly affect the software failure rate.  

5. Once a failure occurs, the causing faults are detected and removed with certainty. 
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6. All software faults are mutually independent. 

2.1. NHPP Log-Logistic (LL) Model 

The Probability Density Function (PDF) of the Log-Logistic (LL) distribution is: 

                                       𝑓(ti) =
ab𝑡𝑖

𝑏−1

(1+𝑎𝑡𝑖
𝑏)

2.                                                                                                             (6) 

And the corresponding Cumulative Distribution Function (CDF) is: 

                                       F(ti) =
𝑎𝑡𝑖

𝑏

1+𝑎𝑡𝑖
𝑏.                                                                                                                  (7) 

While its hazard function is defined as follows: 

                                      h(ti) =
𝑓(ti)

1−F(ti)
 

                                                =
ab𝑡𝑖

𝑏−1

1+𝑎𝑡𝑖
𝑏  ,                                                                                                                (8) 

where 𝑎, 𝑏 > 0, 𝑎 is positive scale parameter, and 𝑏 is shape parameter. The mean value function of the NHPP 

LL model is given as follows [8]:  

                                     m(ti) =  θ F(ti) 

                                                =
θ𝑎𝑡𝑖

𝑏

1+𝑎𝑡𝑖
𝑏.                                                                                                                  (9) 

where ti , i = (1, 2, … , n) is the failure times, θ > 0 is the number of initial errors, whereas the failure intensity 

function is defined as: 

                                         𝜆(ti) = m̀(ti) 

                                                 =  
θ𝑎𝑏𝑡𝑖

𝑏−1

(1+𝑎𝑡𝑖
𝑏)

2 .                                                                                                         (10) 

2.2. Modified NHPP LL Model 

In this section the NHPP LL model will be enhanced by incorporating the autonomous errors detected factor and 

learning factor for discovering the software faults in a system. Certainly, the efficiency in terms of software 

debugging can be enhanced based on these two factors. Following the work of [9] the CDF can be modified as 

follows: 
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                               F(ti) =
h(ti)−𝜂

𝛾
  ,                                                                                                                    (11) 

where 𝜂 > 0 is the autonomous errors-detected factor and 𝛾 > 0 is the learning factor. Hence, the CDF of the 

NHPP LL model can be rewritten as follows: 

                                F(ti) =

ab𝑡𝑖
𝑏−1

1+𝑎𝑡𝑖
𝑏 −𝜂

𝛾
 

                                         =
ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏)

𝛾(1+𝑎𝑡𝑖
𝑏)

.                                                                                                       (12) 

Then, the mean value function of the modified NHPP LL model is given as follows: 

                              m(ti) =   θ F(ti) 

                                        =
θ(ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

 .                                                                                                   (13) 

And the failure intensity function is defined as: 

                              λ(ti)  =   θ F̀(ti) 

                                       =
θ(ab𝑡𝑖

𝑏−2−(b−1−𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)2 .                                                                                                   (14) 

Another two reliability characteristics of the modified NHPP LL are: the instantaneous MTBF, which can be 

obtained using Eq. (4) as follows: 

                   MTBF𝐼(ti) =
𝛾(1+𝑎𝑡𝑖

𝑏)2

θ(ab𝑡𝑖
𝑏−2−(b−1−𝑎𝑡𝑖

𝑏))
,                                                                                                    (15) 

and the cumulative MTBF that can be found using Eq. (5) as follows: 

                   MTBF𝑐(ti) =
𝛾ti(1+𝑎𝑡𝑖

𝑏)

θ(ab𝑡𝑖
𝑏−1−𝜂(1+𝑎𝑡𝑖

𝑏))
 .                                                                                                     (16) 

3. Model Parameter Estimation 

Parameter estimation is significantly important in the procedure of software reliability prediction. Non-Linear 

Least Squares Estimation (NLSE) method may be computationally simple but very effective in estimating 

model parameters. This technique is based on the observed failure data to determine the estimates of the model 

parameters, in this section we present the NLSE method for estimating the parameters of the modified NHPP LL 

model. Given the failure time data (ti , yi ) , where yi  is the cumulative number of faults detected by time ti  for 

  i = (1, 2, … , n)   and   0 < t1 < t2 < t3 … < tn  the NLSE method is to minimize the objective function 
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defined by:  

                       𝒮𝑁𝐿𝑆(Θ) = ∑ [yi − m(ti; Θ)]2𝑛
𝑖=1 ,                                                                                                 (17) 

where m(ti; Θ) is the mean value function at time ti, Θ  is the unknown parameters of a NHPP model. The 

resulting estimates of parameters are obtained by minimizing Eq. (17). Traditionally, Gauss-Newton method or 

Lenvenberg-Marquardt algorithm is used to solve the optimization problems arg min(Θ) 𝒮𝑁𝐿𝑆(Θ) [10]. Hence, 

the NLSE method of the modified NHPP LL model aims to minimize the following objective function: 

                  𝒮𝑁𝐿𝑆(θ, 𝑎, 𝑏) = ∑ [yi −
θ(ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

]

2

.𝑛
𝑖=1                                                                                       (18) 

Taking the partial derivatives of Eq.(18) with respect to model parameters, and setting them equal to zero, we 

have: 

             
𝜕𝒮𝑁𝐿𝑆(θ,𝑎,𝑏)

𝜕𝜃
= 0 ⟹ 

        θ̂ = ∑
yi (ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

𝑛
𝑖=1 ∑ (

(ab𝑡𝑖
𝑏−1−𝜂(1+𝑎𝑡𝑖

𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

)

2

.𝑛
𝑖=1⁄                                                                          (19) 

            
𝜕𝒮𝑁𝐿𝑆(Θ)

𝜕𝑎
= 0 ⟹ 

              2 ∑ (yi −
Θ̂(ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

) (
Θ̂b𝑡𝑖

𝑏−1

𝛾(1+𝑎𝑡𝑖
𝑏)2)𝑛

𝑖=1 = 0.                                                                               (20) 

            
𝜕𝒮𝑁𝐿𝑆(Θ)

𝜕𝑏
= 0 ⟹ 

            2 ∑ (yi −
Θ̂(ab𝑡𝑖

𝑏−1−𝜂(1+𝑎𝑡𝑖
𝑏))

𝛾(1+𝑎𝑡𝑖
𝑏)

) (
Θ̂a𝑡𝑖

𝑏−1(1+blθ𝑡i +𝑎𝑡𝑖
𝑏)

𝛾(1+𝑎𝑡𝑖
𝑏)

2 )𝑛
𝑖=1 = 0.                                                                (21) 

Solving Eqs. (20) and (21) numerically, we can obtain the point estimates of parameters a and b, then by 

substituting these estimates in Eq.(19) θ̂ can be obtained. 

4. Goodness of Fit Criteria  

Mean Square Error (MSE) calculates the variation between the predicted and actual values of observations. It is 

defined as [11]: 

                          MSE =
∑ (yi −m̂(ti))

2𝑛
𝑖=1

𝑛−𝑘
 .                                                                                                              (22) 

Smaller MSE indicates better fit model. 
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The coefficient of multiple determinations R2 can be obtained as follows [11]: 

                             R2 = 1 −
∑ (yi −m̂(ti))

2𝑛
𝑖=1

∑ (yi −∑
yk

𝑛⁄𝑛
𝑘=1 )

2
𝑛
𝑖=1

.                                                                                                  (23) 

R2 is a measure of the variation between the actual and fitted model. It takes the values in the range of 0 to 1, 

larger R2  value represents better accuracy of the fitted model. Clearly, a value close to one of R2 is highly 

appropriate. where yi  the total cumulated number of errors observed within time is (0, ti  ],  m̂(ti)  is the 

estimated mean value function at time ti, n is the number of errors in the software and k is the number of 

parameters in the model. 

5. Data Analysis 

In this section, we give some numerical examples using the following six published datasets to analyze the 

characteristics of learning effects: 

(1) NTDS data: is obtained from [12], which created from the U.S. Navy Fleet Computer Programming 

Center, were observed during the software development phase for the real-time multicomputer complex 

system that is the central part of the Navel Tactical Data System (NTDS), the time between successive 

failures is (in days).  

(2) S27 data: contains 41 time between successive failures (in seconds), reported by [13].  

(3) DS3 data: is from [14] , represents 15 time between successive failures (in hours) of air conditioning 

equipment case 2. 

(4) S2 data: were presented by [13], consists of 54 time between successive failures (in seconds).  

(5) DS5 data: were used in [15], consists of 14 time between successive failures (in hours) for aircraft 

generator.  

(6) DS6 data: is from [14], represents 23 time between successive failures (in hours) of air conditioning 

equipment case 1. 

Tables [1-6] list the six failure data sets and Figure 1 represents them graphically. 

Table 1:  NTDS data. 
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33 

 

7 
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1 

 

87 
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 9 

 

135 

        

258 16 35 

Table 2:  S27 data. 

20336 11776 40933 34794 17136 148446 7995 1636 15830 21932 

2485 11000 2880 61182 4800 38005 16200 6000 1000 10000 

220 35580 81000 643095 47857 

 

154800 170460 108540 73800 1860 

336600 268140 74880 286200 25320 7080 59820 87900 76200 89280 

1209600          
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Table 3:  DS3 data. 

74  57 48 29 502 12 70 21 29 386 59 27 153 26 326 

Table 4: S2 data. 

191 222 280 290 290 385 570 610 365  390  275  360 

800  1210 

 

407 50 660 1507 625 912 638 293 1212 612 

675 1215 2715 3551 800 3910 6900 3300 1510 195 1956 135 

661 50 729

  

900 180 4225 15600 0 0 300 9021 2519 

6890 3348 2750 6675

  

6945 7899       

Table 5: DS5 data. 

757  742 403 662 902 136  147 79 164 579  39 111 45 10 

Table 6: DS6 data. 

413 14 58 37 100 65 9 169 447 184 36 201 118 34 31 

18 18 67 57 62 7 22 34        

Table 7: Criteria results of comparison of the models. 

 

Data set 

Learning factors Evaluation criteria 

γ η MSE criteria R2  

NTDS data 

n=34 

0.3 0.7 3.5842 0.9650 

0.5 0.5 3.0213 0.9705 

0.7 0.3 2.7800 0.9728 

S27 data  

n= 41 

0.3 0.7 1.3924 0.9905 

0.5 0.5 1.418 0.9904 

0.7 0.3 1.505 0.9898 

Ds3 data 

n= 15 

0.3 0.7 0.6214 0.9712 

0.5 0.5 0.7397 0.9657 

0.7 0.3 0.6248 0.9710 

S2 data 

n= 54 

0.3 0.7 1.0238 0.9959 

0.5 0.5 1.1494 0.9954 

0.7 0.3 1.5050 0.9940 

Ds5 data 

n=14 

0.3 0.7 0.0742 0.9961 

0.5 0.5 0.0968 0.9949 

0.7 0.3 0.1404 0.9926 

Ds6 data 

n=23 

 

0.3 0.7 3.4798 0.9278 

0.5 0.5 3.5435 0.9265 

0.7 0.3 3.8471 0.9202 
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First, the estimation of the parameters for each model by using the NLSE method is performed. Then, the MSE 

and coefficient of determination R2 criteria are evaluated, the results are summarized in Table 7.  

According to this table, generally when the learning factor is greater than the autonomous errors-detected factor 

smaller MSE and higher R2 are obtained and accordingly more efficient model.  

In Figure 2, reliability considering the two factors for each model is showing a decrease graph, higher model’s 

reliability is shown with the larger values of the learning factor and so more capable model. 

 

Figure 1: Time between failures versus failure number. 
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Figure 2: Reliability function of the models considering learning effects. 

6. Conclusion 

The reliability of a software system is usually accepted as the main issue in software quality since it measures 

software failures. During the testing phase of software development software quality is checked whether it 

meets the requirements or not. One way of monitoring testing phase to increase its accuracy is SRGM. SRGMs 

that incorporate factors that affect failure phenomena are more representative. 

In this paper, a detailed analysis of the NHPP LL model incorporating learning effects is presented. Six real data 

sets have been used for the models’ comparative analysis. According to our application the following points are 

concluded:  

▪ When the value of the learning factor is the highest and the value of the autonomous errors-detected 

factor is the lowest, best fit model is obtained in terms of the MSE and coefficient of determination. 

Thus, higher values of the learning factor give more representative model. 

▪ Regarding to the reliability figure, greater values of the learning factor has revealed higher reliability 

form.  
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