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Abstract 

The dynamics of the formation of ravines (gullies) by taking the wave motion of flow into account. The article 

considers the question of impact of the wave motion of flow on the erosion intensity in the ravines. The 

technique to predict the occurrence of waves on a free surface of alluvium-carrying flows is proposed. Wave 

motion stimulates the intensity of the soil and ground washout. The influence of wave formation on the process 

of the erosion intensity is assessed by using the correction factor for the average flow velocity in the clear 

section. 
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1. Introduction 

The main role in the formation of ravines is played by surface flows. At the beginning of the flow, there 

develops deep intense erosion. The profile of the ravine is a V-shaped one at the beginning. Deep erosion slows 

down and there occurs a lateral erosion of the wandering flow [1]. The transverse profile takes the form of a 

trough and the depth of flow decreases. The reduced depth loses its original steady shape, and undulation starts. 

With the wave motion, the motion of flows starts to intensely capture and transport different-size solid particles. 

Below are the proposed methods to predict the occurrence of waves on a free stream surface both, in the water 

and in the sedimentary flows, which support an intense washout of soil and ground in the ravines. 

The studies have confirmed that the impact of the wave-formation on the intensity of the erosion processes in 

ravines should be taken into account in the available calculated dependencies using correction factor 

VVв 5,1= for the average flow velocity in the clear section [2, 3]. 

----------------------------------------------------------------------- 
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2. Materials and methods 

A number of theoretical and experimental studies are devoted to the problems of brook (gully) soil erosion. 

Most of the papers deal with the issues of uniform motion of clear shallow water, i.e. the flow not containing 

sediment suspension and not allowing the occurrence of the waves on the free surface of a uniformly moving 

stream. In shallow streams, creeping waves are often observed during heavy rains along the inclined sections of 

streets, even with a slight surface roughness. 

The equations of the dynamics of a drift-carrying flow for unsteady motion are as follows [2, 3, 4]: 
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where: V is the average mixture velocity in the clear section; ω is the area of the clear section of the mixture; 

g is the acceleration of gravity; H is the maximum depth of mixture; α is a complete correction of the amount 

of movement, which considers the uneven distribution of the averaged velocities and pulsating head over the 

flow section; 0i  is the gradient of the brook (ravine) bottom; Q is the consumption of the mixture; трI is the 

sum of all dissipative members representing the gradient of the hydraulic resistance of the mixture; 
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so-called dimensionless parameter of the hydraulics of the suspension flows; 
ρ
ρρσ −

=
x

is the relative 

density; xρ , ρ  are the density of the suspended matter and water, respectively;  B is the typical width of the 

mixture; w is the average hydraulic particle size of the suspension in the mixture; v is kinematic coefficient of 

viscosity of the mixture; 6,02 =K is the experimental coefficient considering the difference between the 

coefficients of the turbulent exchange of the carrying and carried phases. 

It is easy to notice that if we consider the steady state of motion when 00 == SScp  and neglect the pulsating 

component of the complete correction factor, dependence (1) coincides with the equation of Prof. G.A. Petrov 

for water flow, while when 1=α , the equation of Prof. I.I. Konovalov is gained [see 4]. 

We will try to solve the problem using the method of "small" perturbations. 
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If Chez formula is suitable for the stable unperturbed state of a uniform turbulent sediment-carrying flow: 
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==       ,                                                                              (4) 

then the perturbed state of such a flow will be described by equations (1) and (2), while supposing that 

uVV += 0 ; hHH += 0 ; hB00 += ωω , where the index "0" means the attributing the marked values to 

a uniform motion, and « u » and « h »" are the velocity and height of the disturbance wave, respectively, which 

are so small that their derivatives and squares can be neglected and, following [2, 3, 4] , we obtain the basic 

differential equation of the perturbed state of a sediment-carrying turbulent flow as follows: 
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where χ  is the hydraulic indicator of the riverbed according to B.A. Bakhterev [5] for flow module:
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If accepting that 1=α , 00 == SScp , then equation (5) becomes an equation of the theory of small 

amplitude for water flow without suspension. 

In order to establish the criterion of the loss of the stability of the initial uniform motion and appearance of 

waves on a free surface, when the sediment-carrying flow moves through the streams and ravines, we will 

obtain a particular solution of a linear differential equation of a disturbed state of a sediment-carrying flow as a 

simple oscillation with 1K  frequency corresponding to the distribution of (wave) disturbance along positive 

value x  (i.e. in the direction of translational flow): 

( ) tKxfh 1cos=  ,                                                                   (6) 

where: ( )xf  is some function depending only on x . 

By using Euler formula, this equation can be presented in a complex form convenient for further 

transformations: 

( ) tikexfh 1=     ,                                                                           (7) 

where: ( )xf is some function with real and imaginary parts, depending on x . 
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By differentiating (7) and accepting that 1−=i ; 12 −=i ,we gain: 
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By substituting the corresponding values in the differential equation of the perturbed state of the sediment-

carrying flow (5), after reducing by tike 1 and grouping the terms, we will obtain an ordinary second-order 

differential equation with constant coefficients: 
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If making the following designations:  









−=

0

0
0

2
0

2
1 B

g
TVT

ω
α                                                                       (10) 

20

00
2 HB

gi
T

ωχ
=                                                                                        (11) 

0

0
3

2
V

gi
T =                                                                                            (12) 

By considering (10), (11) and (12), dependence (9) is as follows: 
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The solution of (13) will yield: 
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In order to separate the real and imaginary parts in dependencies (13) (14), let us accept the following notations: 
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i.e.: 
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As a result, we will gain: 
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Let us denote the right side of (16) by »П0», 
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By substituting (17) and (18) in (16), following simple transformations, we will gain: 
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By knowing "a" and "b" as (19) and (17), the solution (14) by considering (16) can be written down as follows:  
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We will obtain: 
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Thus, particular solution (5) corresponding to the propagation of waves of disturbance along the motion, will be: 
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where: П is the symbol of the real part; M is an arbitrary constant; Y is one of the values of a characteristic 

equation. 

By introducing the following notation: 

ψieAM 0= ,
         

(27) 

where: A0 is a new constant. 

Following the separation of the real part, expression (26) will be as follows: 

( )ψσ ++= tKxБeAh x
120 coσ1

,                                         (28) 

At the same time, 1Б and 2Б in this expression, depending on which of the roots of (13) is adopted in expression 

(26), in accordance with formulas (25), are identified by dependencies ( )2321÷ . 

It is easy to notice that the adoption of 2yy =  in expression (25) and ″= 11 ББ , and  ″= 22 ББ  in 

expression (26) leads to the damping condition of the agitation along the movement, but at the same time, it is 

hard to determine the conditions of a uniform flow under which the disturbance will attenuate, i.e. movement 

will be stable. 

On the contrary, when 2yy = , i.e. when ′= 11 ББ и ′= 22 ББ in equation (28), 02 〈Б  (see equation (20)) 

only given: 
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, consequently, the initial flow of the current will be stable under condition 

(29). 

Now, by substituting “a” value from (19) into inequality (29), we will obtain: 
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Condition (30) expresses the criteria relation between the stability of the initial uniform motion of a turbulent of 

the sediment-carrying flow, i.e. under (30), no waves are formed on the free flow surface in the ravines. 

In the given dependences, hydraulic indicator of the ravine χ  depends on the shape of the cross-section and 

roughness. A specific value can be calculated under the recommendation of B. A. Bakhmetev or according to 

the dependence of R. R. Chugayeva. 

α  value can be determined with formula given by A. S. Obrazovskyi [7]. 

From dependence (46), it follows that 00 == SS , we obtain well-known dependences for the water flow of 

Vedernikov-Kartvelishvili [8]. 

The analysis of dependence (30) shows that, depending on the concentration, hydraulic sediment size, 

suspension density, etc., the sediment-carrying flow, with its degree of stability, may be more, less or equal to 

the speed of the equivalent water flow. 

If there is a possibility of waves occurring on the surface of the stream, the forecast of erosion in the ravine 

should be calculated not by the uniform flow motion with average section, but by considering the presence of 

waves, since the wave speed is 1.5 times greater than the speed of an evenly moving flow. In such a case, the 

flow rate at the height of the roughness protrusion should be assigned as bY , where VVb 5,1= what is proved 

in our works [3,4]. Waves stimulate the intensity of soil and ground washout. 

3. Results 

The above-given dependences can be used for the irrigation of furrows and in stream flows in the right side of 

the numerator of dependence (3), since ( )0020 SSvBKW cp −〉〉σω , then member ( )002 SSBK cp −νσ  can 

be neglected. In such a case, the dimensionless parameter of the hydraulics of the sediment-carrying flow will be 

as follows: 

cpS
T

σ+
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1
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0  ,                                                                      (33) 

what simplifies the calculations without any significant decrease in accuracy. 

Example: A uniformly moving sediment-carrying current with a maximum depth of 1,0=H m and with an 

average velocity of sec2,10
mV =  across the clear section flows through the ravine with a V-shaped section 
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(i.e. with a triangular cross section with slope embedding factor 1=m ). 

The average diameter of the suspended particles of the soil mmd 5,1=  (hydraulic particle size 

sec1256.0 mW = ). The density of particles and water 365.2 m
Т=∗ρ and 31 m

Т=ρ , respectively. 

Average volume concentration of suspended particles in water 02,0=AveS . 

The possibility of the appearance of waves on a free flow surface (with the width of mB 2,00 = ) is to be 

forecasted, i.e. the loss of stability of the initial uniform motion and its transition to the wave mode of motion is 

to be established. 

Solution: The area of the clear section of flow in the ravine 200
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According to B.A. Bakhmetev, the hydraulic indicator of the bed of the ravine with a triangular cross-section, 

5=χ , then: 5,2
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 The dimensionless parameter of the hydraulics of the sediment-carrying stream (33) is:
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Let us use dependence (30): 
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To simplify the problem, let us assume that 2,1=α . Then: 
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499,168,0 > , 

It means that the stream loses the original “steady” uniform movement and acquires a wave motion what is to be 

taken into account when predicting soil erosion. The wave mode stimulates the intensity of the washout of the 

soils in the upper sections of the ravine. 

In such cases, the right choice is to use for example, the ratio of V.G. Goncharov [6], which is generally as 

follows:  
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4. Conclusion 

Thus, in case of the movement of a shallow stream in the upper sections of the ravines (as a brook), rolling 

waves often occur on the surface of a uniformly moving stream stimulating the intensity of soil and ground 

washout. The effect of the wave formation on the process of erosion intensity can be taken into account in the 

existing calculation dependences along the entire length of the ravine, by using correction factor VVb 5,1= for 

the average flow velocity across the clear section. 
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