American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

A Detailed Approach to Mechanical Design of Gas Pipeline Network System

Shadrack Uzoma Mathew^a, Tobinson A. Briggs^{b*}

^{a,b}Department of Mechanical Engineering, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria ^aEmail: matshadrack@yahoo.com ^bEmail: tobinson.briggs@unipor .edu.ng

Abstract

The developed optimization models for flow throughput and pressure drop along with gas pipeline network in the thesis titled, "Flow Optimization in Natural Gas Pipeline" confirmed lack in an economy in the operation of the inline compressors. The developed optimization models employed Panhandle-A equation as base the base equation. The work is a case study of pipelines of some oil producing companies in Nigeria. Further observed, there were increased flow throughput and a reduction in the overall line pressure drop. The nominal line diameter was 36" (0.9144m). The lack in the economy due to the cost of the compressors and the power consumed at the optimal level of performance triggered this work. The research work confirmed that saving in cost and operation of the inline compressors could only be achievable if the operating upstream/downstream pressure is more than the range 81—63bar at nominal pipe diameter of 36" (0.9144m). At nominal pipe diameters of 43" (1.0922m) and 50" (1.27m) economy in the operation of gas pipeline assets and facilities was attainable at upstream/downstream pressures over 81—63bar. The nominal pipe thickness is limited to 0.05m to 0.10m. The new design concepts give flexibility in design, material selection, and installation of gas pipeline network system.

Keywords: Developed Optimization Models; Increased Flow Throughput; Lack in Economy; Pipeline Network System.

1. Introduction

A lot of gas equations, correlations and optimization models had been developed for operations, design, and installation of gas pipeline network system.

^{*} Corresponding author.

Modern gas equations for pressure-capacity assessment of gas pipeline system are Weymouth equation, Panhandle-A, and modified Panhandle-B equation [1]. Gas pipeline mechanical design concept is an advanced area of study. The ANSI/ASME B31.8 standard is a stringent code for the design and installation of gas pipeline assets and facilities [2]. This standard code covers design and installation parameters for nominal pipe thickness, flow velocity considerations; compressors, valves, fittings, and flange design. This research work developed design and installation parameters for gas pipelines utilizing flow optimization models developed by the researchers coupled with the work on uplift resistance of a gas pipeline [3, 4, 5]. The developed flow optimization models are from previous research work [1]. It has been extended with operating and geometric data of five operating gas pipelines in Nigeria terrain. The approach to the mechanical design concept was to work over a range of nominal pipe thickness to generate the designed wall thickness over a range of given upstream and downstream pressures. All the prevailing stresses are it circumferential (hop) stress, longitudinal stress, radial stress, and shearing resistance were determined by the computational method. Other parameters such as pipe support spacing, the maximum deflection, maximum bending moment, the restoring force were also determined by computational approach. Optimal compressor power and operational compressor power were also determined. The developed design models are flexible enough to handle gas pipeline design problem out the range of functional and geometric data specified in this work.

2. Study Significance

The significance of this study concerns the generated design parameters. The parameters could aid in the selection of pipe materials knowing the prevailing stresses. Compressor sizing and spacing of pipe supports during installation is the beauty of this work.

3. Relevant Design Equations

The appropriate design equations are from previous works of the researcher [1, 3, 4]. The design equations formulated regarding stresses and load diagrams 1 to 5.

The hoop or circumferential stress expressed as :

$$\sigma_1 = \frac{Pd_1}{2t} \tag{1}$$

The longitudinal stress acting along the pipe wall parallel to the longitudinal axis given as :

$$\sigma_2 = \frac{Pd_1}{4t} \tag{2}$$

The expression for the radial stress goes thus;

$$\sigma_{3} = \frac{Pd_{1} - P_{ext}(d_{1} + t)}{d_{1} + t/2}$$
(3)

The resultant external load intensity on the structure expressed as:

$$P_{ext} = P_{atm} + P_{earth} + P_{c} + P_{w} + P_{p}$$

$$(4)$$

(4)

Figure 1: stresses and load geometry (diagrams 1 to 5)

The different load components are designated as :

(i) If the pipe was encased in concrete of thickness t_1 , the load intensity showed as,

$$P_{c} = \frac{F_{c}}{A_{c}} = \frac{m_{c}g}{A_{c}} = \frac{\rho_{c}V_{c}g}{A_{c}}$$
$$= \frac{\rho_{c}t_{1}g(d_{2}+d_{1})}{2d_{1}}$$
$$A_{c} = \pi d_{2}L$$
(5)

$$V_{c} = \frac{\pi (d_{2}^{2} - d_{1}^{2})L}{4} = \frac{\pi (d_{2} + d_{1})(d_{2} - d_{1})L}{4}$$
$$= \pi t L (d_{2} - d_{1})$$
$$d_{2} - d_{1} = 2t$$

(ii) Concrete Weight

$$W_{c} = m_{c}g = \rho_{c}V_{c}g = \frac{\pi L_{1}\rho_{c}g(d_{3}^{2} - d_{2}^{2})}{4}$$
(6)

(iii) Earth Mass Weight

$$W_{e} = m_{e}g = \rho_{e}V_{e}g$$

$$= \pi\rho_{e}g \left[h^{2}L - \frac{d_{2}^{2}L}{4} - \frac{(d_{3}^{2} - d_{2}^{2})L_{1}}{4}\right]$$

$$V_{e} = \pi \left[h^{2}L - \frac{d_{2}^{2}L}{4} - \frac{(d_{3}^{2} - d_{2}^{2})L_{1}}{4}\right]$$
(7)

(iv) Weight of gas inside the pipe

$$m_{n} = \frac{PV_{g}}{ZRT}$$

$$R = \sum \frac{m_{i}}{m_{H}} R_{i}, \quad m_{i} = n_{i}M_{i}$$

$$W_{n} = m_{n}g$$
(8)

(v) Pipe Weight

$$W_{p} = m_{p}g = \rho_{p}V_{p}g = \frac{\pi L_{3}\rho_{p}g(d_{1}^{2} - d_{2}^{2})}{4}$$
(9)

Subject to the tri-axial stress condition, the maximum shear stress is the greatest of the three values.

$$\tau_{1_{\max}} = \left| \frac{\sigma_1 - \sigma_2}{2} \right| or \left| \frac{\sigma_2 - \sigma_3}{2} \right| or \left| \frac{\sigma_3 - \sigma_1}{2} \right|$$

$$\therefore \quad \tau_{1_{\max}} = \left| \frac{\sigma_3 - \sigma_1}{2} \right|$$
(10)

Under uni-axial stress condition, $\sigma_{_2}$, $\sigma_{_3}=0$

$$\tau_{2\max} = \frac{\sigma_1}{2} \tag{11}$$

Temperature stress in the system is express as;

$$\sigma_{T} = E\varepsilon = E\frac{\Delta L}{L}$$
$$= E\frac{\alpha L\Delta T}{L}$$
$$= E\alpha\Delta T$$
(12)

Based on these analyses, the overall induced maximum shear stress in the pipe can be express as:

$$\tau_{\max} = \tau_{1\max} - \tau_{2\max}$$
$$= \frac{\sigma_3 - \sigma_1}{2} - \frac{\sigma_T}{2}$$
(13)

Applying failure (yielding) analysis known as maximum shear stress theory. The theory is base on the assumption that the pipe will fail or yield when the maximum induced shear stress reaches a value equal to the sear stress at the instant of failure or yielding in a simple tension test. Hence the allowable shear stress in the pipe is given as,

$$\tau_{\max} = \frac{0.5\sigma_{ypt}}{FS} = \frac{\sigma_{ypt}}{2FS}$$

$$\therefore \frac{|\sigma_3 - \sigma_1|}{2} - \frac{\sigma_T}{2} = \frac{\sigma_{ypt}}{2FS}$$

$$\sigma_1 - \sigma_3 - \sigma_T = \frac{\sigma_{ypt}}{FS}$$
(14)

Substituting equations 1, 3, and 12 in equation 14 to determine the design wall thickness of the pipe :

$$\frac{Pd_{1}}{2t} - \frac{Pd_{1} - P_{ext}(d_{1} + t)}{d_{1} + t/2} - \sigma_{T} = \frac{\sigma_{ypt}}{FS}$$
$$t^{2} \left[-2P_{ext} - \sigma_{T} - \frac{\sigma_{ypt}}{FS} \right] + t \left[-1.5Pd_{1} + 2P_{ext}d_{1} - 2\sigma_{T}d_{1} - \frac{2\sigma_{ypt}}{FS} \right] + pd_{1} = 0$$
(15)

$$a = -2P_{ext} - \sigma_{E} - \frac{\sigma_{ypt}}{FS}$$

$$b = -1.5Pd_{1} + 2P_{ext}d_{1} - 2\sigma_{T}d_{1} - \frac{\sigma_{ypt}}{FS}$$

$$c = Pd_{1}$$

$$\bar{t} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
(16)

The expression for the determination of the point of maximum deflection :

$$x^{2} \left[\frac{R_{1}}{2} - \frac{W_{c}}{2} - \left(\frac{W_{p} + W_{n}}{2} \right) - \frac{W_{e}}{2} \right] - x \left[W_{c} L_{1} + \frac{(W_{p} + W_{n})L}{2} + W_{e} L_{2} \right] + A_{1} = 0$$

$$a_{1} = \frac{R_{1}}{2} - \frac{W_{c}}{2} - \left(\frac{W_{p} + W_{n}}{2} \right) - \frac{W_{e}}{2}$$

$$b_{1} = W_{c} L_{1} + \frac{(W_{p} + W_{n})L}{2} + W_{e} L_{2}$$

$$c_{1} = A_{1} = \frac{L}{2} \left[R_{1} - W_{c} + \frac{W_{p} + W_{c}}{2} - W_{e} \right] + \frac{L}{2} \left[L_{1} W_{e} + L_{2} W_{e} \right]$$

$$\bar{c} = \frac{-b_{1} \pm \sqrt{b_{1}^{2} - 4a_{1}}c_{1}}{2a_{1}}$$
(17)

The reaction at support A and B :

$$R_1 + R_2 = W_C + W_e + W_p + W_n$$

Taking a moment about point B

$$R_{1} = \frac{W_{c} \left(\frac{2L-L}{2}\right) + (W_{p} + W_{c})L/2 + W_{e}\bar{x}}{L}$$

$$R_{2} = (W_{c} + W_{e} + W_{p} + W_{c}) - R_{1}$$
(18)
(19)

The maximum deflection is express as:

$$y = \left[\frac{R_{1}\overline{C}^{3}}{6} - W_{C}\left(\frac{\overline{C}^{2}}{6} - \frac{L_{1}\overline{C}^{2}}{2}\right) - \left(W_{p} + W_{n}\left(\frac{\overline{C}^{2}}{6} - \frac{L\overline{C}^{2}}{4}\right) - W_{e}\left(\frac{\overline{C}^{2}}{6} - \frac{L_{2}\overline{C}^{2}}{2}\right) + A_{1}\overline{C}\right] / EI$$
(20)

The expression gives the bending moment at the point of maximum deflection;

$$M = R_1 \overline{C} - W_C \left(\overline{C} - L_1\right) - \left(W_P + W_n\right) \left(\overline{C} - L/2\right) - W_e \left(\overline{C} - L_2\right)$$
(21)

The restoring force, F, at the point, if maximum deflection was given as

$$Fy = M, \qquad F = M / y \tag{22}$$

Computer Simulated Algorithm

The computational, algorithmic codings are as follows :

% COMPUTER SIMULATION FOR THE UPLIFT RESISTANCE OF GAS PIPELINES NETWORK

% SYSTEM (PRODUCTION DATA OF SHELL PETROLUEM DEVELOPMENT CORPORATION, AUGUST 2008)

% 1/ SIMULATION FOR PIPES PIPES OPTIMUM WALL THICKNESS

% IINITIALIZING

```
% UPSTREAM PRESSURE AT SOKU , P1(N/m2)
```

P1=81*10^5;

```
disp('UPSTREAM PRESSURE, P1=')
```

```
fprintf('%20.6f\n', P1)
```

% DOWNSTREAM PRESSURE AT BONNY (N/M2)

P2=63*10^5;

disp('DOWNSTREAM PRESSURE, P1=')

 $fprintf('\%20.6f\n', P2)$

% AVERAGE STREAM PRESSURE, P (N/m2)

P=(2/3)*(P1^3-P2^3)/(P1^2-P2^2);

disp('AVERAGE STREAM PRESSURE, P=')

 $fprintf(\%20.6f\n', P)$

% ATMOSPHERIC PRESSURE, Patm (N/m2)

Patm=1.03*19^5;

% SOIL DENSITY (SANDY LOAM DS (kg/m3)

DS=1940;

% DENSITY OF CONCRETE, DC (kg/m3)

DC=2310;

% MILD STEEL PIPE DENSIY, DP (kg/m3)

DP=7820;

% PIPE NOMINAL DIAMETER (36") (m)

d1=0.9144;

disp('PIPE NOMINAL DIAMETER, d1=')

fprintf(% 20.6f | n', d1)

% PIPE THICKNESS, t1 (m)

for t1=0.1:0.01:0.17

% t1=0.11;

disp('PIPE NOMINAL THICKNESS, t1=')

fprintf('%20.6f\n', t1)

% PIPE OUTER DIAMETER, d2 (m)

d2=d1+2*t1;

disp('PIPE OUTER DIAMETER, d2=')

fprintf('%20.6f\n', P2)

% THICKNESS OF CONCRETE CASING, t2 (m)

t2=0.015;

% TEMPERATURE DROP ALONG LINE, DT (k)

DT=246;

% OUTER DIAMETER OF CONCRETE CASING, d3 (m)

d3=d2+2*t2;

% PIPE LENGTH, L (m)

L=116000;

L1=(2/3)*L;

L2=L-L1;

% BURIAL DEPTH OF THE PIPE FROM THE CENTRE LINE OF PIPE, h (m)

h=100;

% YOUG'S MODULUS OF ELASTICITY FOR MILD STELL, E (N/m2)

E=213*10^9;

% FACTOR OF SAFETY FOR THE SYSTEM, FS

FS=1.5;

disp('FACTOR OF SAFETY, FS=')

fprintf('%20.6f\n', FS)

% LINEAR EXPANSIVITY FOR MILD STEEL, A (/K)

A=4.03*10^(-8);

% YIELD STRESS FOR MILD STEEL, YS, (N/m2)

YS=260*10^6;

% BULK FLOW TEMPERATURE, T (K)

T=313;

% TEMPERATURE DIFFERENCE, DT (K)

TD=246;

% FLOW COMPRESSIBILITY FACTOR, Z

Z=1.241;

%GRAVITATIONAL ACCELERATION, g (m/s2)

g=9.81;

% GENERAL GAS CONSTANT, R0 (J/kgK)

R0=8314;

% CIRCUMFERENTIAL STREEE, CS1 (N/m2)

CS1=(P*d1)/(2*t1);

disp('CIRCUMFERENTIAL OR HOOP STRESS, C1=')

 $fprintf(\%20.6f\n', CS1)$

% LONGITUDINAL STRSS, (N/m2)

CS2=(P*d1)/(4*t1);

disp('LONGITUDINAL STRESS, CS2=')

fprintf('%20.6f\n', CS2)

- % BEARING PRESSURE DUE TO THE EARTH MASS
- % VOLUME OF EARTH MASS, Ve, (m3)

 $Ve=(22/7)*((h^{2}L)-((d^{2}-d^{1})*L)/4-((d^{2}-d^{2})*L^{1})/4);$

% WEIGHT OF EARTH MASS, We (N)

We=DS*Ve*g;

disp(' We ')

fprintf('%20.6f\n', We)

% BEARING PRESSURE DUE TO THE EARTH MASS

Pext=We/((22/7)*d3*L1+d2*(L-L1));

disp(' Ptex ')

fprintf('%20.6f\n', Pext)

% RADIAL STRESS, CS3 (N/m2)

CS3=((-P*d1)+Pext*(d1+t1))/(d1+t1);

disp('RADIAL STRESS, CS3=')

fprintf('%20.6f\n', CS3)

- % disp(' CS1 CS2 CS3')
- % fprintf('%20.6f\n', CS1, CS2, CS3)
- % TEMPERATURE STRESS, CT (N/m2)

CT=E*A*DT;

disp('TEMPERATURE STRESS, DT=')

fprintf('%20.6f\n', DT)

% TO CALCULATE THE DESIGN WALL THICKNESS OF THE PIPE FOR SAFE OPERATION

```
a=-2*Pext*d1-CT-(YS/FS);
```

```
b=-1.5*P*d1+2*Pext*d1-2*CT*d1-(YS/FS);
```

c=P*d1;

%~ TO CALCULATE THE DESIGN WALL THICKNESS OF THE PIPE FOR SAFE OPERATION,th(m) ~

th1=(-b-(-b^2-(4*a*c))^(0.5))/(2*a);

th2=(-b-(-b^2+(4*a*c))^(0.5))/(2*a);

disp(' DESIGN WALL THICKNESS OF PIPE, th1 th2')

fprintf('%12.6f\n',th1 ,th2)

% SHELL AERAGE GAS COMPOSITION

C1=0.869859; C2=0.054574; C3=0.020709; IC4=0.004507; NC4=0.006309;

IC5=0.002178; NC5=0.000787; C6=0.004627; N2=0.000598; CO2=0.034843;

% MOLECULAR MASS OF THE GASEEOUS MIXTURE

M1=16; M2=30; M3=44; IM4=54; NM4=54; IM5=72; NM5=72; M6=86; MN2=28; MCO2=44;

% AVERAGE MOLECULAR MASS OF THE GAS, M (kg/mol)

M = C1*M1 + C2*M2 + C3*M3 + IC4*IM4 + NC4*NM4 + IC5*IM5 + NC5*NM5 + C6*M6 + N2*MN2 + CO2*MCO2;

disp('GAS AVERAGE MOLECULAR MASS, M ')

 $fprintf(\%20.6f\n', M)$

% AVERAGE GAS CONSTANT, R (J/kgK)

R=R0/M;

disp('AVERAGE GAS DENSITY, R ')

fprintf(% 20.6f | n', R)

% AVERAGE FLOW PRESSURE, P (N/m2)

P=92/3*(P1^3-P2^3)/(P1^2-P2^2);

% PIPE WEIGHT, Wp (N)

Wp=((22/7)*(d2^2-d1^2)*DP*L*g)/4;

disp('PIPE WEIGHT, Wp=')

fprintf('%20.6f\n', Wp)

- % CONCRETE WEIGHT, Wc (N)
 - Wc=((22/7)*(d3^2-d2^2)*DC*L1*g)/4;
 - disp('CONCRETE WEIGHT, Wc')
 - fprintf('%20.6f\n', Wc)
- % VOLUME OF GAS IN THE PIPELINE, Vg (m3)
 - Vg=((22/7)*d1^2)*L;
- % WEIGHT OF GAS IN THE PIPELINE
 - Wg=(P*Vg*g)/(Z*R*T);

disp('WEIGHT OF GAS, Wg=')

fprintf('%20.6f\n', P2)

- % disp(' Wp Wc We Wg')
- % fprintf('%12.6f\n',Wp, Wc,We,Wg)

% SIMULATION FOR THE UPLIFT RESISTANCE OF THE PIPELINE, F (N)

% TO DETERMINE x(m) (C1, C2)

```
R1 = ((Wc^{*}(2^{L}-L1)/2) + ((Wp+Wg)^{L})/2 + (We^{C1}))/L;
```

C1 = ((L-L1)*(h-(d1/2))*((L-L1)/2) + (L1*(h-(d3/2))*((2*L-L1)/2)))/((L-L1)*(h-(d2/2)) + L1*(h-(d3/2)));

 $A1 = Wc^{*}((L^{2}/6) - ((L1^{*}L)/4)) - (Wp + Wg)^{*}(L^{2}/12) + We^{*}(((C1^{*}L)/2) - (L^{2}/3)) - ((R1^{*}L^{2})/6);$

R2=(We+Wp+Wc+Wg)-R1;

% DETERMINATION OF x-COORDINATE POINT x (m)

a1=R1/2-Wc/2-((Wp+Wg)/2)-We/2;

b1=((Wc*L1)/2)-(Wp+Wg)*(L/2)+We*(L-C1);

c1=A1;

$x1=(-b1-(-b1^2-(4*a1*c1))^{(0.5)})/(2*a1);$

 $x2=(-b1-(+b1^2-(4*a1*c1))^{(0.5)})/(2*a1);$

disp(' CENTROIDAL POINT FROM THE LEFT OF THE STRUCTURE, x1, x2')

fprintf('%12.6f\n',x1,x2)

% TO DETERMINE THE SYSTEM MOMENT OF INERTIA, I (m4)

I=((22/7)*((16*h^4)-d1^4))/64;

disp(' MOMENT OF INERTIA OF THE SYSTEM, I ')

```
fprintf('%12.6f\n',I)
```

% TO DETERMINE THE MAXIMUM DEFLECTION OF THE SYSTEM, ymax

```
ymax1 = (((R1*x1^3)/6) - Wc*(((x1^3)/6) - ((L1*x1^2)/2)) - (Wp+Wg)*(((x1^3)/6) - ((L*x1^2)/4)) - We*(((x1^3)/6) - ((L*x1^2)/2)) + (A1*x1))/(E*I*10^8);
```

disp('MAXIMUM DEFLECTION--1, ymax1 ')

```
fprintf('%12.6f\n',ymax1)
```

```
ymax2 = (((R1*x2^3)/6)-Wc*(((x2^3)/6)-((L1*x2^2)/2))-(Wp+Wg)*(((x2^3)/6)-((L*x2^2)/4))-We*(((x2^3)/6)-((L*x2^2)/2))+(A1*x2))/(E*I*10^8);
```

disp('MAXIMUM DEFLECTION--2 ymax2 ')

fprintf('%12.6f\n',ymax2)

% THE BENDING MOMENT AT THE POINT OF MAXIMUM DELECTION, MB, (Nm)

```
MB1=R1*x1-Wc*(x1-(L1/2))-(Wp+Wg)*(x1-(L/2))-We*(x1-(L-C1));
```

disp(' BENDING MOMENT--1, MB1, DEFLECTION--1, ymax1, RESTORING FORCE--1 F1 ')

F1=(MB1/ymax1);

fprintf('%20.6f\n',MB1,ymax1,F1)

MB2=R1*x2-Wc*(x2-(L1/2))-(Wp+Wg)*(x2-(L/2))-We*(x2-(L-C1));

disp(' BENDING MOMENT--2, MB1, DEFLECTION--2, ymax2, RESTORING FORCE--2 F2 ')

F2=(MB2/ymax2);

fprintf('%20.6f\n',MB2,ymax2,F2)

end

Input Parameters to the Algorithmic Coding

The input parameters to the algorithmic coding are in the Tables below:

Fitting Type	Description	Equivalent Length
Globe valve	Fully open	350
Gate valve	Fully open	13
	³ ⁄ ₄ open	35
	¹ / ₂ open	160
	¹ / ₄ open	900
Check valve		50-100
90° standard elbow		30
45° standard elbow		15
90° elbow	Long radius	20
90° street elbow	Long Tudius	50
45° street elbow		26
Tae	Elow through run	20
	Flow through branch	60
Potum bond		50
Keturii Dellu	Close pattern	50

 Table 1: Dimensionless Equivalent Lengths of Pipeline Fittings (Source: Fox and McDonald, 1981)

Line Length (km)	Diameter (m)	Manifolds	Dsign Pressure (bar)	Input/Output Pressure (bar)	Flow Capacity (m ³ /s)	Operating temperature (⁰ C)
116	0.9122	1	100	81/63	1.8	40
Allowable pressure drop (bar)	Coated/Uncoated	Flow Reynolds number	Flow specific gravity	Buried/Surface	Compressibility factor	
20	Coated	4000	0.6978	Buried	1.279	
			Gas Composition			
C ₁	C ₂	C3	IC ₄	NC ₄	IC ₅	C ₆
0.888	0.05423	0.02882	0.0072	0	0.0038	0.0018
C ₇	N ₂	CO2				
0.0016	0.0002	0.0075				

Table 2: Geometric, Configuration and Operational Data for The Case study Gas Pipelines

Table 3: Shell Optimised Panhandle- A Operating Threshold

D(m)	P ₁ (bar)	P ₂ (bar)	ΔP_{opt}	Q _{opt}	L(Km)
36"(0.9144)	50	30	25.25735	1.9421	116
	64	48	20.4483	1.94198	
	81	63	17.64499	1.94198	
	110	80	15.896981	1.9952	
	130	100	10.2772	1.94225	
	150	125	11.51225	1.94212	
	170	140	12.061	1.942396	
43"(1.0922)	50	30	24.0942	2.7596	
	64	48	19.544	2.7599	
	81	63	16.9213	2.76033	
	110	80	14.6143	2.7603	
	130	100	13.36898	2.760479	
	150	125	12.27117	2.75995	
	170	140	11.68059	2.76296	
50"(1.27)	50	30	22.841763	3.69643	
	64	48	16.10848	3.69615	
	84	63	16.10844	3.696154	
	110	80	13.9212	3.69745	
	130	100	12.72155	3.695531	
	150	125	11.751408	3.696517	
	170	140	11.18122	3.697248	

4. Results and Discussions

The output results from the computer simulated algorithm are in Table 4a to 4c below. In the design process, the equivalent length of all the inline items along the gas pipeline was obtained from Table 1. The data in Table 2 and 3 are input to the computational, algorithmic coding. It represents the operating threshold of the producing company on the Natural gas pipeline network system.

Table 3 is the results of optimization work on the thesis titled, "Flow Optimization in Natural Gas Pipeline" [1]. Table 3 represents the operating threshold of the pipeline within a range of operating pressures and nominal pipe diameters. The results of this research work in Table 4a confirmed that the optimal power to drive the compressor was higher than the operational power at pipe nominal diameter of 36"(0.9144m) at operating upstream and downstream pressures of 50-30bar, 64-48bar and 81-63bar respectively. This development is seemly impracticable from the perspective of the economy of operation. At operating upstream and downstream pressures of 110-80bar, 130-100bar, 150==125bar and 170-140bar the optimal power requirement to drive the compressor is much lesser than the operational power required. At nominal pipe diameter of 36" (0.9144m) is recommended to rub the Shell natural gas pipeline at operating upstream and downstream pressure order the 81-63bar due to the inherent increased flow throughput and a better economy in compressors operation. At nominal pipe diameter of 43", (1.0922m) improvement in the economy of operation of the compressors was obtainable at upstream/downstream pressures of 110-80bar and above. The pipeline mechanical design concept is only practicable at nominal pipe thicknesses of 0.05 and 0.10m. There is also increased flow throughput much more above what obtains at 36" (0.9144m) pipe diameter. The same analysis for 43" 1.0922m) goes for 50" (1.27m) nominal pipe diameter except the flow throughput is much more significant. The design table provides data for stress, nominal pipe thickness, pipe design thickness, support placement during the installation of pipeline assets and facilities, other physical and geometric design features and the driving power for flowing fluid stream. This is to give room for flexibility in design, material selection and installation of gas pipeline assets and facilities.

5. Recommendation for Future Research

New generation of natural gas pipeline be designed and installed taking cognizance of all the prevailing stresses to select the right and cheaper materials outside iron and steel products.

6. Conclusion

Computational algorithmic coding had been developed to generate data for design, material selection and installation of gas pipeline network system applying the developed optimized Panhandle-A equation. It is believed that this will create flexibility in the mechanical design concepts of gas pipeline network system.

Table 4a-4c: Output Results of Shell Petroleum Development Company Operating Threshold Using Developed Optimized Panhandle-A Equation

a) Pipe Diameter36"(0.9144r n all cases of operational press actor of Safety, FS=1.5	1) ure drops, the operational thr	oughput is 1.8m ³ /s							
Yipe Length L (m) 116000	Pipe Diameter D (meters/inches) 0.9144m/36"	Pipe Nominal Thickness t (m) 0.11 0.12 0.13 0.13	Pipe Design Thickness t _d (m) 0.186 0.1822 0.179 0.1747	Upsream Pressure P ₁ (bar) 50	Downstream Pressure P2 (bar) 0 30	Average Stream Pressure P _{ave} (bar) 40.833	Circumferrential (Hoop) Stress σ1(MN/m²) 37.34 16.97 15.56 14.36 14.36	Longitudinal Stress	Radial Stress σ ₃ (WN/m ²) 232.9 94.77 205.1 210.0 100.0
		0.14 0.15 0.16 0.17	0.1/11 0.1674 0.1683 0.1603				13.34 12.45 11.67 10.98	6.223 5.834 5.941	198.3 195.1 191.75 188.1
Temperature Stress σ _T (MN/m ²) 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112	Maximum Shear Stress r _{mm} (MN/m²) 95.75 94.77 93.69 92.57 91.42 90.25 88.68 88.68 87.97	Optimal Flow Capacity Q _{opt} (m ³ /s) 1.9421	Optimal Pressure Drop B ^P ere (N/m ²) 25.25785	Supports Placement from Left X, (m) X, (m) 57988 91475 57987 91455 57986 91452 57986 91452 57985 91450 57982 91445 57952 91445 57952 91445 57951 91445 57981 91443	Maximum Deflection y _{max} (m) - 2.6977 - 2.6977 - 2.6977 - 2.6977 - 2.6977 - 2.6977 - 2.6977 - 2.6977	Maximum Bending Moment M _{max} 10 ⁴¹ (Nm) 7.167 7.903 8.281 8.866 9.0559 9.453 9.8568	Restoring Force F x10 ²⁷ (N) - 3.338 - 3.388 - 3.388 - 3.388 - 3.388 - 3.388 - 3.388 - 3.338 - 3.3388 - 3.	Compressor Power (optimal) P _{oo} (NWI) 4.905	Compressor Power (operational) P _{op} (MW) 3.6
ipe Length L (m) 116000	Pipe Diameter D (meters/inches) 0.9144m/36"	Pipe Nominal Thickness t(m) 0.05 0.11 0.12 0.13 0.14 0.15 0.16 0.17	Pipe Design Thickness t ₄ (m) 0.2018 0.1582 0.1582 0.1755 0.1755 0.1755 0.1555 0.1555 0.1555 0.1558	Upsream Pressure P ₁ (bar) 6/	Downstream Pressure P ₂ (bar) 4 48	Average Stream Pressure P _{ine} (bar) 56.88	Circumferrential (Hoop) Stress [r_(MN/m ²) 1 1 51.56 25.78 24.55 24.45 19.82 18.44 19.82 18.44 17.19 16.11 15.16	Long/tudinal Stress 0,(MV/m ²) 1 25,78 12,28 12,28 12,28 12,28 12,27 10,74 9,534 9,24 8,555 8,555 7,582	Radial Stress σ ₃ (MN/m²) 231.4 2009 2009 2007.2 2007.7 2003 196.94 193.74 193.6 197.6
Temperature Stress σ _T (MN/m ²) 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112	Maximum Shear Stress r mm(MN/m ²) 91.2 98.4 90.05 88.15 88.15 88.15 88.15 88.15 88.17	Optimal Flow Capacity Q _{rgs} (m ³ /s) 1.94198	Optimal Pressure Drop 	Supports Placement from Left X, (m) X, (m) 57992 91461 5786 91451 5786 914450 57986 914450 57986 914451 57986 91447 57988 91447 57982 91443 57982 91443 57983 91443 57980 91443 57980 91437	Maximum Deflection y _{max} (m) - 2.6981 - 2.6	Maximum Bending Moment M _{max} 10 ⁴¹ (Nm) 6.916 8.6429 9.000 9.3789 9.7566 1.104 1.053 1.029 1.133	Restoring Force F x10 ²⁷ (N) - 3.338 - 3.388 - 3.388 - 3.388 - 3.388 - 3.388 - 3.388 - 3.38	Compressor Power (optimal) P _{op} (NW) 3.571	Compressor Power (operational) Poge(MW) 288 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
ipe Length L (m) 116000	Pipe Diameter D (meters/inches) 0.9144m/36")	Pipe Nominal Thickness t(m) 0.05 0.11 0.105 0.11 0.12 0.13 0.14 0.17	Pipe Design Thickness t ₄ (m) 0.1822 0.1882 0.1888 0.1784 0.1786 0.1776 0.1762 0.1562	Úpsream Pressure P ₁ (bar) 81	Downstream Pressure P ₂ (bar) 1 63	Average Stream Pressure P _{ave} (bar) 72.375	Groumferrential (Hoop) Stress g.(MM/m ²) 66.186 33.1	Longitudinal Stress σ ₂ (MN/m ²) 33.1 16.54	Radial Stress $\sigma_3(MN/m^2)$ 223.8 203.4 203.4
Temperature Stress σ _T (MN/m ³) 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112 2.112	Maximum Shear Stress r mm(MN/m ²) 80.8 87.13	Optimal Flow Capacity Q _{ipt} (m ³ /s) 1.94198	Optimal Pressure Drop $\Delta P_{eqt}(N/m^2)$ 17.64499	Supports Placement from Left X1 (m) X2 (m) 57990 91455 57981 91445 57981 91445 57983 91445 57989 91444 57931 91442 57961 91444 57970 91440 57971 91436 57978 91132	Maximum Deflection ymax (m) - 2.6994 - 2.6994 - 2.6999 - 2.6995 - 2.6995 - 2.6995 - 2.6995 - 2.6985 - 2.69	Maximum Bending Moment M _{max} 10 ¹⁴ (Nm) 8.435 10.15 10.34 10.5 10.91 11.5 10.91 11.66 12.05 12.83	Restoring Force F x10 ²⁷ (N) 3.338 3.338 3.338 3.338 3.338 3.338 3.338 3.338 3.338 3.338 3.338 3.3385 3	Compressor Power (optimal) P _{ov} (MM) 3.427	(ompressor Power (operational) P _{op} (MW) 3.24

Pipe Length L (m)		Pipe Diameter D (meters/inches)	Pipe Nominal Thickness t (m)	Pipe Design Thickness t _d (m)	Upsream Pres P1 (bar)	sure	Downstream Pressure P2 (bar)	Average Stream Pressure Pave (bar)	Circumferrential (Hoop) Stress $\sigma_1(MN/m^2)$	Longitudinal Stress $\sigma_2(MN/m^2)$	Radial Stress σ ₃ (MN/m ²)
	116000	0.9144m/36"	0.05	5 0.1994		110	80	95.79	95.79	87.59	227.7
			0.105	5 0.1745					41.71	20.86	205.5
			0.1	2 0.1734					43.79 36.49	13.25	207.35
			0.1	0.1679 0.1641					33.69 31.28	16.84	196.8
			0.19	5 0.1604 6 0.1568					29.2 27.37	14.6	190.3 187.3
			0.17	7 0.1531					25.76	12.88	184.3
Temperature Stress		Maximum Shear Stress	Optimal Flow Capacity	Optimal Pressure Drop	Supports Plac	ement from Left	Maximum Deflection	Maximum Bending Moment	Restoring Force F x 10 ¹⁷ (N)	Compressor Power (optimal)	Compressor Power (operational)
01(ma)m7	2.112	68.98	1.995	2 15.896981	57985	91441	-2.6996	12.554	-3.338	3.172	5.4
	2.112	80.723			57981 57979	91431 91430	-2.6996	14.269	-3.338 -3.338		
	2.112	80.77 80.8			57980 57978	91429 91427	-2.6996	14.63	-3.338		
	2.112	80.5			57977	91425	-2.6996	15.01	-3.339		
	2.112	80.06 79.5			57976	91423 91421	-2.6996	15.7/	-3.339		
	2.112	78.89 78.21			57975 57973	91419 91417	-2.6996	16.56 16.96	-3.339 -3.339		
					L						
pe Length L (m)		Pipe Diameter D (meters/inches)	Pipe Nominal Thickness t (m)	Pipe Design Thickness t _d (m)	Upsream Pres P ₁ (bar)	sure	Downstream Pressure P ₂ (bar)	Average Stream Pressure Pave (bar)	Circumferrential (Hoop) Stress σ_1 (MN/m ²)	Longitudinal Stress $\sigma_2(MN/m^2)$	Radial Stress σ_3 (MN/m ²)
	116000	0.9144m/36"	0.0	5 0.1972 1 0.177		130	100	115.65	105.8	52.88 26.438	225.
			0.10	0.1751					50.36	25.18	203.
			0.11	0.1/31					48.08	24.04 22.03	201. 198.
			0.1	0.1654 4 0.1616					40.68	20.34	195.
			0.15	0.1577					35.25	17.63	188.
			0.17	7 0.1505					31.1	15.56	185.
			l	l	l			l	II	L	l
Temperature Stress		Maximum Shear Stress	Optimal Flow Capacity	Optimal Pressure Drop	Supports Plac	ement from Left	Maximum Deflection	Maximum Bending Moment	Restoring Force	Compressor Power (optimal)	Compressor Power (operational)
σ _T (MIN/M ⁴)	2.112	1 mas(MIN/M^) 58.96	u _{opt} (m ⁻ /s)	±۲ _{opt} (N/m) 5 10.2772	x ₁ (m) 57985	x ₂ (m) 91441	y _{max} (m) -2.6951	M _{max} x10 (Nm) 1.067	-3.338	r'opt(NWV) 1.966	P _{op} (MW) 5.
	2.112	75.29			57981 57979	91431	-2.6691	12.384	-3.338		
	2.112	75.88			57980	91429	-2.6691	12.38	-3.338		
	2.112	96.13			57978 57977	91427 91425	-2.6951 -2.6691	13.12	-3.338		
	2.112	75.96			57976 57976	91423 91471	-2.6951	13.88	-3.338		
	2.112	75.21			57976	91419	-2.6951	14.27	-5.338		
	2.112	/4./			5/9/3	91417	-2.6691	15.12	-3.338		
ipe Length		Pipe Diameter	Pipe Nominal Thickness	Pipe Design Thickness	Upsream Pres	sure	Downstream Pressure P. (bar)	Average Stream Pressure	Circumferrential (Hoop) Stress $\sigma_1(MN/m^2)$	Longitudinal Stress a-(MN/m ²)	Radial Stress $\sigma_{2}(MN/m^{2})$
c (m)	116000	0.9144m/36"	0.05	5 0.1947	11(001)	150	125	137.87	126.1	63.04	24
			0.1	1 0.1743					60.4 57.31	31.52	223.
			0.12	2 0.1665					52.53	26.27	199.9
			0.1	4 0.1588					48.49 45.43	24.25	193.
			0.15	5 0.1551 5 0.1514					42.03	21.01	186.
			0.17	7 0.1474					37.08	18.54	180.
Temperature Stress		Maximum Shear Stress	Optimal Flow Capacity	Optimal Pressure Drop	Supports Plac	ement from Left	Maximum Deflection	Maximum Bending Moment	Restoring Force	Compressor Power (optimal)	compressor Power (operational)
$\sigma_T (MN/m^2)$	2.442	$\tau_{max}(MN/m^2)$	Q _{opt} (m ³ /s)	ΔP _{opt} (N/m ²)	X ₁ (m)	X ₂ (m)	y _{max} (m)	M _{max} x10 ⁵⁴ (Nm)	F x 10 ¹⁷ (N)	P _{opt} (MW)	P _{opr} (MW)
	2.112	47.75	1.9421	11.51225	57983	91423 91424	-2.7001	1.465	-3.3383	2.236	4
	2.112	70.27			57977 57976	91422 91420	-2.7001	1.675	-3.3386		
	2.112	71.26			57975	91418	-2.7002	1.749	-3.3386		
	2.112	/1.3/ 71.3			57973	91416 91414	-2.7002	1./8//	-3.338/ -3.3387		
	2.112	71.09	1		57972 57971	91412 91410	-2.7002	1.867	-3.3388		
ipe Length L (m)		Pipe Diameter D (meters/inches)	Pipe Nominal Thickness t (m)	Pipe Design Thickness t _d (m)	Upsream Pres P1 (bar)	sure	Downstream Pressure P ₂ (bar)	Average Stream Pressure Pave (bar)	Circumferrential (Hoop) Stress $\sigma_1(MN/m^2)$	Longitudinal Stress $\sigma_2(MN/m^2)$	Radial Stress $\sigma_3(MN/m^2)$
	116000	0.9144m/36"	0.05	5 0.1947		170	130	137.88	126.1	63.04	223
			0.1	0.1743					63.04 57.31	31.52 28.55	203
			0.12	0.1665					52.53 4º 40	26.27	196
			0.1	0.1588					45.03	24.25	195
			0.15	0.1551 0.1537					42.03	21.01	186
			0.1	7 0.1476					37.08	18.5	180
Temperature Stress		Maximum Shear Stress	Optimal Flow Capacity	Optimal Pressure Drop	Supports Plac	ement from Left	Maximum Deflection	Maximum Bending Moment	Restoring Force	Compressor Power (optimal)	Compressor Power (operational)
$\sigma_T (MN/m^2)$	2,112	τ max(MN/m ²)	Q _{opt} (m ³ /s)	ΔP _{opt} (N/m ²)	X1 (m)	X ₂ (m) 91473	y _{max} (m)	M _{max} x10 ¹⁴ (Nm)	F x10" (N)	P _{opt} (MW)	P _{opr} (MW)
	2.112	69.2	1.94259	12.016	57978	91424	-2.7002	14.65	-3.3388	2.334	2.3
	2.112	70.27			57977 57976	91422 91420	-2.7001	16.74	-3.3386		
	2.112	71.26			57975	91418 91416	17.49	17.59	-3.3386		
	2.112	71.29			57973	91414	17.82	1.827	-5.3387		
	2.112	71.09	,		57972 57971	91412 91410	18.67	1.867	-3.3388		
	_										
						1					

(b) Pipe Diameter43"(1.0922	m)								
In all cases of operational pres Factor of Safety, FS=1.5	, sure drops, the operational thr	oughput is 1.8m ³ /s							
Pipe Length L (m) 116000	Pipe Diameter D (meters/inches) D 1.0922m/43")	Pipe Nominal Thickness t (m) 0.05	Pipe Design Thickness t _d (m) 0.2083	Upsream Pressure P ₁ (bar)	Downstream Pressure P ₂ (bar) 0 30	Average Stream Pressure P _{ave} (bar) 0 40.833	Circumferrential (Hoop) Stress σ ₁ (MN/m²) 44.6	Longitudinal Stress σ ₂ (NN/m ²) 22.3	Radial Stress σ ₃ (MN/m²) 498.3
		0.1 0.11 0.12 0.13 0.14	0.1915 0.5192/-0.0724 0.5156/-0.078 0.5620/-0.0842 0.5683/-0.09				22.3 932.5 854.8 739 732,68	11.15 466.3 427.4 394.5 266.3	183.1 13.41 12.11 10.86 9.6664
		0.15 0.16 0.17	0.5047/-0.0998 0.501/-0.1015 0.4073/-0.107				683.83 641.1 603.39	341.9 320.6 301.7	8.522 7.425 6.374
Temperature Stress σ _T (MN/m ²) 2.112	Maximum Shear Stress $ au_{max}(MN/m^2)$ 2 75.77	Optimal Flow Capacity Q _{opt} (m ³ /s) 2.7596	Optimal Pressure Drop ΔP _{opt} (N/m ²) 24.0942	Supports Placement from Lef X1 (m) X2 (m) 57189 91452	t Maximum Deflection y _{max} (m) -2.6988	Maximum Bending Moment M _{max} x10 ¹⁴ (Nm) 3 94.88	Restoring Force F x10 ¹⁷ (N) -3.3383	Compressor Power (optimal) P _{opt} (MW) 6.649	Compressor Power (operational) P _{opr} (MW) 3.6
2111 2111 2111 2111 2111 2111 2111	2 79.35 2 -461 2422.4 2 .394.12 2 -362.6	5		57984 91441 57982 91439 57981 91437 57981 91435 57979 91432	-2.6988 -2.6988 -2.6988 -2.6989 -2.6989 -2.6989	3 11.5 3 11.93 3 12.36 9 12.79 9 13.23	-3.3383 -3.3383 -3.3384 -3.3384 -3.3384 -3.3385		
2111 2111 2111	2 .338.7 2 .317.9 2 .299.54			57978 91430 57977 91428 57976 91426	-2.699 -2.699 -2.6988	3 13.68 3 13.14 3 14.6	-3.3385 -3.3385 -3.3386		
Pipe Length	Pipe Diameter	Pipe Nominal Thickness	Pipe Design Thickness	Upsream Pressure	Downstream Pressure	Average Stream Pressure	Circumferrential (Hoop) Stress σ.(MN/m ²)	Longitudinal Stress	Radial Stress
11600	0 1.0922m/43"	0.05	0.2018 0.1841 0.1822 0.1802	F1(00)	4 4	56.88	51.56 25.78 24.55 23.43	25.78 12.89 12.28 11.72	231.4 210.9 209.1 207.2
		0.12 0.13 0.14 0.15 0.16 0.16	0.1765 0.1728 0.1691 0.1655 0.1615				21.48 19.82 18.41 17.19 16.11	10.74 9.934 9.2 8.592 8.955	203.7 200.3 196.94 193.74 190.6
Temperature Stress σ _T (MN/m ²)	Maximum Shear Stress $ au_{max}(MN/m^2)$	Optimal Flow Capacity Q _{opt} (m ³ /s)	Optimal Pressure Drop ΔP _{opt} (N/m ²)	Supports Placement from Lef	t Maximum Deflection y _{max} (m)	Maximum Bending Moment M _{max} x10 ¹⁴ (Nm)	Restoring Force F x10 ¹⁷ (N)	Compressor Power (optimal) P _{opt} (MW)	Compressor Power (operational) P _{op} (MW)
2111 2111 2111 2111 2111 2111	2 88.87 91.51 91.2 91.2 98.4 90.05	1.94198	3 20.4483	57992 91461 57887 91451 57986 914450 57986 91449 57985 91447	-2.6981 -2.6981 -2.6981 -2.6981 -2.6981 -2.6981	1 6.916 8.6429 8.825 9.002 9.3789	-3.338 -3.3381 -3.338 -3.3381 -3.3381 -3.3381	5.453	2.88
2.11 2.11 2.11 2.11 2.11 2.11	2 89.15 2 88.21 2 87.216 2 86.199 2 85.17			57983 91445 57692 91443 57981 91441 57980 91439 57979 91437	-2.6981 -2.6981 -2.6981 -2.6981 -2.6981 -2.6981	1 9.7566 1 1.104 1 1.053 1 1.0929 1 1.133	-3.338 -3.338 -3.338 -3.338 -3.338 -3.338		
Pipe Length	Pipe Diameter	Pipe Nominal Thickness	Pipe Design Thickness	Upsream Pressure	Downstream Pressure	Average Stream Pressure	Circumferrential (Hoop) Stress	Longitudinal Stress	Radial Stress
L (m) 11600	D (meters/inches) D 1.0922m/43")	t (m) 0.05 0.1 0.11	t _d (m) 0.2041 0.1871 0.465	P1 (bar) 8	P ₂ (bar)	P _{ave} (bar) 3 72.375	σ ₁ (MN/m ²) 79.15 39.52 16.53	σ ₂ (MN/m ²) 39.52 19.78 18.22	σ ₃ (MN/m ²) 195.3 182.2 118.4
Temperature Stress σ _T (MN/m ²)	Maximum Shear Stress $\tau_{max}(MN/m^2)$	Optimal Flow Capacity Q _{opt} (m ³ /s)	Optimal Pressure Drop ΔP _{opt} (N/m ²)	Supports Placement from Lef X1 (m) X2 (m)	t Maximum Deflection y _{max} (m)	Maximum Bending Moment M _{max} x10 ¹⁴ (Nm)	Restoring Force F x10 ¹⁷ (N)	Compressor Power (optimal) P _{opt} (MW)	Compressor Power (operational) P _{op} (MW)
2.11: 2.11: 2.11:	2 57.06 2 69.28 2 -88.667	2.76033	16.9213	57957 91443 57981 91433 57980 91431	-2.6994 -2.6994 -2.6995	4 13.669 4 13.669 3 14.09	-3.3384 -3.3384 -3.3382	4.671	3.24

Image Image <th< th=""></th<>
Image Image <t< td=""></t<>
Image Image <th< td=""></th<>
Network <
Space is a production by a product of the product
NUMBER IDE UND
10100
Image Image <th< td=""></th<>
Image: state Image: state<
Image Image <t< td=""></t<>
Photom Photo
Image: state
Image Image <th< td=""></th<>
Image: state in the
Image Image <t< td=""></t<>
Import Number of the state
100 1000 <th< td=""></th<>
Image: sector
number of the sector of the
Image: state in the s
Index Index <th< td=""></th<>
Part of the sector functional sector functional (n) Pactor functional (n) Pac
19001.022m/470.050.056
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c } \hline \begin bold in the image of the ima$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c } 1112 & 1.112 &$
$ \begin{array}{ c c c c } \begin matrix $
$ \begin{array}{ c c c c c } \begin matrix \begin matri$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Pipe Langth Pipe Diameter Pipe Nominal Thickness Pipe Design Thickness Pipe Resume Pressure Downstream Pressure Average Stream Pressure Comuniferential (HoopStress Ognutual Stress Radial Stress Radia Stress
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Image: system of the
Image: Second
Temperature Stress Maximum Shear Stress Optimal Flow Capacity Optimal Pressure Drop Supports Placement from Left Maximum Deflection Maximum Bending Moment Restoring Force Compressor Power (optimal)
σ ₇ (MM/m ²) τ _{max} (MN/m ²) Q _{app} (m ³)s dΦ _{pap} (Nm ³) X ₁ (m) X ₁ (m) y _{max} (m) M _{max} X10 th (Nm) F x10 ² (N) P _{app} (MM) P _{app} (MM) 2.112 76.97 2.76296 11.6859 57974 91404 -2.7023 2.291 -3.338 3.227 5.40 ² 2.112 40.70 0 0.0024 0.0024 0.7023 0.004 0.7024 0.004
Annu Annu <th< td=""></th<>

c) Pipe Diameter-50"(1.27m) in all cases of operational press Factor of Safety, FS=1.5 Pipe Length L (m) 116000	ure drops, the operational thro Pipe Diameter D (meters/inches) 1.27m/50")	Pipe Nominal Thickness t(m) 0.01 0.11	Pipe Design Thickness t _e (m) 0.2098 0.5228/-0.1053	Úpsream Pressure P ₁ (bar) 50	Downstream Pressure P ₂ (bar) 30	Average Stream Pressure P _{me} (bar) 40.833	Circumferrential (Hoop) Stress of (WW/m?) 44.6 22.3 992.5	Longitudinal Stress	Radial Stress $\sigma_{s}(MI/m^{2})$ 498.3 183.1 13.41
Temperature Stress σ ₇ (MN/m ²) 2.112 2.112	Maximum Shear Stress τ _{mak} (MN/m ²) 75.77 79.35 -461	Optimal Flow Capacity Q _{opt} (m ³ /s) 3.69643	Optimal Pressure Drop $\Delta P_{ege}(N/m^2)$ 22.841763	Supports Placement from Left X1 (m) X2 (m) 57189 91452 57984 91441 57982 91439 	Maximum Deflection γ _{mix} (m) -2.6988 -2.6688	Maximum Bending Moment M _{max} 10 ¹⁴ (Nm) 94.88 11.5 11.93	Restoring Force F x10 ¹⁷ (N) -3.3383 -3.3383 -3.3383	Compressor Power (optimal) P _{op} (MW) 8.443	Compressor Power (operational) P _{op} (MW) 5.4
Pipe Length L (m) 116000	Pipe Diameter D (meters/inches) 1.27m/S0°)	Pipe Nominal Thickness t(m) 0.05 0.105	Pipe Design Thickness t ₄ (m) 0.2018 0.1541 0.1522	Upsream Pressure P ₁ (bar) 64	Downstream Pressure P ₂ (bar) 48	Average Stream Pressure Pare (bar) 56.88	Circumferrential (Hoop) Stress σ ₄ (NN/m ²) 1 51.56 24.55 24.55	Longitudinal Stress σ_{(MN/m ²) 12.89 12.28	Radial Stress σ g/MN/m²] 231.4 210.9 209.1
Temperature Stress σ _T (MN/m ²) 2.112	Maximum Shear Stress r _{mm} (MN/m ²) 91.2 94.4 90.05 88.15 88.12 87.216 86.199 85.17	Optimal Flow Capacity Q _{qe} (m ³ /s) 3.69615	Optimal Pressure Drop ΔP _{opt} (N/m ²) 16 10848	Supports Placement from Left X1 (m) X2 (m) 57982 91.461 57986 91.451 57986 91.4450	Maximum Deflection y _{mix} (m) -2.6881 -2.6881	Maximum Bending Moment M _{max} x10 ²⁴ (Nm) 6.916 8.6429 8.825	Restoring Force Fx10 ⁰⁷ (N) -3.3381 -3.388	Compressor Power (optimal) P _{ee} (MW) 5.954	Compressor Power (operational) P _{equ} (MW) 2.88
Pipe Length L (m) 116000	Pipe Diameter D (meters/inches) 1.27m/50°)	Pipe Nominal Thickness t (m) 0.05 0.11	Pipe Design Thickness t _e (m) 0.1871 0.465	Upsream Pressure P ₁ (bar) 81	Downstream Pressure P ₂ (bar) 63	Average Stream Pressure P _{ave} (bar) 72.375	Circumferrential (Hoop) Stress σ ₄ (MW/m ²) 1 79 15 39 52 16 53	Longitudinal Stress σ _s (MN/m ²) <u>39.52</u> <u>19.78</u> <u>18.22</u>	Radial Stress σ_g/MV/m ²) 195.3 182.2 118.4
Temperature Stress σ _r (MN/m ²) 2.112 2.112 2.112	Maximum Shear Stress τ _{mm} (MN/m ²) 57.06 69.28 -88.667	Optimal Flow Capacity Q _{opt} (m ³ /s) 3.696154	Optimal Pressure Drop $\Delta P_{opt}(N/m^2)$ 16 10844	Supports Placement from Left X ₁ (m) X ₂ (m) 57557 91443 57981 91433 57980 91431 	Maximum Deflection γ _{min} (m) -2.6994 -2.6993	Maximum Bending Moment M _{max} x10 ¹⁴ (Nm) 13.669 13.669 14.09	Restoring Force F x10 ¹⁷ (N) -33384 -33382	Compressor Power (optimal) P _{ox} (MW) 5.954	Compressor Power (operational) P _{ep} (MW) 3.24

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2019) Volume 59, No 1, pp 179-202

Pipe Length L (m) 115000	Pipe Diameter D (meters/inches) 1.27m/50')	Pipe Nominal Thickness t(m) 0.05 0.1	Pipe Design Thickness t _e (m) 0.201 0.1838 0.3738	Upsream Pressure P ₁ (bar) 110	Downstream Pressure P2 (bar) 0 80	Average Stream Pressure P _{ore} (bar) 95.79	Grcumferrential (Hoop) Stress σ ₁ (MN/m ²) 104.6 52.31 2188	Longitudinal Stress g_(MM/m ²) 52.31 26.16 1094	Radial Stress σ _s (MN/m ²) 192 178.1 -216.3
Temperature Stress ar (NN/m ²) 2.112 2.112 2.112	Maximum Shear Stress $\tau_{max}(MN/m^2)$ 6133 -1203	Optimal Flow Capacity Q _{opt} (m ³ /s) 3.69745	Optimal Pressure Drop $\Delta P_{opt}(N/m^2)$ 13.9212	Supports Placement from Left X, (m) X, (m) 57983 91432 57978 91422 57977 91420	Maximum Deflection y _{max} (m) - 2.7002 - 2.7003	Maximum Bending Moment M _{max} 210 ²¹ (Nm) 14.83 15.84 17.26	Restoring Force F x10 ¹⁷ (N) -3.3385 -3.3386 -3.3386	Compressor Power (optimal) P _{opt} (MW) 5.147	Compressor Power (operational) P _{gp} (MW) 5.4
Pipe Length L (m) 116000	Pipe Diameter D (méters/inches) 1.27m/S0°)	Pipe Nominal Thickness t (m) 0.05 0.10 0.105	Pipe Design Thickness t _a (m) 0.1983 0.181 0.1712/-0.561	Upsream Pressure P ₁ (bar) 130	Downstream Pressure P ₂ (bar) 100	Average Stream Pressure P _{ave} (bar) 115.65	Circumferrential (Hoop) Stress σ ₁ (NN/m ²) 126.3 6.3 Li 264.1 	Longitudinal Stress	Radial Stress σ ₃ (MN/m ²) 197 299.1
Temperature Stress σ _r (NN/m ²) 2.112 2.112 2.112 0.112 0.112 0.112 0.112 0.112 0.112 0.1112 0.112 <	Maximum Shear Stress r _{mm} (MN/m ²) 31.35 55.49 -147	Optimal Flow Capacity Q _{egt} (m ³ /s) 3.695531	Optimal Pressure Drop ΔP _{eqt} (N/m ²) 12.75155	Supports Placement from Left X1(m) X2(m) 57955 91423 57975 91412 57974 91410 1 1 6 1 1 1 1 7 91410 1 </td <td>Maximum Deflection y_{max} (m) -2.701 -2.6691 -2.6951</td> <td>Maximum Bending Moment M_{max}10²⁴ (Nm) 17.522 19.53 19.55 19.95 19.55</td> <td>Restoring Force F x10¹⁷ (N) -3.3387 -3.3385 -3.3385</td> <td>Compressor Power (optimal) P_{ext}(MW) 4.701</td> <td>Compressor Power (operational) P_{ew}(MW) 5.4</td>	Maximum Deflection y _{max} (m) -2.701 -2.6691 -2.6951	Maximum Bending Moment M _{max} 10 ²⁴ (Nm) 17.522 19.53 19.55 19.95 19.55	Restoring Force F x10 ¹⁷ (N) -3.3387 -3.3385 -3.3385	Compressor Power (optimal) P _{ext} (MW) 4.701	Compressor Power (operational) P _{ew} (MW) 5.4
Pipe Length L (m) 116000	Pipe Diameter D (meters/inches) 1.27m/50°)	Pipe Nominal Thickness t (m) 0.1 0.11	Pipe Design Thickness t _g (m) 0.1954 0.1774 0.1714	Upsream Pressure P ₁ (bar) 150	Downstream Pressure P2 (bar) 125	Average Stream Pressure Prec (bar) 137.87	Grcumferrential (Hoop) Stress	Longitudinal Stress	Radial Stress $\sigma_{\rm s}({\rm NN}/{\rm m}^2)$ 1142 -292.2
Temperature Stress σ ₇ (MN/m ²) 2.112 2.112 2.112 2.112	Maximum Shear Stress τ _{mm} (MN/m ²) 18.15 48.41 -1772	Optimal Flow Capacity Q _{opt} (m ³ /s) 3.696517	Optimal Pressure Drop $\Delta P_{eqt}(N/m^2)$ 11.751408	Supports Placement from Left X1 (m) X2 (m) 57977 93.441 57972 91.402 579771 91399	Maximum Deflection y _{max} (m) -2.701 -2.701 -2.701	Maximum Bending Moment M _{max} 20 ⁴⁴ (Nm) 2033 2254 2296	Restoring Force F x 10 ¹⁷ (N) -3.3389 -3.3396	Compressor Power (optimal) P _{ort} (MW) 4.344	Compressor Power (operational) P _{op} (MW) 4.5
Pipe Length L (m) 115000	Pipe Diameter D (meters/inches) 1.27m/50°)	Pipe Nominal Thickness t (m) 0.05 0.1	Pipe Design Thickness t _g (m) 0.1923 0.1768/0.2217 -0.1695	Úpsream Pressure P ₁ (bar) 177	Downstream Pressure P ₂ (bar)) 130	Average Stream Pressure P _{roc} (bar) 137.88	Grcumferrential (Hoop) Stress σ ₁ (MN/m ²) 98.73 4129	Long(tudinal Stress σ_{(MM/m ²) 98.73 49.37 2064	Radial Stress
Temperature Stress σ ₁ (NN/m ²) 2.112 2.112 2.112	Maximum Shear Stress r _{min} (UN/m ²) -1905 -19.05	Optimal Flow Capacity Q _{opt} (m ³ /s) 3.697248	Optimal Pressure Drop ΔP _{opt} (N/m ²) 11.18122	Supports Placement from Left X ₁ (m) X ₂ (m) 57966 91376 57959 91362 57959 91362	Maximum Deflection y _{max} (m) -2.7040 -2.7040	Maximum Bending Moment M _{mux} 10 ⁴⁷ (Nm) 30.02 33.395	Restoring Force F x10 ⁰⁷ (N) -3.3395 -3.3395	Compressor Power (optimal) P _{opt} (MW) 4.134	Compressor Power (operational) P _{op} (MW) 5.4

J.E. Bourne. "Synthetic structure of industrial plastics," in *Plastics*, 2nd ed., vol. 3. J. Peters, Ed. New York: McGraw-Hill, 1964, pp.15-67.

References

- Shadrack, Mathew Uzoma," Flow Optimization in Natural Gas Pipeline", Ph.D Thesis, Department Of Mechanical Engineering, University of Port Harcourt, Nigeria, 2016,
- [2]. Mohinder,L. Nayyer, "Piping Handbook", Seventh Edition, Mcgraw-Hill Companies, ISBN : 0-07-04706-1
- [3]. Abam, D. P. S. & Shadrack, Mathew Uzoma, "Flow Optimiazation Models In Gas Pipelines (Panhandle- A Equation As Base Equation)", Journal Of Science And Technology Research, Vol. 6, No. 3, Pp 1-16, December, 2013.
- [4]. .Mathew, Shadrack Uzoma, OMO Etebu, "Mathematical models for the determination of the uplift resistance of a gas pipeline", International Journal of Advanced Engineering and Technology', ISBN: 2456-7655, Volume 2; Isssue 3; September 2018; Page No. 01-08. www.newengineeringjournal.com,
- [5]. Mathew, Shadrack Uzoma, OMO Etebu, "Computer simulation of the mathematical models for the determination of the uplift resistance of a gas pipeline", International Journal of Advanced Engineering and Technology' ISBN : 2456-7655, Volume 2; Isssue 3;September 2018; Page No. 09-14.
- [6]. Dr. Mathew, Shadrack Uzoma and Tobinson. A. Briggs "Approach to Two-Phase Flow in Gas Transmission Pipeline Network System" Mathematical Theory and Modeling Vol.8, No.4, 2018, ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)
- [7]. Dr. Mathew, Shadrack Uzoma and Tobinson. A. Briggs "Model Formulation for the Exact Position of Dew Point along a Gas Pipeline" Mathematical Theory and Modeling Vol.8, No.4, 2018, ISSN 2224- 5804 (Paper) ISSN 2225-0522 (Online)
- [8]. Dr. Mathew, Shadrack Uzoma and Tobinson. A. Briggs "Computer Simulation of Precise Dew Point Initiation in Gas Pipelines Network System" International Journal Of Engineering Research and Development, Volume 14, Issue 5 (May Ver. I 2018), PP.09-14, e- ISSN: 2278-067X, p-ISSN: 2278- 800X
- [9]. Dr. T. A. Briggs and Dr. Mathew, Shadrack Uzoma "Model Development for Pressure-Flow Capacity Relations for Gas Pipelines Flow Optimization" International Journal of Engineering Research
 - And
 Development, Volume 14, Issue 5 (May Ver. I 2018), PP.01-08, e-ISSN: 2278-067X, p-ISSN:

 2278 800X