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Abstract 

The main objective of this paper has to investigate the uniqueness of the solution of fractional differential 

equation by using different integral transforms, we applied Laplace transform, Elzaki transform and Sumudu 

transform on a linear ordinary fractional differential equation. The uniqueness of the solution is achieved in 

fractional differential equations by applying different integral transform methods. 
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1. Introduction  

The Fractional Calculus which is the branch of mathematics remained inactive from the 17th century to early 

20th century. Fractional Calculus deals with derivative and integrals of arbitrary order, since last three decades 

the fractional calculus found applications in various areas of studies in applied mathematics and science like 

fluid flow, rheology, diffusion, oscillation, anomalous diffusion, reaction-diffusion, turbulence, electric network, 

physics, chemistry, waves, dynamical problems and statistical distribution theory.  
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Now a day’s mathematicians and researcher working with fractional differential equations and discover 

numerous applications in the areas of applied mathematics, engineering and physics [1]. Various important 

phenomena in many fields of science such as electromagnetics, acoustics, viscoelasticity, electrochemistry, and 

material science are discussed by fractional differential equations (FDE) [2–4]. Also, fractional differential 

equations have been found to be effective to describe some. The physical phenomena such as damping laws, 

rheology, diffusion processes are also well described by fractional differential equations.  There are many 

methods have been used to solve the fractional differential equations, such as Adomian’s decomposition method 

(ADM) [5-7], Fourier transform method [8], Laplace transform method [2,3,9], and so on.  

2. Results and Discussions    

           Let us consider a linear fractional differential equation  
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      Let us discuss the solution of equation (1) by using Laplace, Sumudu and Elzaki transforms to solve 

equation (1)  

2.1 Solution by using Laplace transform method 

Laplace transform is an extremely useful method for solving linear ODEs and related initial value problems, as 

well as systems of linear ODEs, much easier. Fundamental formulas and definitions are given in [10].  In order 

to get solution of equation (1), we first consider        and     , the equation ( ) takes the form 
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Now using inverse Laplace transform we get the solution  
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subject to initial condition                               ( )    ( )     ( )    
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Using inverse Laplace transform  ( ) is obtained as follows 
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combining results of (5), (7). (9) and (11) we can generalize the solution for all cases 
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2.2 Solution by using Sumudu transform method 

The Sumudu transform method (STM) was introduced  in 1993, by Watugala  [11-,12] 

Taking Sumudu transform on equation ( )  ( ) is obtained as follows 

 ( )

 
 

 ⁄
 

   
 ⁄  ( )

 
      ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( )   

 ⁄          

Using  ( )   , we get 

 ( )

 
 

 ⁄
   ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( )   

 ⁄          

 ( )   ( )    ( )   ( )    
 

 ⁄   
 

 ⁄   
 

 ⁄  

using inverse Sumudu transform  ( ) is obtained as follows 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 65, No  1, pp 57-65 

62 
 

 ( )         
  

 
 ⁄

 (  ⁄ )
 

 
 

 ⁄

 (  ⁄ )
 

 
 

 ⁄

 (  ⁄ )
                                           (  ) 

using the Sumudu transform on equation ( )  ( ) is obtained as follows 

 ( )

 
 

 ⁄
 

 
 

 ⁄  ( )

 
      ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

using the initial conditions 

 ( )

 
 

 ⁄
   ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

 ( )   ( )    ( )    ( )     
 

 ⁄   
 

 ⁄   
 

 ⁄  

using inverse Sumudu transform on equation  ( ) is obtained as follows 

 ( )           
  

 
 ⁄

 (  ⁄ )
 

 
 

 ⁄

 (  ⁄ )
 

 
 

 ⁄

 (  ⁄ )
 

using the Sumudu transform on equation ( )  ( ) is obtained as follows 

 ( )

 
 

 ⁄
 

 
 

 ⁄  ( )

 
      ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

Applying the initial conditions 

 ( )

 
 

 ⁄
   ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

    ( )   ( )    ( )    ( )     
 

 ⁄   
 

 ⁄   
 

 ⁄       

using inverse Sumudu transform  ( ) is obtained as follows 

 ( )           
  

 
 ⁄

 (   ⁄ )
 

 
 

 ⁄

 (  ⁄ )
 

 
 

 ⁄

 (  ⁄ )
                   (  ) 

                   Using the Sumudu Transform on equation (  )  ( ) is obtained as follows 

 ( )

 
 

 ⁄
 

 
 

 ⁄  ( )

 
      ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

                        Applying the initial conditions 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 65, No  1, pp 57-65 

63 
 

 ( )

 
 

 ⁄
   ( ) 

 
 ⁄   ( ) 

 
 ⁄   ( ) 

 
 ⁄          

 ( )   ( )    ( )    ( )     
  

 ⁄   
 

 ⁄   
 

 ⁄  

using inverse Sumudu transform  ( ) is obtained as follows 

 ( )           
  

  
 ⁄

 (   ⁄ )
 

 
 

 ⁄

 (   ⁄ )
 

 
 

 ⁄

 (  ⁄ )
                                         (  ) 

In a similar way as for Laplace transform case, the solution of equation (14) also found as 
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2.3    Solution by using Elzaki transform 

The Elzaki transform was introduced by Elzaki [13], using Elzaki transform on equation ( )   ( ) is obtained 

as follows 
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In a similar way the equation (14) also gives the following solution after applying the Elzaki transform 
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Equations (15), (19) and (23) are same, which shows that the fractional differential equations have found  the 

unique solutions after applying different transforms methods             

3. Conclusion 

Fractional differential also have the unique solution if the same fractional differential equation solved by 

different integral transforms methods in a similar manner as in case of classical differential equations.  
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