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Abstract 

The prediction of significant wave height is important in the planning, design, and operation of coastal and 

ocean structures. Although several empirical methods, numerical models, and soft-computing techniques to 

forecast wave parameters have been investigated, such forecasting still remains a complex problem in the field 

of ocean engineering. This study uses the group method of data handling-type neural network (GMDH-NN) and 

multilayer perceptron neural network (MLPNN) to predict significant wave height. Among the used models, the 

GMDH-NN is found to provide the best generalization capability and the lowest prediction error; therefore, this 

is the method that can be most successfully used to predict significant wave height. 
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1. Introduction  

It should be noted that the prediction of sea-wave parameters plays an important role in various ocean 

engineering tasks, such as the design of marine structures like oil platforms or harbors and the design and 

management of marine energy systems like wave energy converters, among others [1-2]. Therefore, several 

models and approaches, such as empirical methods, numerical models, and soft-computing techniques, have 

been proposed to predict sea-wave parameters. 
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Comparing the forecasting results of neural networks (NNs) and auto-regressive models, the authors in [3] 

reported NN models to be more accurate. Deo and his colleagues in [4] tested a feed-forward neural network 

(FFNN) to obtain significant wave heights and average wave periods using wind speed values of current and 

previous time steps as input. The authors in [5], on the other hand, predicted wave heights using a back-

propagation neural network (BPNN), a cascade-correlation neural network (CCNN), and auto-regressive models 

(ARMA and ARIMA). These authors found NNs to be more accurate than the auto-regressive methods. Tsai 

and his colleagues in [6] used a BPNN to forecast ocean waves based on the learning characteristics of the 

observed waves and wave records at neighboring stations. The author in [7] applied the FFNN technique to 

predict significant wave heights and zero-up-crossing wave periods over hourly intervals from 1 h to 24 h. The 

authors in [8] forecasted wave heights and zero-up-crossing wave periods at intervals of 3, 6, 12 and 24 h using 

an FFNN. The authors in [9] used a recurrent neural network to forecast the significant wave height on the west 

coast of India. The authors in [10] compared NNs, FISs and ANFISs in hindcasting wave parameters. Their 

results showed that these methods perform nearly the same. According to the meteorological data, the author in 

[11] predicted monthly mean significant wave heights by using NN and regression methods. The author in [12] 

used support vector machine (SVM) approach with various kernel functions for wave parameters prediction. 

The SVM results are compared with the field data and with BPNN and CCNN models. The results indicated that 

the SVM with a radial basis function kernel provides the best generalization capability and the lowest prediction 

error.  The authors in [13-15] combined NN and numerical models to realize the wave height prediction. The 

authors in [16] used recurrent neural networks (RNN) for wave prediction based on the data gathered and the 

measurement of the sea waves in the Caspian Sea, in the north of Iran. The authors in [17] used nonlinear 

regression and SVM methods to predict significant wave height. The results explained that the use of nonlinear 

regression methods gave a good result compared to the results from support vector machine. The results 

indicated that support vector machine based on radial basis function is more superior to nonlinear regression 

methods. The aim of the present study is to illustrate a new approach to predict significant wave height using the 

Group Method Data Handling type neural network (GMDH-NN) and Multi-layer Perceptron Neural Network 

(MLPNN). The manuscript is organized as follows: the next section introduces the methods used in this 

study. Section 3 describes the studied area and the data used. Section 4 presents the results of the GMDH-

NN and MLPNN methods. The conclusions are reported in the final section. 

2. Methods 

2.1. Group method of data handling neural network 

The Group Method of Data Handling (GMDH) type neural network (NN) is a powerful identification technique 

and can be used to model complex systems, where unknown relationships exist between variables, without 

having specific knowledge of processes. GMDH is a kind of machine learning algorithm where an artificial 

neural network algorithm is built heuristically using self-organization method. Originally GMDH-type neural 

network algorithms are applied to predict and forecast a univariate time series GMDH finds its applications in a 

wide spectrum of areas, ranging from prediction, forecasting, data mining, systems modelling, pattern 

recognition and knowledge discovery. GMDH algorithms are generally inductive that offer possibility to 

manage interrelations among data automatically. Its most powerful feature is the ability to select an optimal 

complexity of the neural network structure while achieving the maximum possible prediction accuracy. Once an 
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optimal complexity of the neural network structure is found, the prediction model is quite resistant to noise in 

data sample. In data mining, the model avoids over-fitting and under-fitting, where noise in the data would no 

longer pose problem of performance degradation. The neural network structure is therefore simplified yielding 

an optimal model that is just sufficient in the amounts of neurons and hidden layers to maintain its maximum 

possible accuracy. GMDH-NN is a self-organizing approach by which more complicated models are gradually 

generated based on the evaluation of their performance on a set of multi-input, single-output data pairs This 

approach was proposed by Ivakhnenko in the 1960s. It has a series of operations, such as seeding, rearing, 

crossbreeding, and selection and rejection of seeds corresponding to the determination of the input variables, the 

structure and parameters of the model, and the selection of the model by the principle of termination [18]. The 

typical GMDH algorithm can be represented as a set of neurons in which different pairs of them in each layer 

are connected through a quadratic polynomial and thus produce new neurons in the next layer [19]. General 

connection between inputs and output variables can be expressed by a complicated discrete form of the Volterra 

functional series in the form of [20]: 

     ∑      ∑ ∑      
 
   

 
   

 
      ∑ ∑ ∑             

 
   

 
   

 
                        (1) 

Which is known as the Kolmogorov–Gabor polynomial, where   (               )is the input vector, and 

y is the output variable. GMDH works by building successive layers with complex links that are the individual 

terms of a polynomial. The initial layer is simply the input layer. The first layer created is made by computing 

regressions of the input variables and then choosing the best ones. The second layer is created by computing 

regressions of the values in the first layer along with the input variables. This means that the algorithm 

essentially builds polynomials of polynomials. 

2.2. Multi-perceptron neural network  

As the name implies, an MLPNN can have several layers. Each layer has a weight matrix, a bias vector, and an 

output vector. The MLPNN architecture contains an input layer, an output layer and at least one hidden layer, 

which are all fully interconnected. The network is repeatedly exposed to a set of training data, and errors are 

calculated based on the resulting outputs. These errors are used to adjust the weights and biases. This process 

will eventually lead to optimum and bias values that can mimic of the model. The transfer functions (logistic 

(sigmoid) and linear) are used as activation function for the hidden layers and the output layer, respectively. A 

wide range of parameters, such as the number of layers and neurons of each layer, initial conditions and learning 

factor, can affect the network’s performance.  

2.3.  Model assessment 

The performance of all GDMH-NN and MLPNN models were assessed based on calculating the normalized 

mean square error (NMSE), the correlation coefficient (R), the root mean square error (RMSE), the mean squared 

error (MSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The six statistical 

parameters used to compare the performance of various GDMH and MLPNN configurations are: 
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Where Oi is the observed value, Pi is the predicted value, N is the total number of data points in validation, 


O  is 

the mean value of the observations, and 


P  is the mean value of the predictions.  

3. Study Area and data 

The study area is the Abu Qir Bay coastal zone, a semi-circular basin that lies approximately 35 km northeast of 

Alexandria on the north-eastern Egyptian Nile delta coast, between latitude 31°16' and 31°28'N and longitude 

30°4' and 30°20'E. Wind data (speed and direction), taken during 2010 to 2014 from a weather station at the 

Abu Qir Bay, are sampled at 6-hour intervals and calculated at 10 m above sea level. The collected wind data 

are subjected to statistical analysis to determine the percentage of occurrence of a certain wind speed moving in 

a certain direction.  The waves were measured using a Cassette Acquisition System (CAS) directional wave 

recorder during 2010 to 2014. The system is a portable, self-contained remote recording system for sensing 

near-shore environmental parameters, such as wave height, wave direction and wave period. This device was 

fixed on a gas platform in Abu Qir Bay at 31°24' N latitude and 30°14' E longitude. The water depth at this 

location was 18m. The system's sensors made four recordings a day (every 6 hours) that lasted approximately 34 

minutes. The wave data were recorded on cassettes and analysed. The fetch length in a certain direction was 

determined by constructing 30 radials from the point of interest (at 1° intervals) and extending them until they 

intersected the coastline. Next, the fetch length was calculated as the arithmetic average of the extended radials. 

4. Results and discussion 

The GMDH-NN and MLPNN were applied, based on the observations. The wind speeds (U) and fetch (F) were 

selected as the input variables to the models. The output is the significant wave height (Hs). A certain amount of 

data processing is required before presenting the training patterns to the network. In this study a linear scaling 

was used. A linear normalization function within the values of zero to one is:
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(8) 

Where S is the normalized value of variable V, Vmin and Vmax are variable minimum and maximum values 

respectively. 

 

4.1.  MLPNN 

Genetic Algorithm (GA) was utilised to adjust the MLPNN model to its optimised performance. The GA tests 

different combinations of different parameters. This process is repeated for each solution in a generation, so that 

new generation are ameliorated compared to their predecessors. The network parameters tested in the proposed 

model included the following: the number of hidden layers, the number of hidden neurons, the learning rate, the 

momentum factor, the input noise and the training time. Integrated performance testing indicated the following 

best network parameters: the number of hidden layers was two, the number of neurons in the first hidden layer 

was two, the number of neurons in the second hidden layer was seventeen, the learning rate was 0.75, the 

momentum factor was 0.31, and the input noise was 0.016. Model results for different MLPNN architectures are 

presented in Figure (1) which shows the performance of the MLPNN with various numbers of neurons in one 

hidden layer. 

 

Figure 1: The performance of the MLPNN with numbers of neurons in hidden layer. 

Table 1 shows the error statistics for the observed and predicted significant wave heights. The values for the 

NMSE, MAE, MSE, RMSE, MAPE and R of the wave height MLP prediction model are 0.0001 m, 0.00836 m, 

0.00021 m
2
, 0.01441 m, 19.366 and 0.99, respectively. The results show that the MLP model significantly 

reduces overall error. The correlation between the observed and predicted values for Hs by the MLP model is 

shown in Figure (2). Figure (3) presents the rresidual error between observed and predicted Hs for MLP (2–17–

1) model. 
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Figure 2: Scatter of predicted observed values of Hs for MLPNN model. 

 

Figure 3: Residual error between observed and predicted Hs for MLPNN model. 

Table 1: Error statistics for the observed and predicted Hs by the GMDH-NN and MLPNN models. 

Model 
Error statistics 

NMSE (m) MAE (m) MSE (m
2
) RMSE (m) MAPE (%) R 

GMDH-NN 9.7717x10
-6

 0.0029 1.5493 x10
-5

 0.0039 3.6752 0.99 

MLPNN 0.0001 0.0084 0.0002 0.0144 19.366 0.982 

4.2. GMDH-NN 

As mentioned in the GMDH-NN definitions section, structure of the GMDH-NN model is built using least 

square sense. In the present study, Quadratic polynomial neurons extracted from the GMDH-NN model were 

expressed as,  

                               
                                                    (9) 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
re

d
ic

te
d

 H
s 

Actual  Hs 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5000 10000 15000 20000 25000 30000 35000 40000

R
e

si
d

u
al

 E
rr

o
r 

(m
) 

Data No. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2019) Volume 60, No  1, pp 174-183 

180 
 

When the GMDH-NN model was applied, the NMSE was 9.7717x10
-6

, the MAE was 0.002879, the MSE was 

1.54931 x10
-5

, the RMSE was 0.003936, and MAPE was 3.6752.  Correlation coefficient of 0.999 was obtained. 

The results show that the GMDH-NN model significantly reduces overall error. The variation in Hs between the 

observed data and the results of the GMDH-NN model has the same trend. Figure (4) illustrates the residual 

error between observed and predicted Hs for GMDH-NN model. The correlation between the observed and 

predicted values for Hs by the GMDH-NN model is shown in Figure (5). 

 

Figure 4: Residual error between observed and predicted Hs for GMDH-NN model. 

 

Figure 5: Scatter of predicted observed values of Hs for GMDH-NN model. 

4.3. Comparison between GMDH-NN and MLPNN 

According to the indices, the GMDH-NN model can significantly reduce the overall forecasting errors and 

produced the best performance and was able to accurately estimate the wave heights. A comparison of the 

results of the GMDH-NN model and the MLPNN model shows that the percentage improvements in MAE, 

RMSE, and MAPE of the GMDH-NN model over the MLPNN model were 65.48%, 72.92%, and 81.02% for 

predicting Hs, respectively. The prediction accuracies of the GMDH-NN model and the MLPNN model for 
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different wave height ranges are investigated. Table 2 shows that the GMDH-NN performed better than the 

MLPNN. According to the indices, the GMDH-NN model performs best for predicting Hs for all of the wave 

height ranges.  A comparison of the MAE values shows that the largest difference in the performance of the two 

methods, 96.94 %, is observed at wave heights more than 3.0 m, while the smallest difference (58.97%) is 

observed at wave heights less than 1.0 m. From Table 3, it can be seen that, in terms of MAPE, the largest 

performance difference for the two methods (96.98 %) is observed at wave heights more than 3.0 m, while the 

smallest difference (61.94%) is observed at wave heights from 1.0 to 2.0 m. A comparison of the RMSE values 

shows that the largest difference in the performance of the two methods, 97.14 %, is observed at wave heights 

more than 3.0 m, while the smallest difference (62.16%) is observed at wave heights from 1.0 to 2.0 m. From 

the results, it can be seen that the predictions of the GMDH-NN are closer to the corresponding actual values at 

all wave height ranges than for the MLPNN method. Generally, the GMDH-NN model forecasting results are 

more accurate than of the MLPNN. That is, the GMDH-NN model is capable of forecasting wave heights for 

different ranges. The notable point in this method is the self-organizing characteristic of the network and its high 

flexibility, making it a powerful instrument for prediction of a variety of nonlinear complex systems. 

Table 2: Error statistics for the observed and predicted Hs by the MLPNN and GMDH-NN models for different 

height ranges. 

Methods 

Height 

Ranges 

Error statistics 

NMSE (m) MAE (m) MSE (m
2
) RMSE 

(m) 

MAPE (%) R 

GMDH-NN 

Hs< 1.0 2.4408x10
-6

 0.0032 1.2844 x10
-5

 0.0036 5.1223 0.99 

1.0 ≤ Hs< 

2.0 
1.4182 x10

-5
 0.0020 7.9443 x10

-6
 0.0028 0.15937 0.99 

2.0 ≤ Hs< 

3.0 
0.0004 0.0021 6.7859 x10

-5
 0.0082 0.0844 0.99 

Hs≥ 3.0 3.8685 x10
-5

 0.0014 2.8158x10
-6

 0.0017 0.0366 0.99 

MLPNN 

Hs< 1.0 2.0170 x10
-5

 0.0078 0.0001 0.0103 27.0779 0.981 

1.0 ≤ Hs< 

2.0 
9.7715 x10

-5
 0.0055 5.4804 x10

-5
 0.0074 0.4187 0.983 

2.0 ≤ Hs< 

3.0 
0.0058 0.0155 0.0011 0.0330 0.6313 0.983 

Hs≥ 3.0 0.0482 0.0457 0.0035 0.0594 1.2111 0.98 

5. Conclusions 

The accurate prediction of ocean wave parameters, for example, wave height and wave period, is of vital 

importance for project, design, use, and maintenance of structures in offshore and coastal engineering. In this 

paper, two types of prediction methods (GMDH-NN and MLPNN) were introduced and tested. The presented 

GMDH-NN model provides lower forecasting error than do the MLP model. The results show that the GMDH-

NN model outperformed the MLPNN model. In conclusion, the S GMDH-NN model has the highest accuracy 
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and better generalization performance than the MLPNN model for all wave height for different ranges. The 

results obtained in this investigation demonstrate that the GMDH-NN model is a promising alternative to 

MLPNN for significant wave height forecasting. 

6. Recommendations 

From the study, it is recommended to study the effect of sea level pressure and air temperature, and to relate 

their effect on the efficiency of the different soft computing models used for predicting significant wave height.  
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