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Abstract 

This paper deals with the output regulation of nonlinear control systems in order to guarantee desired 

performances in the presence of plant parameters variations. The proposed control law structures are based on 

the fractional order PI (FOPI) and the CRONE control schemes. By introducing the multimodel approach in the 

closed-loop system, the presented design methodology of fractional PID control and the CRONE control 

guarantees desired transients. Then, the multimodel approach is used to analyze the closed-loop system 

properties and to get explicit expressions for evaluation of the controller parameters. The tuning of the controller 

parameters is based on a constrained optimization algorithm. Simulation examples are presented to show the 

effectiveness of the proposed method. 
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1. Introduction  

Since the first presentation of the control of the systems by PID controller in the years 1910 [1], and after the 

techniques of synthesis proposed by Ziegler-Nichols in 1942 [2], the popularity of PID controller continues to 

increase as it is the most widely used technique in the control of industrial processes. The major reasons for its 

wide acceptance in industry are its ability to control the majority of processes, its ease of use and its simplicity 

of implementation. Although there are several techniques for setting the parameters of the PID controller, a 

continuous and intensive research work is still in progress to improve the performance of this order. Recently, a 

generalization of the conventional PID controller has been proposed [18]; it is the fractional PID controller 

noted PIαDβ. The interest of this type of controller is justified by a better flexibility in its setting since there are 

two additional parameters which are added; a fractional integration of order α and a fractional derivation of 

order β [22]. The idea of using a robust fractional order controllers for the control of these systems return to 

Oustaloup, who developed the CRONE regulator [3]. Oustaloup had in particular presented the advantage of the 

CRONE controller compared to the conventional PID from a robustness point of view. Benefiting of the 

advantageous properties of the fractional derivative, this regulator allowed to ensure the robustness of the 

control in a given frequency band [21]. Otherwise, the modeling techniques of a process have always been 

concerned with establishing the relationships that bind its characteristic variables to each other and to represent 

in a way rigorous behavior in a given area of operation. Depending on the prior knowledge of the process to be 

studied, we can consider different types of models to represent his behavior [4], it is the multimodel approach, 

which seems to be a powerful tool in this sense, will be used in our case to help modeling nonlinear systems for 

their control by non-integer regulators ensuring certain performance in robustness. The multimodel approach 

[5,20] has recently been developed and applied in several science and engineering domains. It was proposed as 

an efficient and powerful method to cope with modeling and control difficulties when complex non linear and/or 

uncertain processes are concerned. The multimodel approach supposes the definition of a set of models. Then, it 

becomes possible to replace the unique model by a set of simpler models thus making a so-called models base. 

Each model of this base describes the behavior of the considered process at a specific operating point. The 

multimodel approach objective is to decrease the process complexity by its study under certain specific 

conditions. Several researchers have been interested in multimodel analysis and control approaches [6,7,8] and 

many applications have been proposed in different contexts. In [9], a model-based diagnostic method is 

implemented for non-linear systems that are modeled using Takagi-Sugeno models with unmeasurable decision 

variables. A new approach for complex systems modeling based on both neural and fuzzy clustering algorithms 

is proposed, which aims to derive different models describing the system in the whole operating domain has 

been studied in [10]. In [11] a multi-model approach, based on Takagi-Sugeno form is used to perform 

identification of fractional non-linear systems, applying fractional local models. In this purpose, an output error 

method is used, and the algorithm is extended to the fractional case. Also, in [12] a design of non-integer 

controller for fractional order systems with temporal specifications such that rise time and overshoot. These 

performances are defined by a target model using the Characteristic Ratio Assignment (CRA) method. This 

paper deals with, the output regulation problem for nonlinear system in order to guarantee desired performances 

in the presence of parameter variation using the multimmodel approach. The proposed strategy allows to 

provide efficient control of nonlinear systems in the presence of uncertainty. A multimodel control approach is 
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used to analyze the closed-loop system properties. In the following section, the multimodel approach principle 

are detailed. The synthesis of the partial and global control for the fractional PI controller and CRONE 

controller for a nonlinear system are then presented.  Two simulation examples are presented in this paper to 

confirm the effectiveness of the proposed approach. 

2. Multimodel approach principle 

The multimodel structure was introduced as a global approach based on multiple local LTI models (linear or 

affine). Consequently, it assumes that it is possible to replace a unique nonlinear representation by a 

combination of simpler models thus building a so-called model-base. Each model of this base describes the 

behavior of the considered process at a specific operating point. The interaction between the different models of 

the base through normalized activation functions allows the modeling of the global nonlinear and complex 

system. Therefore, the multimodel approach aims at lowering the system complexity by studying its behavior 

under specific conditions. The multimodel principle is given in figure (1). 

 

Figure 1: Multimode Approach Principle 

In figure (1), there are three main blocks: 

• Model-base: A multimodel uses several models. These models constitute what is called base or library 

of models. These models can be local or generic, of the same structure or of different structures and 

orders. 

• Decison unit: Each element of the base is a simplified representation of the global system and can not 

reproduce the behavior of the system only in one or a few very particular areas of operation, hence the 

role of the decision block. 

•  Output unit: This is the final step, which determines the global output of the multimodel. Indeed, if 

we have the validity vector i of each model of the base, two techniques are possible: commutation and 

fusion. 

In this paper we will interested by the fusion that will be defined in the following section 
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2.1. Fusion principle 

By a fusion at the output, the output of the multimodel mmy is equal to the sum of outputs iy of models iM

weighted by their validities i  corresponding, with   1,  ...,  i k=  and all models are excited by the same 

control signal u . The fusion principle is illustrated by the system (1) and figure (2). 

( ) ( ) ( )

( )

1

1

1

K

mm i i

i

K

i

i

y k y k k
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
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=

=

=

=




      (1) 

 

Figure 2: Fusion Principle 

2.2. Validity computation  

The validity coefficient is a number belonging to the interval [0,1]. It represents the relevance degree of each 

base-model calculated at each instant. In literature, several methods have been proposed to deal with the validity 

issue. In our study, the residues approach was adopted for the calculation of validities. This method is based on 

the distance measurement between the process and the considered model. For example, the residue can be given 

by the following expression: 

1,...,i ir y y i N= − =  (2) 

Where N is the number of base-models, y  is the process output and iy  is the output of the model iM . If this 

residue value is equal to zero, the corresponding model iM  perfectly represents the process at that time. On the 

contrary, a non-null value translates the fact that the model iM represents the system partially. The normalized  

residues are given by:  
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Within the context of the residues approach, several methods have been proposed for the calculation of validities 

[13], [14], [15]. Only two methods will be considered: the simple and the reinforced validities. The validities are 

given by: 

'1i ir = −  (4) 

The simple and reinforced validities are defined by using the following formulas:  

• Simple validities: the normalized simple validities are defined so that their sum must be equal to 1 at 

each time: 

1

simp i
i

N


 =

−
 (5) 

• Reinforced validities: for this type of validities, the reinforcement expression is introduced as: 

( )'

1, 1

1
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i i j

j j

  
= 

= −  (6) 

              The normalized reinforced validities could be written as follows: 
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3. Multimodel control of a nonlinear system 

The main goal is to determine a global control for the considered system using the basemodel determined by the 

multimodel representation approach. This command is obtained from the partial commands outcome from the 

different models is called multimodel command. On the other hand, multi-model control strategies can be 

grouped into two broad classes:  commutation strategies or fusion strategies. In this paper we will interested by 

the fusion strategies which consists of applying to the system a global control computed directly through a 

fusion of the partial control, relating to the different base-models, weighted by their respective coefficients of 

validity, given by the following expression: 

( ) ( ) ( )
1

K

k i i

i

u k k u k
=

=  (8) 
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3.1. CRONE Controller  

3.1.1. Synthesis of partial CRONE controller 

For each base model ( )   1,  ..,  iM i K= , we associate a CRONE controller and we calculate the partial 

control ciu  illustrated by the following equation: 

( ) 0 , 1,...,i

ci iu k C s i K


= =  (9) 

where 0iC  is the static gain and i  is the non integer order. 

The transfer function of the iM  model is given by 

( )
( )

( )
i

i

i

B s
F s

A s
=  (10) 

Where 
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 (11) 

The closed-loop transfer function of the Mimodel with the ciu  command is then written 

( )
( )

( )
0

01

i

i

i ibf

i

i i

C s F s
F s

C s F s




=

+
 (12) 

In order to calculate the parameters of each regulator associated with the various models of the base, we apply 

each regulator for its corresponding model in closed loop and we sum the outputs of each model corrected then 

we compare the result obtained with that obtained by the global regulator applied to the nonlinear system. 

3.1.2. Synthesis of global CRONE controller 

Once the parameters of the partial controllers are obtained, we will now present the method of deduction of the 

global control to be applied to the nonlinear system considered. In this case, we will use the fusion control 

strategy since it is more suitable for our modeling. In the case where the system can be adequately represented 

by a weighted sum of local models, we can use a technique of fusion of the elementary control to determine the 

global command, that is: 
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( )
1

( ) ( )
K

cg i i

i

u k k u k
=

=  (13) 

where ( )i k are the degrees of validity associated to each local model iM  and ( )iu k is the command 

associated with it. The obtained regulator is called implicit global model. The proposed approach for multimodel 

control has been tested for a nonlinear system that will be presented in next section. 

3.1.3. Simulation Example 1 

Consider the nonlinear system given by [19] 

( ) ( )( )
.

y+ 15 10 36 1 10y y y y u− = − +  (14) 

We consider a pulsation 30 /u rad s = and the desired overshoot is 10%D = . The use of the multimodel 

approach has made it possible to construct a base of four first-order linear models whose transfer functions are 

given by the following expressions: 

 

( )1

1

1 5
G s

s
=

+
 (15) 

( )2

1

1 15
G s

s
=

+
 (16) 

( )3

10

1 5
G s

s
=

+
   (17) 

( )4

10

1 15
G s

s
=

+
 (18) 

After defining the models, we will proceed to the design of the multimodel controller starting with the partial 

CRONE controller then the Global CRONE one. 

• Calculation of partial CRONE controller 

The cutoff frequency of model 1G  and 3G  is equal to 0.2 and that of 2G  and 4G  is equal to 0.06, so we 

chose a pulsation 30 /u rad s = around which the behavior of the phase of the four models is 

asymptotic, hence the use of the first generation CRONE controller. The first step is to associate a 

CRONE controller for each base model. The various parameters associated with it are: the gain iC   
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and the non-integer order ( )1,...,4i i =  . The values of these parameters, for each regulator, are 

given by the table (1). 

Table 1: Partial CRONE controller parameters 

Model Controller parameters 

1M  1 1117.64, 0.24C = =  

2M  2 2 = 352.85,  = 0.24C   

3M  3 3 = 11.76,  = 0.24C   

4M  4 4C  = 53.28,  = 0.24  

The step responses of the four models are shows in figures (3), (4), (5) and (6). It is clear that the CRONE 

controller guarantees the desired performances 

 

Figure 3: Step response of the model 1 

 

Figure 4: Step response of the model 2 
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Figure 5: Step response of the model 3 

 

Figure 6: Step response of the model 4 

For different setpoints r (r = 0.1, ..., 1), the CRONE control law makes it possible to calculate the various partial 

commands ui according to the expression (3.21). The figures (7), (8), (9) and (10) gives the evolution of these 

commands. 

 

Figure 7: CRONE control of the model 1 
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Figure 8: CRONE control of the model 2 

 

Figure 9: CRONE control of the model 3 

 

Figure 10: CRONE control of the model 4 

From the previous figures, it is clear that the maximum value of the command for the model 3 is equal to 10 

times that the model 1 since the transfer functions 1G  and 3  G  differ by a gain of 10, then the command 3u  

will be 10 times low than the 1u  command. Similarly, the maximum value of the command for the model 4 is 

10 times that the model 2, since the transfer functions 2  G  and 4  G  also differ by a gain of 10, so that the 4u  

command will be 10 times low than 2u . On the other hand, we notice that the controller for the four models 
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generates a control peak at the initial moment due to the presence of a gain equivalent of a proportional action in 

the CRONE controller. 

• Calculation of global CRONE controller 

For the calculation of the global CRONE control, we will proceed to a fusion of partial CRONE commands. 

The values of the validities associated with each model iM  are given by the table (2). 

Table 2: The values of the validities 

Model Values of the validities 

1M  1 0.4 =  

2M  2  = 0.5  

3M  3  = 0.01  

4M  4  = 0.09  

The global CRONE controller is defined by the following equation: 

( ) 0.24121.68gC s s=  (19) 

The figure (11) shows the global CRONE control for different setpoints. 

 

Figure 11: Global CRONE control 

The step responses of the nonlinear system and multimodel corrected by the CRONE controller for different 

setpoint values are given in figures (12). 
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Figure 12: Step responses of the nonlinear system (blue) and multimodel(red) corrected by the CRONE 

controller. 

The results presented allow us to conclude that if the setpoint 0.6r  , the behavior obtained is very close to 

correctedmultimodel and if 0.6r , the behavior is seen to be non-linearized but the two nonlinear and 

multimodel responses remain close in performance. So the CRONE control is able to give a good performance. 

• Gain variation effects 

To verify the robustness, we consider a variation of gain and we calculate the overshoot of the nonlinear 

system and the multimodel as shown in the table (3). 

Table 3: Overshoot comparison for the nonlinear system and multimodel for different setpoint 

 

Setpoint 

Overshoot of 

nonlinear system 

Overshoot of 

multimodel 

0.1 9.85  9.93 

0.2 9.68  9.84 

0.3 9.51  9.83 

0.4 9.41  9.84 

0.5 9.38  9.84 

0.6 9.63  9.84 

0.7 10.12  9.83 

0.8 10.76  9.84 

0.9 11.86  9.84 

1 45  9.84 

From the table (3), we note that, if the setpoint 0.6r , the system obtained by the corrected multimodel 

guarantees the desired performances except that the value of the first overshoot is important for the nonlinear 

system step response. We can conclude that the CRONE control is very robust for the variation of the gain. 
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Table 4: Difference at 0.5s for the nonlinear system and multimodel for different setpoint 

Setpoint Difference 

0.1 0.004 

0.2 0.0077 

0.3 0.0086 

0.4 0.0074 

0.5 0.0093 

0.6 0.0057 

0.7 0.0039 

0.8 0.0142 

0.9 0.0199 

1 0.025 

The table below gives the value of the difference found at the instant 0.5t s= between the nonlinear system 

and its multimodel corrected by the CRONE controller. The results show that the nonlinear system and 

multimodel corrected by the CRONE controller achieved the steady state rapidly. 

3.2.  Fractional PI Controller 

3.2.1. Synthesis of global and partial fractional PI controller 

In [17], we propose a fractional PI controller defined by: 

0

d u r y d y
k

dt T dt

 

 


 − 
= −  

  
 (20) 

The control law (20) can be expressed in terms of transfer functions, it’s the structure of the fractional PI 

controller. 

( )
( )

( )0 0
E sk k

U s Y s
T s 

= −  (2 1) 

where ( ) ( ) ( )E s R s Y s= − . We note by 
0

p

k
k


= − and 

0
i

k
k

T
= − the equation (21) will be 

( ) ( ) ( )i
p

k
U s k Y s E s

s
= +  (22) 

For the calculation of the fractional PI control ju , we must associate for each model from the base
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( )1,...,iM i K= , a fractional PI controller defined by the following equation: 

( ) ( ) ( )j

j j

i

j p

k
u s k y s e s

s


= +  (23) 

So, to each basic model we associate a fractional PI controller whose the structure is given by the figure (13) 

where: 

• ( )e t  is the difference between the setpoint ( )r t and the output ( )jy t . 

• ju−  is the partial control. 

 

Figure 13: Structure of the fractional PI controller 

In order to calculate the value of the partial fractional PI control ju , we will calculate the global fractional PI 

controller given by the following equation: 

( ) ( ) ( )
1

K

pg j j

j

u k k u k
=

=  (24) 

To see the effect of the fractional PI control to a nonlinear system by the multimodel approach, an illustrative 

example will be presented in the next section. 

3.2.2. Simulation Example 2 

We consider the simulation example presented in the previous section whose their equation is defined by: 

( ) ( )( )
.

y+ 15 10 36 1 10y y y y u− = − +  (25) 

Using the multimodel approach, we will have four model defined by the following equations: 

( )1

1

1 5
G s

s
=

+
 (26) 
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( )2

1

1 15
G s

s
=

+
 (27) 

( )3

10

1 5
G s

s
=

+
 (28) 

( )4

10

1 15
G s

s
=

+
 (29) 

Once the models are developed, the first step is to associate a fractioanl PI controller to each model. By applying 

the method of synthesis of the fractional PI controller for 20N = , 10 /u rad s = , 1000 /h rad s = ,

0.1 /b rad s = ,  , 0,2 − +  =  , 1T = , 0.03 = and 0.5k = − , we obtain the partial fractional PI 

control of each model for different setpoints illustrated by the figures (14), (15), (16) and (17). 

 

Figure 14: Fractional PI control of the model 1 

 

Figure 15: Fractional PI control of the model 2 
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Figure 16: Fractional PI control of the model 3 

 

Figure 17: Fractional PI control of the model 4 

After calculating the fractional PI controller of each model, the second step is to associate a global fractional PI 

controller for the nonlinear system. Figure (18) illustrate the global control for different setpoints. The step 

responses of the nonlinear system corrected by the fracional PI controller are given in figures (19). 

 

Figure 18: Global Fractional PI control 
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Through the results obtained, we found that, for step responses we have a linear close behavior which is very 

close to the multimodel for the values of setpoints 0.6r  , whereas if 0.6r  the behavior is not linearized 

but the two responses of the nonlinear system and the multimodel remain close in performance. 

 

Figure 19: Step responses of the nonlinear system (blue) and multimodel (red) corrected by the fractional PI 

controller. 

Therefore, the fractional PI control performed is satisfactory and ensures good robustness with respect to the 

setpoint variation. 

4. Conclusion 

In this paper a method of output regulation for a nonlinear systems is presented. It is based on fractional PID 

controllers and the CRONE controller used the multimodel approach. It has been shown that the proposed 

fractional PID controller and the CRONE controller allows to provide robust output control and almost good 

tracking in presence of plant parameter variations as well as providing desired performances under step change 

of set point. An illustrative numerical example shows that the proposed method provides a robust controller 

satisfying the desired transient performances by inducing the multimodel approach in the closed-loop system. 
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