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Abstract 

The paper presents the application of sliding-PID control to the design of robust flight control system for a 

hypersonic aircraft. The proposed controller uses an approach that combines the high-order PID controller with 

high-order sliding mode (HOSM) control. The PID uses high-order time-derivative (HOTD) function of the 

sliding mode variable while the HOSM uses the signum function of the HOTD function. HOTD is built using 

the relative degree nonlinear dynamics of multivariable systems driven by affine control inputs. A displacement 

autopilot is designed for pitch control of an air-breathing hypersonic vehicle model. Numerical simulation 

demonstrates the effectiveness of the proposed controller and shows its advantages as compared to the quasi-

homogenous HOSM controller. 
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1. Introduction 

Flight control systems design for aerospace hypersonic vehicles has been investigated for several decades where 

a great number of control methods have been developed. Those methods have resulted in different control 

systems and autopilot topologies with different performance, robustness, and mechanization complexity levels. 

On the other hand, hypersonic flows and their impact on the aerodynamics and stability of aerospace vehicles 

impose more challenges for hypersonic vehicles flight control systems (HV-FCS) designers.  The early HV-FCS 

have been developed based on linear dynamic models or linearized nonlinear models around trimmed operating 

conditions.  H_∞ control [1], linear parameter-varying modeling [2], Reference command tracking [3], L_1 

adaptive method [4], linear-quadratic stochastic robust control [5] are among those methods.  
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Linear control methods have shown performance degradation and vulnerability against modeling uncertainties 

and external disturbances. To overcome the limitations and drawbacks of the linear methods, nonlinear robust 

and adaptive control has been extensively investigated for aerospace control systems [6-13]. Nevertheless, the 

effectiveness of these controllers strongly depends on the system model fidelity and the resulting closed-loop 

control shows mechanization limitations. Sliding mode control (SMC) strategy has been successfully used to 

design robust control systems for highly nonlinear systems such as hypersonic vehicles with less performance 

restrictions and implementation complications. However, it is well known that standard SMC suffers from the 

chattering effect that could harm the controllers and degrade the system performance. High-order sliding mode 

(HOSM) control has been knows as an alternative to the standard SMC for enhanced performance, strong 

robustness, and free chattering control. Recently, HOSM control has been used under different topologies in the 

design oh HV-FCS [14-20].  In the present paper, the sliding-PID control methodology proposed in [21] is used 

herein to design high-performance and easy mechanization flight control systems for hypersonic vehicles. A 

hybrid PID-HOSM controller is constructed based upon the use of the nonlinear system dynamics, local relative 

degree concept, and discontinuous HOSM control. The methodology is applied to design a displacement 

autopilot for a hypersonic aircraft to successfully achieve the tracking of desired Angle-Of-Attack (AOA). 

Sliding-PID tracking performance is compared to a fourth order quasi-continuous HOSM (QC-HOSM) [22,23] 

where results show the effectiveness of the proposed control method. This paper is organized as follows: In 

section 2, a nonlinear model of hypersonic vehicle motion is presented. In section 3, the sliding-PID control and 

the QC-HOSM control are introduced. Section 4 shows the application of sliding-PID control to the design of a 

displacement autopilot where the results are compared to those provided by a 4th order QC-HOSM control. 

Conclus9ions are provided in section 5. 

2. Hypersonic dynamics modeling 

Considering the pitch plane motion of an air-breathing hypersonic vehicle where the vehicle dynamics are given 

as follows [24]. 

 

 ̇  
       

 
 

     

  
                                                                                              

 ̇   
         

  
 

           

   
                                                                  

 ̇  
     ̅

    

[                  ]                                                                     

 ̇     ̇                                                                                                                         

 ̇                                                                                                                                

   



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 66, No  1, pp 225-235 

227 
 

where  ,  ,  ,  ,   and   are the velocity, Angle-Of-Attack (AOA), pitch rate, flight-path angle, Mach number, 

and altitude of the aircraft, respectively. The aeroloads, pitch moment, and Earth‟s center are modeled as 

follows   

  
 

 
                                                                                                

  
 

 
                                                                                                

  
 

 
                                                                                                

                                                                                                     

The aerodynamic coefficients are estimated from wind-tunnel measurements as follows 
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where   ,   are the elevator deflection and throttle setting, respectively The air density and sound speed are 

computed, respectively, from the following expressions 
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The dynamic model (1)-(5) is a multivariable state-space model  

 ̇            

                       
                                                                                                 

where   [         ]     and   [      ]
    . The system output can be selected as one of its states 

such that       . The nonlinear mapping            and            are sufficiently smooth 
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functions 

3. Hypersonic Sliding-PID and QC-HOSM Control 

In this section, both sliding-PID control and qasi-homogeneous HOSM control problems are formulated 

according to the references [21,23] respectively. The following assumptions are necessary for the development 

of non-conventional sliding mode control methods [22,25-27].  

A1: Each state              has a relative degree     

A2: The control inputs              are supposed bounded  

 ̅           ̅                                                                                                

A3: The vector-valued functions                 are bounded in Euclidean norm such that 

‖    ‖
 
                                                                                                            

where      is the k
th

 time-derivative of the vector  . 

A4: If the relative degree of an output   is  ,      is written as follows  

                                                                                                              

with 

{
       

                 

         
         

                                                                                             

where   
 ,   

   , and    are the Lie derivatives. 

A5: The tracked (desired) output       (the subscript „d‟ denotes the desired value) has the same relative degree 

  as the tracking output      and, 

|  
      |                                                                                                            

3.1. QC-HOSM control  

For an uncertain multivariable system with     ,      , and      (n states, m inputs, and p outputs), 

the HOSM control concept is equivalent to force the state trajectories of such system to evolve or move on the 

following integral r-order set of sliding manifolds 
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where   [          ]
 
denotes the sliding order vector with respect to the output vector  , and           

       is the new output constraint vector of the system.  

The relative degree     characterizes the dynamics smoothness degree in the vicinity of the   -sliding mode, 

hence    should be known and constant. This statement is equivalent to the condition stated in assumption A5. It 

results that 
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The asymptotic solution to the system (25) is guaranteed if and only if      is nonsingular.  For the case     

where      is non-square, the solution to the system (25) requires that the following matrix is nonsingular 

                                                                                                                      

It results that the objective of HOSM is to design controllers       to enforce the sliding variable        

associated to the output    to  reach their zero-level in finite time in despite of disturbances and uncertainties and 

without chattering of controllers. 

3.2. Sliding-PID control 

Suppose that the assumptions A1 to A5 hold, using the relative degree   of a single-input-single-output     

subdynamics of the system (19), a sliding-PID controller can be designed as follows [21] 

                        ̇      ∫         
 

  

         (  (   ̇         ))      

where 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 66, No  1, pp 225-235 

230 
 

 (   ̇         )   ∑     
       

 

     

                                                                

The sliding-PID controller (30)-(31) is implemented as shown in Figure 1. 

 

Figure 1: Block diagram of the sliding-PID controller 

3.3. Quasi-homogeneous HOSM (QC-HOSM) control 

Under the assumptions that the terms       and         are some bounded uncertain smooth functions and that 

the control inputs       are some Lebesgue-measurable bounded signals, the problem described by (26) is 

standard and could be solved by the following set of known ri-sliding controllers (this statement is an extension 

of the statement stated in for a Single-Input-Single-Output system)   

       

{
 

       (    ̇      
      

)

 

      
(    ̇      

(    )
)}
 

 
                                                                     

The gains    are adjustable gains introduced to compensate model uncertainties, unmodeled dynamics and 

external disturbances. The control laws     
(    ̇      

      
) can be selected to be the r-sliding functions. The 

corresponding quasi-continuous controllers are constructed as shown in the following procedure    
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3.4. HOSM differentiators and observers 

In practice, the implementation of the controllers (9) requires the measurement or estimation of the (r-1)-order 

time derivatives  
   

            of     . Those derivatives are computed using the following high-order 

sliding mode observers [28]. 
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where the recursive functions    denote the successive derivatives  
   

, the coefficients     denote the 

differentiator gains, and L is a Lipschitz constant. 

4. Author Sliding-PID Based Displacement Autopilot Design 

Generally, the flight control system of a hypersonic vehicle includes different autopilots that allow the vehicle to 

reach desired attitude. Those autopilots are velocity hold, displacement, and altitude hold autopilots. The 

displacement autopilot contains control loops of AOA, yaw, and bank angles.  To demonstrate the effectiveness 

of the proposed control scheme, AOA autopilot design for hypersonic vehicle is considered using the data 

presented in [xx]. Let the desired AOA be       for a hypersonic vehicle flying at the following conditions: 

                 ,           . The different gains of the controllers (30) and (33) and the 

observer (35) are selected as shown in Table 1. In this application, a 4
th
 order QC-HOSM controller is 

considered for comparison. Figure 2 shows the time-history response of the AOA tracking and Figure 3 depicts 

the control effort for both PID-sliding and QC-HOSM controllers. Figure 4 shows the convergence of the 

functions φ(σ) (31) and (33) for both controllers 
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Table 1: Controllers gains for the AOA tracking 

Controller Gains 

Sliding-PID Kp = 0.51,  Kd = 1, Ki = 0.35, λ0 = 1,λ1 = 1; Ks=-0.26 

QC-HOSM β1 = 5,β2 = 2 ,β3 = 2; G = 0.35 

HOSM observer λ0 = 7, λ1 = 10, λ2 = 5, λ3 = 3, L = 0.01 

 

Figure 2: Time-history response of AOA tracking 

 

Figure 3: Control effort 
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Figure 4: Convergence of the function      

From the results above, it can be seen that the proposed strategy offer a good solution to the design of automatic 

control systems for hypersonic aerospace vehicle. The control scheme provides fast response with smooth 

control input, which is often desired in control practices. 

5. Conclusion 

In this paper, a displacement autopilot for hypersonic vehicle is designed using sliding-PID control method that 

combines the conventional PID with discontinuous-HOSM control. As application, an AOA autopilot was 

designed and simulated for track and maintain a desired output. Simulation results showed good performance 

tracking without control input chattering. The results also revealed that the sliding-PID outperformed the quasi-

continuous HOSM. As constraints of the proposed control scheme, we can mention that the computation of time 

derivatives requires, in addition to the robust differentiator (HOSM-differentiator), a signal filtering to clear the 

signals from the disturbance and measurement noises. 

6. Recommendations 

As future work, the control method will be extended to the design of other types of autopilots for hypersonic 

automatic flight control systems. Also the trail-error tuning of the control gains can be done by an adaptive 

process using adaptive laws 
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