
 

 
 
 
 
 

166 
 

 American Scientific Research Journal for Engineering, Technology,  and Sciences  (ASRJETS) 

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

© Global Society of Scientific Research and Researchers  

http://asrjetsjournal.org/  

 

Interactions Between Anaerobic Oil Bacteria – Monitoring 

by Classic and Molecular Microbiology 

Antonio Carlos Augusto da Costa
a
*, Gustavo Fabbri Montez

b
, Luiz André 

Lucas Teixeira Pinto
c
, Márcia Teresa Soares Lutterbach

d
 

a,b
Universidade do Estado do Rio de Janeiro, Instituto de Química, PPG-EQ, R. S. Francisco Xavier 524, Rio de 

Janeiro, RJ, Brasil 

c,d
Instituto Nacional de Tecnologia, LABIO, Av. Venezuela 82, Praça Mauá, Rio de Janeiro, RJ, Brasil 

a
Email: acosta@uerj.br 

b
Email: marcia.lutterbach@int.gov.br 

 

Abstract 

The biogenic production of sulphide is one of the main problems in oil and gas industry, causing corrosion in 

storage tanks and pipes. This is possible by the injection of seawater during the secondary oil recovery. In the 

present work high levels of sulphide and acid producers were detected in water/oil samples from several sites 

from the petroleum industry. In a further stage, a broader range of microbial cells were detected, and finally, 

metagenomic analysis confirmed the presence of a diversity of microbes, indicating the complexity of the 

consortium in the production of sulphide, and based on the activity of acid producing cells and associated 

species.  

Keywords: Acid producing bacteria; Sulphate reducing bacteria; Sulphide; Metanogenics; Petroleum industry. 

1. Introduction 

The oil industry faces serious problems related to the corrosion of metallic surfaces, such as platform structures, 

storage tanks, and production lines. The corrosion of metals is an extremely common and costly process with 

20% of metal corrosions reported as microbiologically induced corrosion (MIC) [1-3]. It is assumed that 50% of 

corrosive failures in pipelines are related to MIC [4-7]. Biocorrosion is the consequence of the deterioration of 

metals caused by the metabolic activity of some microorganisms, the main ones sulphate-reducing bacteria 

(SRB) [8].  

------------------------------------------------------------------------ 
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Many types of industries, such as mining companies and the oil industry face serious damage, often irreversible, 

due to the biocorrosion of their metallic structures, which normally affects pipes [9, 10]. The most common 

groups found, such as SRB, iron reducing bacteria (IRB) and acid producing bacteria (APB) have been 

frequently reported in the microbial communities in the reservoirs and pipes that suffer from this type of 

corrosion [11]. However, new genera and bacterial species are being discovered in these reservoirs, indicating, 

this way, a great potential for corrosion, not yet discovered [12-15]. Many oil reservoirs around the world have 

been extensively flooded with water for secondary oil recovery [16-18]. The injection water produced from the 

oil-water separation from production waters is recycled to be injected through a semi-open system, which 

provides the perfect environment for the growth of various microbial groups such as those mentioned above. 

According to Almeida [19], APB constitutes a very important group, since they are able to use long chains of 

hydrocarbons in the oil as substrate to produce smaller organic acids, which will serve as a substrate for SRB to 

proliferate and produce H2S, a toxic and corrosive agent. In view of this scenario, it is very important to identify 

the different groups existing in the microbial consortia of these reservoirs, especially the existing species of 

APB, since they are at the beginning of the chain of the corrosive agents that damage and degrade not only 

metal structures, but also the oil itself. Thus, the present work has the purpose of monitoring these 

microorganisms through classical microbiology techniques, such as the most probable number technique 

(MPN). As a complementary analysis, we performed the identification of some metabolites produced by APB 

through HPLC technique, with UV detection with electrospray ionization technique coupled to mass 

spectrometry (HPLC-UV-IES-MS) and also metagenomic sequencing, a very powerful technology to identify 

genetic information contained in an environmental sample for non-culturable microbes. 

2. Materials and methods 

2.1. Samples 

Table 1: Samples from phases 1 and 2 and microbial groups investigated. 

Number of samples Sample description Microbial groups investigated 

Phase 1 

12 Water from oil storage tanks and drains  

Aerobic/Anaerobic acid-producing 

bacteria (APB) and Sulphate-

reducing bacteria (SRB) 

8 Internal oil transportation lines 

2 Water from tanks with a high content of oil 

4 Effluent treatment station 

3 PIG residues 

6 Water from water storage tanks 

Phase 2 

5 Water from water storage tanks Culturable heterotrophic aerobic 

bacteria (CHAB), Culturable 

heterotrophic anaerobic bacteria 

(CHAnB), Iron-precipitating 

bacteria (IPB), Aerobic acid-

producing bacteria (APB), 

Anaerobic acid-producing bacteria 

(AnPB) and Sulphate-reducing 

bacteria (SRB) 

7 Water from oil storage tanks 

The samples used in this work came from different locations, such as production water storage tanks, oil storage 

tanks, oil drain lines, and fuel flow lines of an oil company. In a first phase 35 different samples were studied, 
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and in a second phase 12 different samples were studied, all of them at 3.5 % (v/v) salinity (Table 1). 

2.2. Culture media 

The anaerobic culture media used in this work were solubilized in distilled water under agitation and mild 

heating, to decrease the concentration of oxygen in the medium, since the basic condition for the growth of the 

anaerobic microorganisms is the absence of oxygen. For the same purpose, nitrogen gas was purged during the 

entire preparation and distribution of the medium, in the case of anaerobic cells quantification. The following 

media were used: Phenol Red Broth, for APB; Postgate E, for the SRB; Iron broth, for IRB; CHAB medium, for 

cultivable heterotrophic anaerobic bacteria; and Nutrient Broth, for aerobic cultivable bacteria.  

2.3. Microbial quantification 

For the quantification of SRB and APB cells present in each sample, the Most Probable Number (MPN) method 

was used [20]. Dilutions ranging from 10
0
 to 10

8
 were prepared for all microbial groups. For the inoculation of 

each triplicate of each dilution, sterile syringes were used, with all procedures performed inside a vertical 

laminar flow cabin. All flasks inoculated with the different samples were incubated for 28 days at 30° C and 

their growth was monitored every 7 days, for 28 days. 

2.4. High performance liquid chromatography 

In order to identify some metabolites produced by APB, some samples were initially inoculated in a selective 

medium (Phenol Red Broth) for the growth of this microbial group. After growth, cultures were filtered using a 

0.2 µm filter syringe to sterilize the samples. Some solutions were filtered accordingly, to serve as control 

solutions: Glucose Solution (10g/L), Pure Phenol Red Broth (15g/L) and APB growth medium. The 

chromatographic technique used in this work was the high-performance liquid chromatography with UV 

detection and electrospray ionization technique coupled to mass spectrometry (HPLC-UV-IES-MS). Samples 

were diluted in spectroscopic grade methanol (Tedia, Brazil) at a concentration of 200 μL/mL. Afterwards, they 

were filtered (0.45 μm Millipore membrane, Merck Germany) and subjected to chromatographic analysis. The 

equipment used was produced by Ultra Shimadzu
®
 with degasser (DEU20AS), two pumps (LC20AD), 

automatic injector (SIL20AC), fixed wavelength UV detector (SPD20A), oven (CTO20A) and interface 

(CSM20A).  Samples were separated by a Thermo-Scientific® RP18 column (250 mm x 4.6 mm with 5Å 

particle). Elution of the mobile phase occurred by a ramp-type gradient, starting at 95% ultrapure water 

(MilliQ
®
) acidified with trichloroacetic acetic acid PA, pH 2.5 (VETEC) and 5% acetonitrile (Tedia) (0-2 min), 

ultrapure acidified water and 100% acetonitrile (2-45 min), 100% acetonitrile (45-55 min) and returning to the 

initial condition in the final 5 minutes (55-60 min) . Samples were separated on Thermo-Scientific
®
 RP18 

column (250 mm x 4.6 mm with 5Å particle). After UV detection, with a fixed lamp at 270 nm, the mobile 

phase was carbonated by electrospray ionization (200 ºC - 8 μL/min - 4 psi) and followed by the mass 

spectrometry analysis (Bruker MicrOTOF - QII). Mass spectra were obtained in negative mode, with the voltage 

of a 4000V capillary, in the mass/charge (m/z) range from 50 to 1000. The gas used during desolvation was 

nitrogen, with a flow of 400 L/h and submitted to the temperature of 250 ºC. The ionization energy was 10 eV, 
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with mass scan analysis. The flow rate was 1 mL/min and the injection volume was 10 μL. 

2.5. Metagenomic analysis 

In the metagenomic study, DNA from only one sample highly contaminated with APB cells was extracted after 

growth on Red Phenol medium. The DNA was quantified and standardized at 3ng/µL by fluorescence from the 

Qubit
®
 3.0 Fluorometer and Qubi dsDNA HS assay kit (Thermo Fisher Scientific). The PCR reaction for 

amplification was performed with samples with a final volume of 20µl, containing 10µl of GoTaq
®
 Master Mix 

Incolor 2x (Promega, USL), 0.3 μM foward primer and 0.3 μM reverse primer, 1μg/μL of genomic DNA and 

sterile ultrapure water. The amplification program used followed the protocol: 94°C for 3 min, followed by 29 

cycles of denaturation at 94°C for 45 sec, annealing at 50°C for 1 min, extension at 72ºC for 1.5 min and a final 

extension at 72°C for 10 min. Amplification reactions were conducted in thermocycler Veriti™ Thermocycler 

(Applied Biosystems). As initiator, the Foward Universal Primer 5'-AATGATACGGCG 

ACCACCGAGATCTACACTATGGTAATTGTGTGCCAGC-3' was used [21]. After amplification of each 

piece, amplification by electrophoresis in 2% agarose gel stained with 0.03% (v/v) UniSafe Dye, with 

approximately 300bp (amplicon size) was confirmed. PCR triplicates were combined into a single aliquot and 

subjected to purification using the Agencourt AMPure XP magnetic (Beckman Coulter), for the removal of 

small fragments from the total population of primers, molecules and residues. Subsequently, quantification was 

performed using the Real Time PCR methodology using QuantStudio 3 Real Time (Applied Biosystems) and 

KAPA-KK4824 (Library Quantification Kit - Illumina / Universal) thermocycler, all according to 

manufacturer's protocol. An equimolar pool of DNA was generated by normalizing all samples at 2nM for 

sequencing, which was conducted using the Illumina MiSeq next-generation sequencing system (Illumina® 

Sequencing). 

3. Results and discussion 

3.1. Samples from the first phase 

These determinations were necessary in order to map the most critical environments suitable for the growth of 

APB and SRB microbial cells. All samples were submitted to microbial quantification of 3 distinct groups, 

aerobic APB, anaerobic APB and SRB, using the MPN methodology based on the statistical determinations 

from Harrigan's table.  

3.1.1. Water samples 

Samples of water collected in different drains and tanks from a petroleum industry showed significant growth 

for total APB (aerobic and anaerobic) and SRB groups. In most samples, it can be observed the growth of both 

groups, particularly SRB cells (Figure 1), in accordance to the work of Okoro and his colleagues [22], which 

mentions the great potential of microbiological growth in water samples due to the great supply of nutrients 

needed for the growth of these microbial groups. From Figure 1, it can be seen the microbial growth of all 

groups investigated in the 12 samples, presented average values around 10
4
 MPN/mL. Half of the samples 

presented no growth of APB cells, while SRB cells presented growth in most of the samples. It is important to 
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emphasize that SRB cells were mostly higher than APB cells. This may be an indication that the presence of 

APB cells may produce short-chain compounds, amenable to be used by SRB cells, thus, stimulating their 

growth. This indicates that water samples constitute strong candidates for a deeper investigation of other 

microbial groups that may be involved in corrosion, in order to understand the correlation between microbial 

groups. It is also interesting to note that some samples (11 and 12) presented no APB and SRB growth, probably 

due to the presence of high levels of biocide, widely used by petroleum industry. This is in agreement with the 

work performed by Sugai and his colleagues [23] who confirmed the rapid kinetics of SRB cells associated to 

high levels of biogenic sulphide production. 

 

Figure 1: Quantification of APB and SRB cells in water samples 

3.1.2. Water storage tanks samples 

According to Ren and his colleagues [24], several microbial groups can be found in storage tanks, 

demonstrating a significant growth under favorable conditions. This is in accordance to the results obtained in 

the present work, where SRB cells were found in all samples tested. Here, again, APB cells were not present in 

all samples tested, and, not all samples presented APB cells. Two samples indicated the presence of SRB cells, 

even though APB cells were not detected. From Figure 2, it can be observed that all samples presented high 

levels of SRB growth, usually above 10
5
 MPN/mL, a high average value if compared to the other samples from 

the present research. On the other hand, APB growth presented concentration levels from 102 to 1010 MPN/mL. 

Here, again, SRB cells were present in higher concentrations in comparison to APB cells, when both groups 

were present in the same sample (except sample 3), corroborating the previous observation that APB cells may 

be stimulating the growth of SRB cells, due to the production of metabolites that serve as energy source for SRB 

cells. 
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Figure 2: Quantification of APB and SRB cells in storage tanks 

3.1.3. Oily water samples 

These samples were here segregated from the remaining water samples from Figure 1 due to the fact that they 

had much higher oil content. Only two among many water samples studied presented this characteristic. The 

results from Figure 3 indicate the presence of SRB cells in both samples, one of them associated to a high level 

of APB cells (Sample 2). Here, again, the presence of SRB cells was superior to the number of APB cells, once 

again indicating a possible relation between these two microbial groups. 

 

Figure 3: Quantification of APB and SRB cells in oily waters 

3.1.4. Water transport lines, production water treatment station and PIGs samples 
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The results observed from samples from water transport lines, production water treatment station and PIGs 

presented similar qualitative results (Figures 4, 5 and 6). For all samples, SRB cells were present at higher 

concentrations than APB cells, or SRB cells were present in absence of APB cells. These results suggest that 

APB may stimulate the growth of SRB cells by providing suitable substrates, or, in the absence of APB cells the 

medium may provide suitable conditions for sulphate reducers growth. 

 

Figure 4: Quantification of APB and SRB cells in water transport lines 

 

Figure 5: Quantification of APB and SRB cells in production water treatment station 

 

Figure 6: Quantification of APB and SRB cells in PIGs 
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An overall discussion of the results obtained in the first phase of the work, clearly indicates the need to search 

for additional microbial groups. Even though it seems to have a close relationship between APB and SRB cells, 

the presence of other microbial groups can help to understand the complex nature of microbial growth on 

petroleum substrates, that cannot be easily explained based on quantification of just two microbial groups. 

3.2. Samples from the second phase 

Due to the growth behavior observed in the first phase of the work, it was decided to investigate additional 

microbial groups, as suggested by Ren and his colleagues [24]: iron precipitating bacteria (IPB), and other 

anaerobic and aerobic heterotrophs that may also be found. At this stage of the present study, 6 new samples 

were selected, 3 samples from water storage tanks and 3 samples from oily water storage tanks.  In order to 

investigate the effect of a high content of oil in combination with water, the results obtained will be discussed in 

two main groups: initially results from 3 samples from tanks containing only water will be presented, and then, 

the remaining 3 samples, including water and oil will be shown. In order to facilitate comparison, results will be 

presented in Figures 7 and 8. Results from Figure 7 indicate the presence of high levels of sulphate reducing 

bacteria, followed by a smaller number of culturable heterothrophic anaerobic bacteria, and then anaerobic acid 

producing cells, and finally a smaller number of aerobic cells. This is in agreement with the previous results, 

where SRB cells constitute the major microbial group in produced water, followed by a smaller number of 

anaerobic acid producing cells. 

 

Figure 7: Microbial groups from water tanks 

However, it can be seen, that the interaction between sulphate reducing cells with other microbial groups, is not 

solely restricted to acid producing cells with other culturable cells (both aerobic and anaerobic) probably 

contributing in the chain of sulphide production. This microbial consortium of microbial cells probably interacts 

inside the tanks, providing suitable conditions for biogenic sulphide production. This is what is being 

investigated, that in several environments of the petroleum industry, sulphide production occurs as a function of 

a much broader action of microbial cells, not restricted to sulphate reducers. One can see that in the present 

investigation, initially we concluded that in several environments sulphate reducers and acid producers seem to 
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be in close association. Here, it can be seen that not only these two groups seem to be responsible for the 

production of undesirable metabolites, but, other cells, not deeply investigated, may take part in the 

phenomenon. Water storage tanks, due to the lack of a homogeneous composition, seem to be one of the most 

contaminating environments, due to the presence of seawater, residual additives and some other compounds that 

may support the growth of several groups.  According to Figure 8, the combination of production water and oil 

inside the tanks, may have changed the conclusions previously designed. Here, the presence of aerobes was 

considerably higher in comparison to the tanks lacking the presence of oil. Once the oil content is not the same 

in both tanks, this may be the reason for a higher concentration of aerobic cells in comparison to the results 

obtained from tanks containing water only. Different oil/water layer heights leads to distinct oxygen gas 

diffusion, thus contributing to the levels of aerobic cells. Some aerobes may be responsible for the initial 

degradation of the oil fraction, providing suitable substrates for anaerobes, a conclusion that needs to be 

confirmed due to the low number of tanks here evaluated. 

 

Figure 8: Microbial groups from oily water tanks 

High number of cells from tank samples is due to the fact that these microorganisms are dependent on oxygen 

for their growth and the diffusion of this gas into water occurs more easily than in oil. This is particularly true in 

the quantification of APB and CHAB, both requiring oxygen for growth. Sharma and his colleagues [25] 

indicates that APB around 10
3
 MPN/mL constitutes an extremely significant number of cells considering 

microbial attack on metal structures. This approximation of values can be due to the existence of facultative 

APB, growing both under aerobic and anaerobic environments. Observing the values found for the group of 

culturable anaerobic bacteria, it can be observed that these bacteria reached 10
9
 MPN/mL while those from the 

water samples reached values of maximum 10
7
 MPN/mL, corroborating the results that show the need for 

anaerobic environments for suitable growth of these microorganisms. Under aerobic environments, bacteria that 

have anaerobic growth, require biofilms formed by aerobic bacteria, which promote the anaerobic environment, 

thus maintaining the necessary conditions for their growth. Okoro and his colleagues [22] quantified sulphate 

reducing cells using the most probable number technique reaching values from 10
7
 to 10

8
 MPN/mL, relating 

such values to the effective power of microbiological corrosion promoted by these microorganisms. These 

numbers agree with the values found in the present work, where we obtained even greater values for some 
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samples, which demonstrates a significant value of sulphate reducing bacteria, being those potential sources of 

future corrosion for metal components of structures in the oil industry. Although this work focused on APB, it is 

necessary to emphasize that SRB are as important as APB, since APB produces the favorable environment for 

SRB to grow, with the consumption of organic acids produced by breaking the long hydrocarbon chains of the 

oil, thus causing SRB action to promote corrosion [11]. According to Kim and his colleagues [26] SRB together 

with APB are the main bacteria involved in MIC processes, SRB being responsible for the production of 

enzymes that remove cathodic hydrogen from the metal causing pitting corrosion on metal surfaces. On the 

other hand, APB produces organic acids that will not only serve as a substrate for SRB but also lower pH, thus 

promoting the perfect environment for corrosion of surfaces [27]. 

3.3. Chromatographic analysis 

For the identification of the metabolites through the HPLC technique, 200µL from 7 samples were analyzed, 

including: 1) Blank under Storage Conditions; 2) Blank under Growth Conditions; 3) Sample from one water 

storage tank; 4) Sample from a second water storage tank; 5) Sample from an oily water tank; 6) Glucose - 

Solution 10g/L (blank from culture medium); and, 7) Phenol Red - Solution 15g/L (blank from culture medium). 

The chromatograms obtained at 270 nm (better condition for HPLC), it can observed the typical peaks of phenol 

red (that appears in all samples because it is an indicator), as well as the typical peaks from glucose. The distinct 

peaks will not be here discussed, but the most interesting result can be seen in the time of approximately 3-4 

minutes, a peak referring to the formic acid, the acid most widely used by SRB cells (Figure 9).  

 

Figure 9: HPLC spectrum for glucose degradation, phenol red marker and formic acid detection 
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This may be a confirmation of the previously discussed results: APB cells are probably degrading the oil from 

water/oil mixtures, thus providing suitable conditions for SRB proliferation. When evaluating the mass spectrum 

of the samples, the formic acid profile could be detected as one of the products formed through comparison of 

the masses with reference materials used on the calibration of the equipment using a standard solution of sodium 

formate (Figure 10).  Formic acid production decreases de pH of the medium, modifying the staining pattern of 

phenol red indicator, a result that corroborates with studies from Adams (2010). It can also be seen from Figure 

9 that the production of this acid was more intense in sample 3, which is in agreement with the studies of Okoro 

and Armund [28], confirming that water samples have a higher susceptibility to the growth of microorganisms. 

Jacobs and Severin [29] also investigated the metabolites produced under anaerobic conditions. The main focus 

of the authors was on the accuracy of the several analytical methods and their application limits. 

 

Figure 10: HPLC spectrum for glucose degradation, phenol red marker and formic acid 

3.4. Metagenomic analysis 

As previously observed, during the first phase of the present work it was demonstrated the predominance of 

SRB and APB cells; in the second phase of the study, other aerobic and anaerobic microbial groups were 

quantified, indicating the complexity of the consortium involved in the degradation of oil organic compounds in 

composition with saline water. However, in those two initial steps of the work, just culturable cells were 

quantified. In this final step of the work, metagenomic analysis was performed in order to detect the presence of 

non-culturable cells in the most contaminated sample. The importance of this genomic detection lies on the 

possible involvement of other microbial groups in biocorrosion and biogenic production of sulphides in the 

petroleum industry [30].  From data generated by sequencing, it is possible to detect taxonomic groups, to 

characterize intra-sample diversity (alpha diversity) and to assess the classification of taxonomic groups. The 

QIME 2018.4 program group was used. The alpha-diversity corresponds to the variability of species observed 

within the same sample (Figure 11). 
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Figure 11: Average community composition at the phylum/class level 

After analysis by bioinformatics of the sequences obtained in the sequencing of the genomic material of the 

sample, it was observed that the presence of Bacillus sp., which may have occurred due to the selectivity of the 

medium [31, 32]. Several other groups, more representative of the clusters include: Paenibacillus sp. (48.3%), 

Halomonas sp. (32%), Polynucleobacter sp. (10%), Planctomyces (7%) and Marinobacter sp. (2%) as can be 

seem in Figure 11.  Okoro and Amund [28] also investigated the microbial community structure of a low sulfate 

oil producing facility using 16S rRNA gene sequencing technique, in production water and oil samples. The 

authors identified the massive presence of Marinobacter sp., as observed in the present work, associated to 

several other potentially corrosive Archaea species. Purwasena and his colleagues [33] also searched for new 

strategies based on phylogenetic analysis discovering a new strain of Petrotoga, confirming that a broad 

understanding of the action of a microbial community in several sites of the petroleum industry, still requires 

further investigations.  

4. Conclusions 

- It could be observed a high level of sulphate reducers and acid producers in several operations of the 

petroleum industry, including water tanks, water/oil tanks, PIGs and water treatment stations. Usually, 

the number of sulphate reducers was higher than the number of acid producers. This was a first 

indication that probably these two bacterial groups interact, with one group producing short-chain 

organic acids to supply sulphate reducers with energy source. 

- The presence of iron bacteria and other anaerobic and aerobic bacterial groups in similar samples, 

proved that the final production of biogenic sulphide is not mediated solely by acid producers and 

sulphate reducers.  

- Metanogenic analysis proved the involvement of other bacterial groups, not easily culturable under 
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laboratory conditions that may take part in the complex consortium of cells that may occur in several 

petroleum industries. 

- The proper understanding of the role of each microbial group in a petroleum facility, may bring a 

considerable reduction in biocide consumption, to prevent the uncontrolled generation of biogenic 

sulphides. 

5. Recommendations 

Some recommendations are included in the present work. Initially, it is suggested to enlarge the number of sites 

for sample samplings, beyond the ones chosen in the present work. This will give a broader spectrum of 

microbial species present in the petroleum industry, other than the ones here selected. Beyond this, authors also 

recommend the evaluation of microbial species in a higher number of samples for each site, due to the 

associated uncertainty in the evaluation of some microbial groups. 
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