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Abstract 

This work presents the simulation of drying with shrinkage by the finished window method. To do this, we 

recalled the drying balance equations and expressed the shrinkage that a product undergoes during the process 

of product dehydration by means of the shrinkage rate. Then presented the method of resolution employed with 

an application to the drying of cocoa beans. The different profiles obtained in terms of temperature, water 

content and volume shrinkage have been shown to be in perfect agreement with the literature. The comparison 

of the results of the present study with the experimental data of Koua and al., (2019) presents an average relative 

error of 2.89% for the water content and 0.99% for the reduced volume. The theoretical results are in perfect 

agreement with the experiments, which gives us a validation criterion of the method proposed as suitable for the 

resolution of the drying equations.  

Keywords: Simulation; convective drying; shrinkage; finite window method. 

1. Introduction  

Drying is a preservation process that involves reducing the water content of a product so that it can be stored 

longer. It is a physical phenomenon that simultaneously involves the phenomena of heat and material transfer 

within the product to be dried as well as between it and the drying medium. This modeling therefore requires the 

writing of a complex system of partial differential equations (PDE) coupled and non-linear for the most part and 

whose resolution can only be done by so-called numerical methods. During the drying of products with a high-

water content, there is usually a shrinkage phenomenon.  
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This is a phenomenon which reduces the volume of the sample and affects the exchange surface between the 

product to be dried and the drying medium [1]. Shrinkage is the reduction in the volume of the product sample 

due to the departure of the water contained therein [2]. Drying with shrinkage has been studied by many authors. 

Reference [3-4] model the rate of shrinkage of the air-product surface during drying using the Leibniz-Reynold 

transport theorem (TTLR). Reference [5] propose models for the mass diffusion  coefficient and the rate of 

withdrawal and determine the parameters of these by comparing their results to the experiment. [6] show that 

the moisture content decreases more rapidly in the drying model with shrinkage, which leads to the conclusion 

that this one gives shorter drying times. Reference [7] show that neglecting the effect of shrinkage can lead to 

false results. Reference [8] postulate a local shrinkage rate proportional to the local mass diffusion flux, the 

coefficient of proportionality called the shrinkage factor. This model applied to 2D potato slice drying gives 

good results in terms of predicting volume reduction, surface deformation and effective diffusivity of water. A 

synthesis of the main models developed as well as the resolution methods used are presented [9-11]. From the 

above, we can easily see the influence of shrinkage on the drying kinetics. Unfortunately, the shrinkage 

phenomenon is not systematically taken into account in drying models, and particularly with regard to work on 

cocoa. The objective of this work is to present a new approach to solving the drying equations and to apply it to 

the case of cocoa drying taking into account shrinkage. To do this we will:  

- Presented the drying equations with shrinkage; 

-  Presented the digital method of resolution; 

- Apply the method presented to the case of cocoa. 

2. Mathematical model  

2.1. Balance equations 

Convective drying with shrinkage is defined by the following balance equations:  

Mass balance: 

   
c

uc D c
t


   


   (1) 

Heat balance: 

     P s

T
C u T k T

t


 
     

 (2) 

air-product interface: 

    m airx s t s t
D c h c c


        (3) 
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       a m a vx s t s t s t
k T h T T h c c L


       (4) 

2.2. Expression of shrinkage 

The shrinkage is expressed through the shrinkage speed by [8]: 

     v x J x     (5) 

The coefficient  is called the shrinkage factor and is determined from the experimental drying results. As for 

the displacement of the air-product surface, it is given by:  

 
 

 

s t

x s t

d x
v D

dt
  




    (6) 

3. Numerical resolution 

3.1.  Method presentation 

This work is based on a new numerical method for solving partial differential equations (PDE), in particular the 

drying equations. This method, called the “finite window method” (MFF), was developed by [13] and used for 

the resolution of thermal problems [14-15]. In the finite window method, a continuous approximation of the 

desired function is required in the domain knowing the values of said function at the nodes:  

   , ,i i

i

f N x y z f t    (7) 

The functions ( , , )iN x y z  represent the interpolation functions and n the number of nodes contained in a Finite 

Window (FF) and  if t  the value of the unknown function at node i. By considering an unspecified node k in 

the field, one formulates its finite window, then one introduces the approximated function in the equation (with 

partial or ordinary derivatives) to be solved, one thus obtains an error due to the approximation of the sought 

function and noted k  one searches for the values of  if t  which minimizes this error by applying the criterion 

of the least squares in the corresponding FF either:  

2

k k

ff

er df       (8) 

By applying to all the nodes of the study domain, we finally obtain the global error in the whole domain:  

2

k

k ff

R df


       (9) 
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Therefore, the values of f which minimizes the overall error in each node if they exist must verify the following 

condition: 

0dR                  (10) 

Avec  

2 k k

k ff

dR d df 


                             (11) 

So finally, dR   gets the following form:  

2 ij j i

k i j

dR a u du


 
  

 
               (12) 

Now it suffices to pose 0dR   to find the value of 
ju  : 

0ij j

k i j

a u


 
 

 
                (13) 

with   i iu f t  

For each node k and as a result of the expansion of eq (13), we end up with the system eq. (14) or the 

coefficients 
ij

fa  are evaluated in the k window and 
j

fu  the values of the function at all the nodes j belonging to 

the zone of influence of k (window of k), including in  k itself.  
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    


   


    

             (14) 

The previous system can be in the following matrix form:  

0k

f f

kA U                             (15) 

By repeating the process for each node of the domain, we construct the matrix system (Eq. 16) whose resolution 

allows to have the values of the function sought at each point of the domain through the vector U: 
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AU B                 (16) 

Matrix A is built from small matrices k

fA  defined on each window and the column vector B is built from the 

boundary conditions 

4. Application  

The different residues are expressed by:  

4.1. Mass equation 

- Internal node 

1n n

k i i

i i

X N X       (17) 

avec 

2

2
2n

i

dN dN d N
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d d d
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  
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2

iN s N  

- Surface node 

n

k i m a

i

dN X sBi                (18) 

- Center node 

n

k

dN
X

d



                (19) 

4.2. Heat equation 

- Internal node 

1n n

k i i

i i

T N T                  (20) 

2

2
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i

dN dN d N
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- Surface node 

 n n

k i a

i i

dN T s NX s Bi              (21) 

- Center node 

n

k

dN
T

d



   (22) 

The optimization consists in determining for each node k of the domain (mesh) the values of the unknown 

function (temperature and water content) which minimizes the overall error. For this its differential is set equal 

to 0, that is:  

- reduced moisture: 

1 0n n n n

m aCX DX HX sBi K UX      (23) 

1\n n

m aX y DX sBi K     

with       y C H U    

- reduced temperature: 

 1 0n n n n n n n

aGT NT PT s QX s Bi R UT          (24) 

 1\n n n n n

aT w N T s Q X s Bi R           

With     w G P U    

- volume shrinkage 
1n n ns s t s    

 0

n ns
m s a

e

s X Bi


  


               (25) 

nX , 
nT et 

ns  represent the reduced moisture content, the reduced temperature and the volume shrinkage at 

each instant n. Matrices C, D, H, K, U, G, N, P, Q, et R are built from the different residues.  

5. Results  

The following results were obtained after simulation of the previously established equations for the case of 
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cocoa bean drying. The shrinkage factor used in the present study is derived from the analysis of indirect drying 

data from [12] from the algorithm developed by Adrover and his colleagues [8]. It is 0.396979, a value that will 

be used throughout this study.  

6. Validation 

In the vast majority of numerical studies of agricultural product drying, validation of results is done by 

comparing theoretical and experimental results, and the mean relative error is the magnitude generally used in 

the validation process. The comparison of the results of this study with the experimental data of the indirect 

drying of cocoa beans from [12] is presented in figures 1 and 2. We observe a very good match between the 

theoretical and experimental results. The results are validated by calculating the average relative error between 

experimental and theoretical values (eq. 26). For the case of the moisture content and the reduced volume we 

obtained mean relative errors of 2.89% and 0.99%. Considering that this is generally greater than or equal to 

3%, the values presented in this study being significantly lower than this limit of 3%, we can, in the light of our 

results, conclude that the numerical method used combined with the phenomenon of shrinkage makes it possible 

to obtain more precise results. 

 
exp

1 exp

100
%

n
sim

i

X X
E

X n


           (26) 

 

Figure 1: Comparison of the moisture content kinetics of the present study with the experimental results of 

Koua and al., [12] 
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Figure 2: Comparison of the evolution of the reduced volume the present study with the experimental results of 

Koua and al., [12] 

Figures 3 and 4 show the time profiles of water content and temperature as a function of thickness. It can be 

seen that for the temperature, there is practically no variation along the radius, which is certainly due to the low 

thermal conductivity of cocoa. It therefore evolves only over time. The moisture in the product moves from the 

center to the surface and over time this tends to become uniform throughout the bean. Reference [2] present a 

similar profile for the case of apple drying taking into account the shrinkage for a constant diffusion coefficient 

with a finite difference numerical scheme. The similarity of the profiles obtained for different products under 

similar conditions sufficiently proves the capacity of the method presented here to describe the drying processes. 

Figure 5 shows the kinetics of reduced moisture content. This is evaluated at the center and on the surface of the 

bean in addition to its average value. The moisture content drops exponentially. This decrease is faster on the 

surface than at the center. We see that drying begins from the first moments of the process. During the heat-up 

phase, water transfer occurs both at the center and at the surface of the product. Therefore, the water transport is 

not influenced by the temperature gradient, but only by the concentration gradient. Taking into account the 

difficulty in experimentally evaluating the water content during the dehydration of the products, one often has 

recourse to semi-empirical models. The average profile of reduced water content presented here perfectly 

reproduces the evolution of the average moisture content reported by [16] for the artificial drying of cocoa 

beans. As the semi-empirical models do not take into account the shrinkage, we can say that for the cases of 

cocoa beans, the model presented is well suited to the study of kinetics.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

X/X
0

V
/V

0

 

 

Present study

Koua and al., 2017



 American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2021) Volume 78, No  1, pp 39-49 

 

47 
 

 

Figure 3: 3D profile of reduced temperature 

  

Figure 4: 3D profile of reduced moisture content 

 

Figure 5: Kinetics of water loss and temperature in the bean during drying from the surface to the center. 

Figure 6 shows the reduced volume shrinkage as a function of time. In this study, the local shrinkage velocity is 
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set proportional to the local mass flow, this rate also being that of volume variation during the dehydration 

process, therefore as long as there is a gradient of content in the bean, the volume will decrease proportionally 

until the gradient vanishes. The profile obtained will therefore be identical to that of water content. [17] by 

studying the couplings between mass transfer, heat transfer and shrinkage obtained identical results for the 

evolution of the volume shrinkage of the product. However, to achieve this they develop a complete model of 

microscopic porous medium type by considering the different phases constituting the product. The added value 

of this study lies in the ability of our model to predict the volume shrinkage of the product despite its simplicity, 

just like a model based on more detailed modeling of transfers inside the product and in particular its 

deformation. such as that [17].  

 

Figure 6: Variation of volume shrinkage during drying. 

7. Conclusion 

The objective of this study was to simulate the convective drying equations taking into account the shrinkage 

phenomenon by a new numerical approach to solving PDEs, namely the finite window method. The results 

obtained were validated by comparison of these with the experimental results presented by [12]. These results 

present an average relative error of 2.89% for the water content and 0.99% for the volume shrinkage. Likewise, 

the analysis of the different profiles shows that they are in perfect agreement with those presented in the 

literature, in particular with the work of [2,16]. The results also show that taking into account the shrinkage 

phenomenon allows better results to be obtained, therefore it should be systematically integrated into drying 

models. The present study finally allows us to validate our numerical method of resolution of the PDEs, in 

particular the drying equations. The main limitation of this study remains the evaluation of the shrinkage factor, 

which is highly dependent on the operating conditions and therefore subject to errors in its determination and 

therefore likely to affect the results.  
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