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Abstract 

Reinforced concrete beams are designed primarily for resisting the shear and flexural stresses that are exhibits 

on the beam sections. These two parameters are influenced by different factors.  Delay of concrete casting forms 

an interface between harden and fresh concretes. Interface is a surface between two sections of concrete that are 

not placing monolithically. This interface may affect the structural capacity of reinforced concrete members. 

Especially shear strength of the members at the shear plane is highly influenced by this interface. Many 

researches were conducted on different factors that affect the shear and flexural capacity of reinforced concrete 

beams varying different parameters. In this research paper, an experimental study was executed to investigate 

the effect of interfaces on the behavior of the shear and flexural capacity of reinforced concrete beams. Eleven 

beam specimens were examined through experiment. Main variables in the research were interface location 

(Half, one third, quarter, and one fifth) and interface configuration (vertical and inclined) for both shear and 

flexural beams. The test results indicate that considerable reduction in the shear capacity and relatively small 

reduction in flexural capacity of reinforced concrete beams due to the interfaces weakness at the joint.  

Keywords: Shear Strength; Flexural Strength; Concrete interfaces; Reinforced Concrete Beams.  

1. Introduction  

In the design of Reinforced Concrete (RC) beams, shear and flexural strengths were predominantly considered 

to avoid the failure of the members. 
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 Shear failure in reinforced concrete beams is one of the most undesirable modes of failure due to its rapid 

progression. This sudden type of failure made it necessary to explore more effective ways to design the beams 

for shear. It is well recognized that Reinforced Concrete (RC) beams should be designed to preclude shear 

failure, which is more critical than flexural failure [1, 2]. And also in the design of Reinforced Concrete (RC) 

beams, flexure is usually considered first, leading to the size of the section and the arrangement of reinforcement 

to provide the necessary resistance for moments [14]. 

Nowadays, a construction industry is growing rapidly throughout the world. The structural capacity of those 

constructions must be adequate to withstand any internal and external actions. The structural members must 

have adequate strength, give adequate services for any hazardous loading conditions and, should have to sustain 

in any accidental loading conditions. The quality of materials used in the construction project must be kept in 

suitable environment. But many construction faults were made on the construction sites due to many factors 

such as the shortage of budgets, materials, equipment’s, and labor sources for the construction projects. Some 

portion of structural members may delay for a long time without casting the concrete in proper way. Delay of 

casting concrete occurred in many reasons such as: insufficient amount of fresh concrete supplied to placing the 

structure continuously, or sudden breaking down of some machines (mixer or pump or vibrator….etc.), or the 

large amount of concrete required to placing some large structural members such slabs or foundations so that 

their placing cannot complete at one day, or when weather conditions do not allow casting operations to 

continue at the same time [8, 6]. This affects the overall strength of the reinforced concrete members, because of 

the formation of interface on the member. Reported that, in case of delaying in the time period for casting, there 

is a significant effect on the mechanical properties of concrete [15]. Shear and flexural capacities are major 

influencing parameters due to delay of casting the concrete in reinforced concrete members [11]. 

The motivation of this study was to investigate the effect of interfaces on the behavior of shear and flexural 

strength of reinforced concrete beams varying the interface location and configuration of casting. Generally this 

research paper has focused on the experimental study to investigate the effects of interfaces on overall structural 

behavior of sear and flexural capacity of reinforced concrete beams under monotonic loading. Varying the 

interface location at different locations and interface configuration (vertical and diagonal) on the beam span, the 

shear and flexural behavior of reinforced concrete beams has been carried out using intensive experimental 

study. 

2. Materials and Methods 

2.1. Experimental program   

The experimental study has been completed at the Southern Nations, Nationalities and People Regional state 

(S/N/N/P/R) Construction Bureau, Construction Materials Laboratory Hawassa, to study the effect of interfaces 

on the  behavior of shear and flexural strength of reinforced concrete beams under monotonic loading. The main 

variables used in this study were the interface location and interface configuration. A 1m long beam was 

selected for the experimental program and both shear-critical and flexure critical beam specimens were prepared 

by providing an appropriate design for flexural and shear reinforcement’s in the beams. 
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2.1.1. Specimens  

Table 1: Test Specimens Notations. 

      

 S.N Casting age 

Ratio of length of late 

casting span to total 

span  

Name of flexural 

beam  specimens 
 

Name of shear beam  

specimens 

 

1 3 days gap 

½ 
FB-V1/2 

 SB-I1/3 

   SB-V1/3 

  FB-V1/3 
 SB-I1/4 

 ¼  SB-V1/4 

 ¼ 
FB-V1/4 

 SB-I1/5 

 1/5  SB-V1/5 

 

2 

Control beam 

casted at the 

same time 

 

         Monolithic CFB 

 

CSB 

      

 

Figure 3: Detail of cross section of the flexural beam specimens. 

 

Figure 4: Detail of cross section of the shear beam specimens. 
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Figure 5: vertical interface locations for shear critical beam. 

 

Figure 6: Diagonal interface locations for shear critical beam. 

 

Figure7: vertical interface locations for flexure critical beam. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2021) Volume 83, No  1, pp 38-56 

 

42 
 

2.2. Materials  

2.2.1. Concrete  

The mix proportion of concrete was targeted to get normal strength concrete with suitable proportion of weight 

of the aggregates (cement: sand: course aggregate, 1:2:3) see table 4. In the mix proportions of concrete, 

ordinary Portland cement was used and the water cement ratio was 0.52. Workability of the concrete using 

slump test was found 55mm [14, 5]. 

A 150mm cubes specimens were prepared and tested using a compression testing machine shown in Figure 14 

below. The maximum load achieved was used to calculate the ultimate stress of each cube. Concrete 

compressive strength test results for different ages are listed in the following table (Table 2). 

Table 2: Compressive strength of concrete for different days. 

S No. Duration 

(days) 

Sample 

name 

Sample 

weight(kg) 

Applied 

load(KN) 

Compressive 

strength(MPa) 

Mean(MPa) 

  
1  

3 

1 7.65 509.85 22.66  

23.86 
2 2 7.85 563.85 25.06 

3  

14 

1 7.53 534.58 23.76  

24.64 
4 2 7.93 574.24 25.52 

5  

28 

1 7.70 566.73 25.19  

26.58 
6 2 7.98 629.51 27.98 

 

Table 3: Concrete mix proportion. 

 

 

 

 

 

 

Cement type Ordinary Portland cement 

Maximum aggregate size 20 mm 

water content 187.2 kg/m
3
 

Cement content 360 kg/m
3
 

Fine aggregate content 750 kg/m
3
 

Course aggregate content 1088 kg/m
3
 

Water-cement ratio 0.52 

Workability (slump) 55mm 

Average compressive strength 26.58 
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Figure 8: Setup of compression test machine and workability (slump test). 

2.2.2. Reinforcement bars  

The reinforcement bars used for this research were 6mm plane bar and 10mm deformed bars which are free 

from any harmful defects. All the shear reinforcement (stirrups) in beams was 6mm and 10mm bars were used 

as a main reinforcement in the beams. As can be see here it was not tested the tension test for reinforcing steel 

due to the problem of availability of test machine. Rather, the property of these reinforcing bars was obtained 

from the manufacturer’s manual. The tensile strength of reinforcements tested by ECAE testing laboratory for 

6mm and 10mm used steel were 421MPa and 798MPa respectively. 

2.3. Instrumentations 

The beams were setups on the magnetic steel rod with a roller supports. A concentrated load was applied on the 

slender steel rod transverse to the longitudinal axis of the beam using a loading piston (shown in Figure 9) of 

maximum capacity 90KN.   

 

Figure 9: Model for test setup. 
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All beams were fully instrumented to measure the applied loads on the beams and the deflections. In brief, the 

instrumentation consisted of a load cell which measures the applied load (shown in Fig 10), deflection 

measurement tool dial gauge (shown in Fig 10) for the mid span and other critical-points. 

a) b)  

c) d)  

Figure 10: Flexural testing machine a) Full setup b) Loading piston c) Digital load reading cell d) Dial Gauges. 

3. Results and discussions 

3.1. Shear-Critical Beam Specimens 

As it was mentioned earlier, the load was applied monotonically in the interval of 5KN on the beam by using a 

loading piston on a long transverse steel rod up to failure. The deflection also measured by a manual 

displacement reading machine (Dial Gauges) with an accuracy of 0.01mm placing on the proposed positions.  

A one-third span vertical interface shear critical beam (SB-V1/3) also failed by diagonal tension failure modes, 

because the test specimens were designed to fail in shear, the ultimate shear strength of the beam specimens was 

governed by web reinforcement provided. The primary crack started at the interface of the concrete (see Figure 

11), but the crack didn’t continue with the proposed line of interfaces, rather it follows the diagonal tension 

crack direction. Finally the opening of this diagonal tension crack becomes excessive, and then the beam failed. 
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Figure 11: mode of One-third spanned vertical interface shear beam (SB-V1/3). 

The same behavior was observed for quarter span vertical interface shear beam (SB-V1/4), the primary shear 

cracks initiated at the interface (see figure 12). Gradually this crack directed to the loading point. An increase in 

applied load opens the primary crack excessively. Finally the beam reaches its ultimate carrying capacity, the 

concrete on the top of loading point and bottom of the interfaces crashed out.    

 

Figure 12: mode of Quarter spanned vertical interface shear beam (SB-V1/4). 

For the one-fifth span vertical interface shear critical beam (SB-V1/5) as shown in figure 13 the primary crack 

starts near to support, which is at the interface location. This shear crack becomes wide and excessively opened 

and finally the beam to fail in diagonal tension failure which is the crack directed from support to the mid span 

or the loading point. 

 

Figure 13: Failure mode of One-fifth spanned vertical interface shear beam (SB-V1/5). 
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3.1.1. Load-Deflection curves for vertical interface beam specimens 

Figure 14 shows the load versus deflection behaviors of all vertical interface shear critical beam specimens. All 

the beams at the beginning of the curves moves in similar trend up to the failure load. But the control shear 

beam (CSB) gives the highest load carrying capacity to its failure [3, 10, 9 and 7]. The remaining beam 

specimens showed that an immediate change of the paths of the curve within relatively lower load as compared 

to CSB. SB-V1/5 gives the lowest load carrying capacity. 

 

Figure 14: Load versus deflection curves for vertically casted shear beams. 

The stiffness of the beams specimens with interfaces has shown closely similar behaviors with each other. Due 

to the size effect of the beam specimens, there were no significant changes in stiffness, because the distances 

between the locations of interfaces with each others are small. The beam length was limited with 1m total length 

and a clear span of 0.8m. So for this case the interface locations didn’t shows significant effects on the beam 

stiffness. Quantitatively, the control shear critical beam (CSB) has been resulted a capacity of 59.59KN. But for 

a one-third span casted shear beam (SB-V1/3), the failure load was found 42.28KN which indicates 29.05% 

reduction in load carrying capacity with respect to CSB. For the quarter span vertical interface shear critical 

beam (SB-V1/4), the failure load resulted 40.8KN which showed 31.53% decreases in load carrying capacity as 

compared with the control beam. The final specimen for the vertical interface shear critical beam was a one-fifth 

span (SB-V1/5). This specimen also showed a decrease in load carrying capacity up to 33.88% with the control 

one.  Figure 15 shows the variation of load carrying capacity of the proposed vertical interface shear beams.  
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Table 4: Variations in load carrying capacity of vertical interface shear beams 

Beam specimens Failure load (KN) 

Variation 

(%) 

CSB 59.59 0 

SB-V1/3 42.28 29 

SB-V1/4 40.8 31.53 

SB-V1/5 39.4 33.88 

 

Figure 15: Variation of load carrying capacity for vertical interface shear beams. 

As stated by the overall capacity of reinforced concrete structures significantly reduced due to the presence of 

interface. Results in the current study confirm the report of A.R [14].  

Further, the deflection was measured at the interface location in addition to the mid span (see appendices B).  

Due to the size effect and the location of the interfaces, the measured deflections resulted small in all cases. But 

the deflection of the specimens increases when we move the interfaces from the support to the mid span. For the 

beam specimens SB-I 1/3, SB-I 1/4 and SB-I 1/5 the resulted deflections were 3.69mm, 3.21mm and 3.01mm 

respectively. 

3.1.2. Failure mode of diagonal interface beam specimens 

Unlike the vertical interface shear beam, all the beams with diagonal interfaces were exhibits similar failure 

modes. The primary shear crack initiated from the interfaces. Figure 23 shows the patterns of the crack is along 

the casting configuration. As stated by [15] Diagonal tension failure governs the current specimens, the 

propagation of cracks follows the formed interfaces which are weaken joint. This indicates that a significant 

effect is observed on the presence of interfaces in reinforced concrete beam. 
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The load carrying capacities of all the three diagonal interface beam specimens for   resulted 51.87KN, 48.21KN 

and 44.84KN respectively. The results indicated that a decreases in the load capacity of 12.95%, 19.09% and 

24.75% as compared with the control beam. But when we compare the results with vertical interface beams, it 

gives better shear capacity. 

a) b)  

c) d)  

Figure 23: Crack pattern of diagonally casted shear beams; a) CSB b) SB-I1/3 c) SB-I1/4 d) SB-I1/5. 
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3.1.3. Load-Deflection curves for diagonal interface beam specimens 

 

Figure 16: Load versus mid span deflection curves for diagonally casted shear beams 

The above curves in figure 16 shows the load versus deflection diagram of the proposed beam specimens. It can 

be seen that the control beam specimens (CSB) totally dominated on load carrying capacity as compared with 

other beam specimens. All the beams were exhibits nonlinear load deflection after the first crack appeared. At 

the beginning, all the beams shows the same trends like the control beam, but after a certain interval of time, all 

the specimens loses their stiffness and change their direction of the pattern within smaller failure load. The 

beams with diagonal interfaces have shown smaller stiffness relative to the vertical interface. SB-I1/5 shows 

relatively lowest load capacity and highest mid span deflection as compared with SB-I1/3 and SB-I1/4. There is 

a proportional reduction of load carrying capacity of the proposed specimens (see figure 25). 

Table 5: Variations in load carrying capacity of diagonal interface shear beams 

Beam specimens Failure load (KN) 

Variation 

(%) 

CSB 59.59 0 

SB-I1/3 51.87 12.95 

SB-I1/4 48.21 19.1 

SB-I1/5 44.84 24.75 
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Figure 17:  Variation of load carrying capacity for diagonal interface shear beams. 

3.2. Flexural Beam Specimens 

3.2.1. Failure mode of vertical interface flexural beam specimens 

In flexural beam specimens casted monolithically (CFB) figure 18, small flexural cracks first appeared on the 

bottom of beam section along the concentrated loads, where the flexural stress is highest and shear stress is zero. 

Because the test specimen was designed to fail in flexure, the ultimate flexural strength of the beam specimen 

was governed by the yielding of tensile reinforcement in the bottom region and crashing of concrete in the 

compression zone. Therefore, as loading increased, those small flexural cracks opened excessively, finally the 

beam failed reaching its ultimate capacity. 

 

Figure 18: Flexural cracks for control flexural beam (CFB) specimen. 
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Other interface locations flexure-critical beam specimen’s exhibits similar failure behaviors with CFB. But, the 

Control Beam Specimen (CFB) has given a highest load carrying capacity as compared with the others.  

A half span interface location flexural beam specimen (FB-V1/2) shows the same behavior as the control beam, 

at the mid span of the beam a branch of small flexural cracks was observed. But in addition to these flexural 

cracks, there was a crashing of concrete at the interface location; it is because of weakening of the joint at the 

interface. Then the flexural crack goes wider and wider, finally the beam failed. The load carrying capacity of 

this beam has a slight difference with the control beam, the load versus deflection behavior for all beams 

discussed later.   

A one third flexural beam specimen (FB-V1/3) also shows the same behavior as the former half flexure, 

crushing of concrete at the interface location of beam specimens was observed. Relatively slight reduction of 

load carrying capacity was registered in this specimen. 

For quarter span casted flexural beam (FB-V1/4) figure 19, small flexural cracks initiated at the mid span of the 

beam. Unlike the other flexural beam specimens, a sudden propagation of diagonal crack was observed starting 

from the interface formed. This crack becomes wider and the beam goes up to maximum carrying capacity, 

finally the beam failed. In this beam, it was found that the load was decreased dramatically and failed with small 

amount of loads. As can be seen in the figure the failure mode was not flexural failure rather its failure was 

shear-flexural failure, such kind of uncertainty occurred in this specimen only. 

 

Figure 19: Failure of Quarter flexural beam (FB-V1/4) specimen. 

3.2.2. Load-Deflection curves for vertical interface beam specimens 

The following figure shows the load-deflection behaviors of flexural beam specimens.   
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Figure 20: Load versus deflection curve for flexural beams. 

In the above curve (see Figure 20), the load versus mid span deflections curves of all the flexural beam 

specimens were plotted in combined. In the first stage “At-flexural-cracking stage”, all the beams behaved 

similarly and approximately linearly. Beam stiffness at this stage was almost identical, representing the behavior 

of the un-cracked beam with the gross moment of inertia of the concrete cross section. After cracking, all the 

beams were experienced a nonlinear load-deflection behavior. The trends of the curves were slightly similar, 

and the load carrying capacity of the other beams decreases slightly when the interface location moves from mid 

span to the support. Fully casted flexural beam or control flexural beam (CFB) shows a highest load carrying 

capacity and it was stiffest as compared with the others. The stiffness of the beams with interface noticeably 

decreases as we seen in the above graph. This shows that the presence of interfaces weaken the stiffness of the 

beams and increase its ability to exhibit the deformations under application of loads. Unlike the others beams, 

quarter span flexural beams shows a greater reduction of load reductions as compared to control beam. Erratic 

result and failure mode was appeared in FB-V1/4 (figure 20). This beam showed shear-flexure failure rather 

than flexural failure. The crack also initiated at the interface location. This was uncertainty observed during the 

experiment. As can be seen in the graph, the maximum load for control beam (CFB) was found 70.36KN with a 

mid-span deflection of approximately 4.51mm. For a half span casting beam specimen, the load was 67.86KN, 

which is decreases by 3.55% in load carrying capacity. A one-third span casted beam specimen (FB-V1/3), the 

maximum load was found 64.48KN. When we compare this with the control beam (fully casted beam) there is a 

decrease in load carrying capacity with approximately 8.35%. 

Finally, quarter span casted beam specimen (FB-V1/4), the failure load was found 49.49KN, and the mid span 

deflection for this beam read 5.35mm. A dramatic decreases of load observed in this beam, which was reduced 

29.66% with the control beam.  
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The following table shows the variation of reduction in load carrying capacity of the proposed beam specimens 

in percentages (%). It is clearly observed that the capacity of beams decreases when the location of the interface 

is near to the support. 

Table 6: Variations in load carrying capacity of flexural beams. 

Beam specimens 

Failure            

load (KN) 

Variation 

 (In %) 

CFB 70.36 0 

FB-V1/2 67.86 3.55 

FB-V1/3 64.48 8.35 

FB-V1/4 49.49 29.66 

 

Figure 21: Load variations for flexural beam specimens. 

The Chart shown in figure 21 indicated that a slight decreases in load carrying capacity when the interface 

moves from the mid span to the support location. But, only FB-V1/4 gives an erratic result in this case. This 

may be due to uncertainty occurred by experimental studies. Generally, it can be seen that, the presence of 

interfaces on the flexural beam specimens has insignificant effects on the structural capacity of the proposed 

specimens.  

In addition to the mid span, it was tried to measure the deflection in the proposed interface location. The 

following graphs show the relative load versus deflection curves at one third and quarter span of the beams. As 

can be seen in the graph 30, the control beam gives better stiffness with a lower deflection as compared to the 

interface location (one-third span). This indicates that the presence of interface affects the stiffness and overall 

capacity of the structural members. 
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Figure 22: Relative load-deflection curves for flexural beams (CFB vs FB-V1/3). 

In the figure 22 below, the graphs starts in the same trend for both specimens, but quarter span cast beam (FB-

V1/4) was registered lower load capacity and relatively higher deflection than the control beam.  Smaller 

stiffness observed on FB-V1/4 that affects the deflection of the beam. 

 

Figure 23: Relative load-deflection curves for flexural beams (CFB vs FB-V1/4). 

3.3.  Effects of interfaces on the overall structural capacity of reinforced concrete beams 

All of the beams specimens which proposed in this study affected by the presence of interfaces on reinforced 

concrete beam. The effects of interfaces on the flexure-critical beams were relatively small as compared with 

shear critical beams. The location of the interface also slightly affects the load carrying capacity of beams. The 

beam which interfaces located near to the supports gives smallest load carrying capacity relative to other flexure 

critical, and the beam FB-V1/4 shows shear-flexure failure mode rather than flexural failure mode. This was 

uncertainty that the researcher observed during the experimental study. 
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On the other hand, for shear critical beams, it was found that a significant effects on the shear capacity of the 

member. The inclined/ diagonally configured beam specimens give relatively better load carrying capacity that 

of vertically casted beams. But in both cases, when the interface location moves from the mid span to near 

support, it can be observed that there are proportional reductions in load carrying capacity. 

4. Conclusions  

An intensive full scale experimental study has been carried out to investigate the overall behavior of shear and 

flexural capacity of reinforced concrete beams with interfaces. Totally eleven test specimens were prepared for 

testing with their classification as flexure critical and shear-critical beam specimens. After conducting the 

experimental program, the following conclusions were pointed out; 

 The overall shear and flexural capacity of reinforced concrete beams are affected by the presence of 

interfaces on the beam portion due to the delay of casting concrete, which forms weak joints at the 

interfaces. 

 When the interface location goes from mid span to the support region gives proportional reduction in load 

carrying capacity on shear critical beams, particularly on the diagonal interfaces shear beam specimens. 

 The configuration of the interface also affects the structural capacity of the members, especially on shear 

capacity of the beam. Inclined/diagonal interface configuration gives better resistance capacity as compared 

with that of vertical interface configuration. 

 Flexural beams specimens, which varies only with interface location shows that a slight reduction in load 

carrying capacity of the beam specimens, when the interfaces goes from the mid span to the support region.  

 An inclined or diagonal interface of beam specimen’s results shows that the crack pattern follows the 

direction of the interfaces, whereas the crack patterns didn’t follows the direction of interfaces for the 

vertical interfaces beam specimens. 
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