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Abstract 

Finite Element modelling of floating structure for the sake of stress analysis has never been an easy task due to 

various numbers of factors involved in such structures and the nature of finite element simulations. Typically, if 

using ‘ALE’ (Arbitrary Lagrangian Eulerian) feature available in LS-DYNA3D explicit code, the floating object 

will have to float in a fluid 'half-space' of a size which will best represent the effects of the pseudo-infinite sea. 

The boundaries will need careful consideration, and perhaps employ non-reflecting (energy absorbing) 

representation. In this representation which will be employed in this paper a study of buoyancy is conducted for 

verification purposes for modelling afloat. Discussed in this paper is the mathematical verification of the 

buoyancy of a float, while modelling with LS-DYNA3D features is left to further consideration. 

Keywords: advanced formulation of floating object; ALE features; finite element simulation of float; load 

modelling of floating structure.  

1 Introduction 

One of the main problems in structural analysis of a floating object is the assurance of stability necessary for the 

floating structure to function the purpose it is designed for. Both good knowledge of buoyancy mathematics and 

well-established understanding are discussed and employed to strongly comprehend the action of the structure in 

order to serve design purpose. A small float 2-dimentional cube representing model is assumed and validated, 

the ALE feature employed by explicit analysis codes is discussed. The list angle of stability is measured to 

insure stability. Other feature of floating object stability is righting or restoring moment as a measure for 

stability is also discussed and calculated. Mathcad sheet is created to solve buoyancy equations, a graphical 

presentation and tabular values measuring stability are introduced. Broad discussion of previous work is given 

in References [1,2,3,5] with wide number of related references are also reported. Study of stability of floating 

bodies is a conventional subject in fluid mechanics. 
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2. Validation of Buoyancy  

To confirm the ability of modelling the effects of buoyancy correctly, first; a simple two-dimensional 

representation of a cuboid float is examined using MathCAD calculation, hence preparing for further validation 

using the LS-DYNA3D explicit code ‘ALE’ feature, References [1] through [4]. To choose geometry and 

density of a floating structure, a floating block of different densities and heights is mathematically investigated. 

The dimensions of the float examined are shown in the following Figure (1), the mathematical investigation 

involves change of height, and density, then calculating the angle of list which is the measure of stability.   
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Water

Float

 

Figure 1: Two-dimensional representation of float model 

There are a number of parameters which can be studied in terms of geometry and material properties, but for 

this exercise, only the influence of float density was studied. A number of different cases were chosen to 

illustrate different cases of floating stability and the angles of list expected to be taken up by the float. Firstly, A 

discussion regarding the theory of buoyancy is presented in next heading. 

3. Buoyancy and Stability of Floating Objects  

One of the most important problems involving buoyancy is the determination of the stability of a floating object. 

The analysis may be illustrated by considering a body shown in a cross section in an upright position Figure (2 

a). Point B is the centroid of the displaced volume and is known as the centre of buoyancy. The resultant of the 

forces exerted on the body by the water pressure is the force FB. Force FB passes through B and is equal and 

opposite to body weight W.  
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If the body is caused to list through an angle  , Figure (2 b) the shape of the displaced volume changes and 

the centre of buoyancy will shift to some new position such as B’. The point of intersection of  the vertical line 

through B’ with the centreline of the unlisted body is called the metacentre M and the distance measuring how 

far M from the centre of mass G is known as metacentric height. For most hull shapes the metacentric height 

remains practically constant for angles of list up to about 20
o
. When M is above G, as in Figure (2 b), there is 

clearly a righting moment which tends to bring the body back to its original position. The magnitude of this 

moment for any particular angle of list is a measure of the stability of the body. If M is below G, as for the body 

of Figure (2 c), the moment accompanying any list is in the direction to increase the list. This is clearly a 

condition of instability and strictly avoided in the design of any floating object. This methodology has been 

observed in the models to be presented in the next headings. For a floating object where the weight and 

horizontal forces act so far above the centre of buoyancy, significant ballast must be added to the lowest 

possible location, thus the centre of gravity is moved down to increase stability. The larger the metacentric 

height ‘GM’ the greater is the restoring (righting) moment.  

A floating body is stable if, when it is displaced, it returns to equilibrium.  

A floating body is unstable if, when it is displaced, it moves to a new equilibrium. 

 

Figure 2: Stability of floating bodies 

In the next shown illustration, stability is attained if the metacentric height, MG, is positive (MG = zM - zG > 0). 

If the metacenter, M, lies below the center of gravity, G, then the body is unstable. In other words the 

metacentric height, MG, is negative (MG < 0). 
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Figure 3 

Where metacentric height, MG, is given by: 

GB
V

I
MGorGBMBMG

S

  

Where I is the 2
nd

 moment of area (moment of inertia) of the plane section of the body where it cuts the 

waterline. In other words, if someone were to cut horizontally through the body at the water surface and look at 

the area of the body exposed by the cut, I is the 2
nd

 moment of area of that body about the longest axis. While VS 

is the submerged volume (i.e. volume of fluid displaced) and GB is the distance between the center of gravity 

and the center of buoyancy (GB = zG – zB) found from the geometry.  

To conclude; steps for solving buoyancy problems are:  

(1) From geometry of body and density of fluid and body equate; Weight of displaced fluid = Total weight 

of body. This gives the depth of immersion of the body or the weight (density) of the body, whichever 

is unknown. 

(2) To assess stability, first find the location of the center of gravity G of the body. 

(3) Then, find the location of the center of buoyancy B (centroid of displaced volume). For a regularly 

shaped body (cuboid) this will be at half the height of the immersed portion of the body. 

(4) Calculate the distance GB. 

(5) Calculate MB, using MB = I / VS, (I =  D
4
/64 for a circular section body and bd

3
/12 for a rectangular 

section body, D is diameter, b and d are the sides of the rectangle). 

(6) Calculate metacentric height, (MG = zM – zG), from MG = MB – GB. If MG > 0 then body is stable. If 

MG < 0 then body is unstable while MG = 0 is neutral stability. 

In the proceeding MathCAD templates, Mohamed, [5], the theoretical behaviour of the buoyancy action of the 

above mentioned 2-D model of varying float density is illustrated. The buoyancy stability is achieved at 

different listing angles for the various densities. These sheets are as follows: 
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 6

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 455.271kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.053m
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 7

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 569.729kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.067m
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 8

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 683.333kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.08m
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 9

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 796.938kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.093m
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 10

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 854.17kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.1m
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Geometry of Part Submerged Bouyant Object

kN 1000 NBuoyancy Stability Check - Case No 11

Problem Data

Size of object Breadth B 0.1 m Depth D 0.12 m

Thickness T 0.01 m

Density of object  s 888.1kg m
3



Density of Water w 1025kg m
3



Displaced height of water

h
 s B D T

w B T


h 0.104m
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Geometry of Part Submerged Bouyant Object

h 0.105m
h

 s B D T

w B T


Displaced height of water

w 1025kg m
3

Density of Water

 s 900 kg m
3

Density of object 

T 0.01 mThickness 

D 0.12 mDepth B 0.1 mBreadth Size of object

Problem Data

Buoyancy Stability Check - Case No 12 kN 1000 N
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4 Conclusions 

The preceding calculations address the theoretical mechanics of stability of floating objects in still water. The 

object in question Figure (1) is (0.1x0.12x0.01m) in x, y and z directions and at very low densities it will remain 

with its long axis vertical. At some density (137 kg/m
3
), the float is no longer in stable equilibrium with its long 

axis vertical, and will list in the water at some angle theta ‘ ’, at which it will then be stable. This angle has 

been calculated for increasing densities of the object, and the relationship between stable angle and density is 

plotted below: 

 

Figure 4 

Stability position of floating box 

The graph shows that at extremes of density the angle returns to zero, whereas for intermediate values of 

density, the angle of stability increases to a maximum of 57 degrees when the density of the float is half that of 

the water. 

For the cases of stability of (Table 1) where the density is low compared with that of the water, the block is 

theoretically stable. Its geometry is such that it starts with its longer axis vertical, and statics dictates that it 

should remain so. In reality this configuration is actually highly unstable as it is analogous to a ‘tall’ block 

resting on an extremely flexible foundation. The block would be expected to tilt over and come to ‘rest’ in a 

position with its long axis horizontal, i.e. the centre of gravity ends up in its lowest position to minimise the 

potential energy within the rigid body 
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Note: this particular problem is related purely to geometry of the structure. 

Simple but efficient criteria is given based on statics and Archimedes principle, a graphic representation and 

table and curve linking angle of list, righting moment to density are illustrated as criteria to monitor stability of 

floats. The method discussed “one of many methods widely reported in literature” might be necessary but not 

sufficient for all floating objects specially if hydrodynamic loads were involved, the moving centre of gravity 

for floaters carrying fluids or grained materials will definitely limit the use of this criterion. floating object 

stability is essential to use in the above defined ALE feature used in explicit codes for finite element analysis.   

Table 1 

 

Table 1 Stability positions for buoyant small 2-D box 

Case    h 

 m 

    γ  

 kg/m
3 

Θtheoritical 

degree 

metacentric  

height  mm 

stability condition 

1 0.010 087.980 0.00 26.055 stable 

2 0.013 113.600 0.00 9.3090 stable 

3 0.016 136.900 0.00 0.0080 stable 

4 0.027 228.070 44.9 -15.440 unstable 

5 0.040 341.670 53.7 -19.167 unstable 

6 0.053 455.271 56.5 -17.715 unstable 

7 0.067 569.729 56.5 -14.156 unstable 

8 0.080 683.333 53.7 -9.5830 unstable 

9 0.093 796.938 44.9 -4.4180 unstable 

10 0.100 854.170 32.4 -1.6670 unstable 

11 0.104 888.100 0.00 0.00100 stable 

12 0.105 900.000 0.00 0.59100 stable 
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