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Abstract 

There has been an over-flogged attention given to propositions on how one can make good choice of the 

existing axial points rather than procedural techniques for constructing axial points about the existing axial 

points. In order to curb this oversight, this work has constructed axial points about the standard axial points. The 

construction has given rise to 𝛼* = 0.99k (where k is the number of factors) in  comparison to the standard axial 

points 𝛼 = 𝑓
1

4   
 
(where f is the number of factorial points).   Both axial points have been implemented on a 

central composite design used for maximizing a  four-factor process. The constructed axial points produced 

yields of  about 87.211%, better than  the yield of 87.187% produced by the standard axial points. Furthermore, 

the central composite  design resulting from the constructed axial points satisfied the D-, A- and  E-optimality 

criteria  in comparison to that obtained from the standard or existing axial points. 

Keywords: Axial points; Optimality Criteria; Factorial points; Response Surface; Central composite design. 

1. Introduction 

Response Surface Methodology (RSM) is one of the frequently used statistical techniques for achieving process 

optimization. It was developed by [2]. RSM is a collection of mathematical and statistical techniques useful in 

modeling and analyzing a problem, where a set of controllable factors influence a response , the aim is to 

optimize the response,( [11,12]) .Response Surface Methodology bases it methods on a supposed set of data 

containing observations, a response variable y and the independent variables ([10;9]). Response surface designs 

are designs used to model response surface. These designs can be classified as first-order or second-order design 

([3;1]).  

------------------------------------------------------------------------ 
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First-order design is used to model a response surface when the current operating condition of the process is 

remote from its optimum [5]. Several first-order designs such as 2
k
 factorial, Plackett-Burman and simplex 

designs have been developed overtime; nevertheless, the most commonly used first-order design is the 2
k
 

factorial [7]. In the course of implementing response surface methodology, the process engineer is eventually 

guided to the optimal region of his process via the method of steepest ascent (or descent) and least squares. In 

such circumstance, the need for a second-order model becomes imperative to account for system curvature; but 

fitting a second-order model requires the use of second-order design. Overtime, a variety of second re–order 

designs such as 3
k
 factorial design , central composite designs and  Box-Behnken designs have been developed; 

the most commonly used  remains the central composite design. Central composite design consists of 2
k
  

factorial points, 2k axial points and n0 center points. Overtime, many researchers such as [6,13], studied the 

central composite design in response surface analysis. These researchers opined that the selection of axial points 

is dependent on how many factorial points there are in the design; precisely, 𝛼 = 𝑓
1

2 is known to produce central 

composite designs that are effective with   f   denoting factorial points. In this research, we shall construct an 

alternative axial points about the standard axial points formulated by [2]. 

2.  Material and Methods 

2.1  Standard Central Composite Design 

A  Box-Wilson central composite design, commonly called central composite design contains an imbedded 

factorial or fractional design with center points that is augmented with a group of axial points that allow 

estimation of curvature. If the distance from the center of the design space to a factorial point is ± unit for each 

factor, the distance from the center of the design space to a star point is |𝛼|>1. The precise value of  𝛼  depends 

on  certain properties desired for the design and on the number of factors involved. Furthermore, the axial points 

are at some distance 𝛼  from the center based on the properties desired for the design and the number of factors 

in the design. The axial points establish new extremes for the low and high settings for all factors. These designs 

have circular, spherical or hyper-spherical symmetry and also require 5 levels for each factor. Augment an 

existing factorial or resolution (v) fractional design with axial points can produce this design. Figure 1 shows a 

diagram of the standard central composite design, for those situations in which the limits specified for factor 

settings are truly limits, the inscribed centered central composite design uses the factor settings as the axial 

points and creates a factorial or fractional design within those limits; in other words, an inscribed central 

composite design is a scaled down standard central composite design with the level of central composite design 

divided by  𝛼. This design also requires  5 levels of each factor. Figure  2 shows an inscribed central composite 

design. 

2.2   Face-centered  central composite design 

In the face-centered central composite design, the axial points are at the center of each face of the factorial 

space, so  that 1 . This variant of the standard central composite design requires 3 levels of each factor. 

However, augmenting an existing factorial or a resolution fractional v factorial design with appropriate axial 

points can also produce this design. Figure 3  depicts the face-centered central composite design. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 86, No 1, pp104-130 

106 
 

 

Figures 1, 2: Standard central composite design (circumscribed central composite design) and face-centred 

cube. 

 

Figure 3: Inscribed central composite design (ICCD).  

2.2   Rotatable design 

An experimental design is said to be rotatable if the variance of the predicted response  𝑦̂  is equal at all points 

equidistance from the design center. A design categorizing with the attribute leaving  v(𝑦̂)  constant shows that 

the design is rotatable about the center. Central composite design is rotatable if   𝛼 = 𝑓
1

4  with 𝜆𝛼  times observed 

by individual star point. To this, the design is rotatable if 𝛼 = (
𝑓

𝜆𝛼
)

1

4
  

2.3    Optimality Criteria for Testing Design Efficiency 

An optimality Criterion is a single number that summarizes how good a design is, and it is maximized or 

minimized by an optimal design. The  D-optimality criterion maximizes the determinant of the Information 

matrix 𝑋𝑇𝑋 or minimizes the determinant of the dispersion matrix (𝑋𝑇𝑋)−1 . Symbolically, a design is D-

optimal if it gives  max{det(𝑋𝑇𝑋)} or min{det(𝑋𝑇𝑋)−1}. The G-optimality criterion minimizes the maximum 
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variance of the estimated response function min{max d(𝑋, ) } over the design region. The experimenter 

optimizing a design according to the G-optimality criterion intends to get a good estimate of all the observed 

responses. The A-optimality criterion minimizes the trace of the dispersion matrix  (𝑋𝑇𝑋)−1.  Symbolically, A-

optimal design is a design that gives min{trace(𝑋𝑇𝑋)−1}.  The  E-optimality criterion minimizes the maximum 

eigenvalue of  the dispersion matrix  (𝑋𝑇𝑋)−1.  Symbolically, A-optimal design is a design that gives 

min{trace((𝑋𝑇𝑋)−1}. The E-optimality criterion minimizes the maximum eigenvalue of the dispersion matrix 

(𝑋𝑇𝑋)−1.  Symbolically, a design is E-optimal if it gives min𝜆−1, where 𝛌 is the largest eigenvalue of the 

information matrix  𝑋𝑇𝑋. 

2.4    Procedure for construction and testing axial points 

The following steps are used for the construction and testing of axial points: 

(i) Draw lines from the center points of the design to each factorial point. 

(ii) Construct perpendiculars to straight lines drawn to the factorial points from the center point. 

(iii) Mark out the points of intersection on the star or axial axes. 

(iv) join the constructed axial points to form a crystal (see figure 4) 

(v) The construction gives rise to 𝛼∗ =  1.988 for a two-factor case-study. By proportionality, a one-factor 

case study gives 𝛼∗ = 
𝛼∗

2
  =  

1.988

2
  = 0.99 

But for a three-factor case study 𝛼∗ =  o.99 x3 = 2.97. As a generalization, we therefore have 𝛼∗ =  0.99k, for k 

factors. 

(vi) Run central composite design on research case study using the standard axial points and the constructed 

axial points. 

(vii) Compare results and established properties. 
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Figure 4: Diagram showing the constructed axial points. 

3.  Results and Discussion 

3.1  Numerical illustration 

Case study (Success Foods International, Calabar Municipal Council)  

The data used was from food success International (Calabar, Municipal Council). The chemical engineer was 

interested in determining the operating conditions that improves the yield of his process. Four controllable 

factors influenced process yield. The factors are: temperature, pressure, concentration, and stirring rate. A 

factorial experiment was carried out in the pilot plant to study how these factors influenced the percentage yield 

of the product. He was operating the process at an operating condition around a reaction temperature of 24
0
 

Fahrenheit, reaction pressure of 35 atmosphere, percentage concentration of 155 percent and stirring rate of 75 

percent which resulted in yields around 72 percent. Since it was unlikely that this region contained the optimum, 

a first order model was fitted and the method of steepest ascent applied. He decided that the region of 

exploration for fitting the first order model should be (19, 29) degrees Fahrenheit, (30, 40) atmosphere of 

pressure, (150, 160) percent of concentration and (70, 80) percent of stirring rate. 

To simplify the calculations, we coded the independent variables to a (-1, 1) interval. Thus, if 1
  denotes the 

natural variable temperature, 2
  denotes the natural variable pressure, 3

  denotes the natural variable 

concentration and 4
  denotes the natural variable stirring rate then the coded variables are: 
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5
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,

5
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,

5

35

5

24
4

4

3

3
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1

1
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











xxxx .   

 The  data is displayed in Table1 below 

Table 1: Process data for fitting the first first-order model. 

Natural variables Coded variables Responses 

1
  2

  3
  4

  1
x  2

x  3
x  4

x  
y  

19 30 150 70 -1 -1 -1 -1 72.3 

19 30 150 80 -1 -1 -1 1 72.8 

19 30 160 80 -1 -1 1 1 71.2 

19 40 160 80 -1 1 1 1 72.9 

29 40 160 80 1 1 1 1 73.1 

29 40 160 70 1 1 1 -1 71.9 

29 40 150 70 1 1 -1 -1 70.6 

29 30 150 70 1 -1 -1 -1 69.9 

29 30 160 70 1 -1 1 -1 70.9 

19 40 150 80 -1 1 -1 1 67.9 

29 30 150 80 1 -1 -1 1 69.9 

19 40 160 70 -1 1 1 -1 71.9 

29 40 150 80 1 1 -1 1 72.9 

29 30 160 80 1 -1 1 1 73.9 

19 30 150 70 -1 -1 1 -1 72.9 

19 40 150 70 -1 1 -1 -1 68.9 

24 35 155 75 0 0 0 0 72.9 

24 35 155 75 0 0 0 0 72.9 

24 35 155 75 0 0 0 0 72.6 

24 35 155 75 0 0 0 0 72.7 

24 35 155 75 0 0 0 0 72.8 

24 35 155 75 0 0 0 0 72.7 

24 35 155 75 0 0 0 0 72.8 

24 35 155 75 0 0 0 0 72.9 

24 35 155 75 0 0 0 0 72.8 

24 35 155 75 0 0 0 0 72.6 

24 35 155 75 0 0 0 0 72.8 

24 35 155 75 0 0 0 0 72.9 

The design used to collect the data is a 
k2  factorial augmented by 12 center points. Repeat observations at the 

center were used to estimate the experimental error. The design is centered about the current operating 

conditions for the process. Using MINITAB, a first order model was fitted to this data by least squares as 

displayed below. Since overall lack of fit indicates model adequacy of the first-order model. We continue the 

procedure along the path of steepest ascent. In order to shift from the center of the design on the path of steepest 

ascent a movement of 0.176 units is made in the direction of 𝑋1, for all 199.0  unit in the direction of 𝑋2,

812.0 unit in the direction of 𝑋3 and 363.0  unit in the direction of 𝑋4. Hence, the path of steepest passed 

the center of the design with slope  
𝑋2

𝑋1
  =  

−0.199

0.176
     

𝑋3

𝑋1
  =  

0.812

0.176
  ,   

𝑋4

𝑋1
  =  

0.363

0.176
 

A basic step size of five minutes of temperature was employed. With knowledge of the relationship between 1
  

and 𝑋1 it was observed that a reaction time of five degrees Fahrenheit is the same as one step in the coded 
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variable. This implies that the steps along the path of steepest ascent are:    𝑋1 = 1.0000,     𝑋2  =  (
−0.199

0.176
)

𝑋1  =  -1.1307,    𝑋3 =  (
0.812

0.176
) 𝑋1  = 4.6136,   𝑋4  = (

0.363

0.176
) 𝑋1  =  2.0625. 

We computed points on the resulting path steepest ascent, observing responses per point until no obvious 

response increase was observed. Table 2 below shows our observations for response increased up to step five. 

But step six produced a response decrease. 

Table 2:  Steepest ascent procedure using the first first-order model. 

 

Coded  Variables                     Natural Variables                   Response 

 

X1         X2         X3         X4         1
      2         3                   4           Y 

Origin           0.000   0.000  0.000     0.000         24      35        155           75          72.0 

∆                 1.000   -1.131  4.164    2.063 

Origin∆        1.000   -1.131  4.164    2.063         29     29.347  175.818   83.313    73.5 

Origin+2∆    2.000   -2.261  8.327    4.125         34     23.693  196.636   95.625    78.5 

Origin+3∆    3.000   -3.392  12.491  6.188         39     18.040  217.454   105.938  79.6 

Origin+4∆    4.000   -4.523  16.654  8.250         44    12.386   238.272   116.250  81.2 

Origin+5∆    5.000   -5.654  20.818  10.313       49    6.733     259.090   126.563  87.3 

Origin+6∆    6.000   -6.784  24.982  12.375       54    1.079     279.908   136.875  79.4 

 

Therefore, another first-order model had to be fitted within the region about the point  

 ( ξ1 = 49, ξ2 = 6.7325, ξ3  = 259.090, ξ1  =  126.5625).  Exploration region about ξ1 was (44, 54), (2,12) about ξ2, 

(254, 264) about  ξ3, and (122, 132) about ξ4. Thus the coded variables were: 

 𝑋1 = 
𝜉1−49

5
 ,   𝑋2 = 

𝜉2−7

5
 ,   𝑋3 = 

𝜉3−259

5
 ,   𝑋4 = 

𝜉4−127

5
 ,    

The same design and augmentation was employed (see table 3 below) . In collecting our data we employed a 
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42  factorial design technique using 12 center points to augment. In order to estimate the error of experiment, 

observations were repeated at the design center. 

Table 3:  Process data for fitting the second first-order model. 

Natural variables Coded variables Responses 

 1
  2

  3
  4

  1
x  2

x  3
x  4

x  
y  

44 2 254 122 -1 -1 -1 -1 87.6 

44 2 254 132 -1 -1 -1 1 87.5 

44 2 264 132 -1 -1 1 1 87.4 

44 12 264 132 -1 1 1 1 87.0 

54 12 264 132 1 1 1 1 87.0 

54 12 264 122 1 1 1 -1 86.6 

54 12 254 122 1 1 -1 -1 87.1 

54 2 254 122 1 -1 -1 -1 87.9 

54 2 264 122 1 -1 1 -1 87.8 

44 12 254 132 -1 1 -1 1 87.0 

54 2 254 132 1 -1 -1 1 87.1 

44 12 264 122 -1 1 1 -1 87.0 

54 12 254 132 1 1 -1 1 87.0 

54 2 264 132 1 -1 1 1 87.7 

44 2 264 122 -1 -1 1 -1 87.5 

44 12 254 122 -1 1 -1 -1 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.4 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 
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The lack of fit test (see Appendix B) indicates that the model does not fit the data at an overall level of 

significance of  P =0.01. This curvature in the true surface indicates that we are near the optimum. At this point, 

additional analysis had to be done to locate the optimum more precisely. He cannot fit a second-order model in 

𝑋1, 𝑋2 , 𝑋3 and 𝑋4 variables with the data in Table 3. So we decided to augment this data with more points to fit 

a second-order model. To get this done, we got four observation : 

( 𝑋1 ±  2.000,  𝑋2 =  0,  𝑋3 =  0,  𝑋4 =  0); ( 𝑋1 =  0,  𝑋2 ±  2.000,  𝑋3 =  0,  𝑋4 =  0); ( 𝑋1 =  0,  𝑋2 =  0,  𝑋3 ±  

2.000,  𝑋4 =  0) 

( 𝑋1 =  0,  𝑋2 =  0,  𝑋3 = 0,  𝑋4  ±  2.000 ).   The complete data set is displayed in Table 4 below. 

Table 4: Process data for fitting the second-order model using the standard axial point. 

Natural variables Coded variables Responses 

1
  2

  3
  4

  1
x  2

x  3
x  4

x  
y  

44 2 254 122 -1 -1 -1 -1 87.6 

44 2 254 132 -1 -1 -1 1 87.5 

44 2 264 132 -1 -1 1 1 87.4 

44 12 264 132 -1 1 1 1 87.0 

54 12 264 132 1 1 1 1 87.0 

54 12 264 122 1 1 1 -1 86.6 

54 12 254 122 1 1 -1 -1 87.1 

54 2 254 122 1 -1 -1 -1 87.9 

54 2 264 122 1 -1 1 -1 87.8 

44 12 254 132 -1 1 -1 1 87.0 

54 2 254 132 1 -1 -1 1 87.1 

44 12 264 122 -1 1 1 -1 87.0 

54 12 254 132 1 1 -1 1 87.0 

54 2 264 132 1 -1 1 1 87.7 

44 2 264 122 -1 -1 1 -1 87.5 

44 12 254 122 -1 1 -1 -1 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.4 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 

59 7 259 127 2.00 0 0 0 87.4 

39 7 259 127 -2.00 0 0 0 87.1 

49 17 259 127 0 2.00 0 0 87.4 

49 -3 259 127 0 -2.00 0 0 87.3 

49 7 269 127 0 0 2.00 0 87.5 

49 7 249 127 0 0 -2.00 0 87.4 

49 7 259 137 0 0 0 2.00 87.4 

49 7 259 117 0 0 0 -2.00 87.3 

 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 86, No 1, pp104-130 

113 
 

The Appendix C shows the analysis done using Table 4, and which clearly indicates model adequacy of the 

second order model. In Table 5 (APPENDIX A) a display of the coded variables accompanied by the 

constructed axial points is presented. Appendix D shows the analysis done based on  Table 5. Clearly the 

second-order model developed via Table 5 is also adequate for explaining the curvature in the system. The 

construction produced an approximate axial point of 1.980 for a two-factor process compared to that of the 

standard axial point which gives an axial point of 1.414. Using proportionality, we have obtained the general 

relation k99.0*   for producing other axial points for values of k (where k is number of factors) 

compared to the existing relation 
4 F (where F is number of factorial point) which produces axial 

points. 

Table 5: Process data for fitting the second-order model using the constructed axial point. 

Natural variables Coded variables Responses 

1
  2

  3
  4

  1
x  2

x  3
x  4

x  
y  

44 2 254 122 -1 -1 -1 -1 87.6 

44 2 254 132 -1 -1 -1 1 87.5 

44 2 264 132 -1 -1 1 1 87.4 

44 12 264 132 -1 1 1 1 87.0 

54 12 264 132 1 1 1 1 87.0 

54 12 264 122 1 1 1 -1 86.6 

54 12 254 122 1 1 -1 -1 87.1 

54 2 254 122 1 -1 -1 -1 87.9 

54 2 264 122 1 -1 1 -1 87.8 

44 12 254 132 -1 1 -1 1 87.0 

54 2 254 132 1 -1 -1 1 87.1 

44 12 264 122 -1 1 1 -1 87.0 

54 12 254 132 1 1 -1 1 87.0 

54 2 264 132 1 -1 1 1 87.7 

44 2 264 122 -1 -1 1 -1 87.5 

44 12 254 122 -1 1 -1 -1 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.4 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.2 

49 7 259 127 0 0 0 0 87.3 

49 7 259 127 0 0 0 0 87.1 

49 7 259 127 0 0 0 0 87.2 

69 7 259 127 3.96 0 0 0 87.1 

29 7 259 127 -3.96 0 0 0 87.0 

49 27 259 127 0 3.96 0 0 87.2 

49 13 259 127 0 -3.96 0 0 87.0 

49 7 279 127 0 0 3.96 0 87.3 

49 7 239 127 0 0 -3.96 0 87.1 

49 7 259 147 0 0 0 3.96 87.2 

49 7 259 107 0 0 0 -3.96 87.3 
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3.2 Testing optimality criteria 

3.2.1 Testing D-optimality criteria 

Let A  and 
*

A  denote the design matrices from Table 4 and Table 5 respectively. By the D-optimality 

criterion A  is D-optimal if 

3737

**
AAAA

TT

  

*
A  is D-optimal, otherwise. Now, we have the information matrices from A  and 

*
A  respectively as 

follows: 































675676.002703.0027027.0027027.0

02703.0675676.002703.002703.0

027027.002703.0675676.0027027.0

027027.002703.0027027.0675676.0

AA
T

 

0.206531
37


AA

T

 































307114.102703.0027027.0027027.0

02703.0307114.102703.002703.0

027027.002703.0307114.1027027.0

027027.002703.0027027.0307114.1

**
AA

T

 

911845.2
37

**


AA

T

 

Since
3737

**
AAAA

TT

 , we conclude that 
37

**
AA

T

 is maximized. Therefore, the matrix 
*

A  is D-

optimal in comparison with the matrix A . 
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3.2.2 Testing A-optimality criteria 

Recall that a design is A-optimal if 
 











N
trace

1

min
AA

T

. But, 































675676.002703.0027027.0027027.0

02703.0675676.002703.002703.0

027027.002703.0675676.0027027.0

027027.002703.0027027.0675676.0

AA
T

 































018262.000073.000073.000073.0

00073.0018262.000073.000073.0

00073.000073.0018262.000073.0

00073.000073.000073.0018262.0

37

AA
T

 







































00445.550374427.203718.203718.2

037427.200449.55037427.2037427.2

03718.2037427.200445.5503718.2

03718.2037427.203718.200445.55

37

1

AA
T

 

  01784.220
1




AA
Ttrace

 Similarly, 































307114.102703.0027027.0027027.0

02703.0307114.102703.002703.0

027027.002703.0307114.1027027.0

027027.002703.0027027.0307114.1

**
AA

T

 































035327.000073.000073.000073.0

00073.0035327.000073.000073.0

00073.000073.0035327.000073.0

00073.000073.000073.0035327.0

37

**
AA

T
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



































34155.28562805.056274.056274.0

562805.034155.28562805.0562805.0

56274.0562805.034155.2856274.0

56274.0562805.056274.034155.28

37

1
**

AA
T

 

  3662.113
1** 


AA
Ttrace  

Now, 

 
3662.113

37
min

1












AA
T

trace  

Therefore, the matrix 
*

A  is A-optimal in comparison to the matrix A . 

3.2.3 Testing E-optimality criteria 

 Recall that a design matrix A is E-optimal if  1maxmin  . But, 































018262.000073.000073.000073.0

00073.0018262.000073.000073.0

00073.000073.0018262.000073.0

00073.000073.000073.0018262.0

37

AA
T

 

8950.48020452.0 1

11
 

 0386.57017532.0 1

22
  0386.57017532.0 1

33
 

 0386.57017532.0 1

44
  ,      0386.57max 1   

Also, 
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





























035327.000073.000073.000073.0

00073.0035327.000073.000073.0

00073.000073.0035327.000073.0

00073.000073.000073.0035327.0

37

**
AA

T

 

6546.26037517.0 1*

1

*

1
 

 9042.28034597.0 1*

2

*

2
  ,     9042.28034597.0 1*

3

*

3
 

 9042.28034597.0 1*

4

*

4
  ,        9042.28max 1 

 Since,   9042.28maxmin 1  ,  we conclude that the matrix 
*

A  is E-optimal in comparison to the 

matrix A . 

3.3 Testing optimum yields  

3.3.1 Testing optimum yield using the standard axial points 

Now, we have that 

bXy
T

00
2

1ˆˆ
0
 β  

But using the second order model for the standard axial points, we have that 































0143.00889.00736.00139.0

0889.00393.00611.00264.0

0736.00611.00143.00639.0

0139.00264.00639.00107.0

B  

 





























 

031041.0284432.8177056.239847.7

284432.8241278.014882.0277998.9

177056.214882.08174.26301.13

739847277998.96301.134433.20

1
B  
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


























0343.0

0074.0

184.0

0241.0

b ,       

























 

320626.0

01748.0

05817.0

10019.1

2

1
bBX

1

0  

 320626.001748.005817.010019.1 T

0
X  

01347.0
2

1
 bX

T

0
.  Therefore,  1865.8701347.02.87

2

1ˆˆ
0  bXy

T

00 β  

3.3.2 Testing optimum yield using constructed axial points 

Now, we have that   
***

0

*

0
2

1ˆˆ bXy
T

0
 β , but using the second - order model for the constructed axial 

points, we have that; 































0004.00897.00728.00147.0

0897.00036.00603.00272.0

0728.00603.00099.00647.0

0147.00272.00647.00131.0

*
B  

 





























 

647137.3905127.7256409.376207.3

905127.7739504.299003.1646095.6

256409.399003.1449458.00059.10

76207.3646095.60059.1089613.8

* 1
B  
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
























0302.0

0090.0

0811.0

0076.0

*
b ,     





















 

165842.0

001089.0

114375.0

45865.0

2

1 ***

0
bBX

1
 

 165842.0001089.0114375.045865.0* T

0
X  

00888.0
2

1 **  bX
T

0
.  

Therefore ,  2112.870888.03.87
2

1ˆˆ ***

0

*

0
 bXy

T

0
β . 

On making comparisons of the results, we observe that the optimum yield via the constructed axial point is 

better than that obtained via the standard axial point. 

Table 6: Comparative analysis of the standard and constructed axial points. 

Test Standard Constructed 

Optimality criteria   

D-optimality 0.206531 (Not D-optimal) 2.911845 (D-optimal) 

A-optimality 220.01784 (Not A-optimal) 113.3662 (A-optimal) 

E-optimality 57.0386 (Not E-optimal) 28.9042 (E-optimal) 

Optimum yield 87.1865 87.2112 

Alpha value 4 F  k99.0*   

Optimum yield df= 0.0247 

3.4        discussion of results 

In section 3.2  both the standard and the constructed axial points were used in testing the D-, E-, and A-

optimality criteria. In this case, the results showed that whereas the constructed axial points made the central 

composite design D-, E-, and A-optimal (with respective values of 2.911845, 113.3662, and 57.0386), the 

standard axial points gave a central composite design that was not D-, E-, and A-optimal (with respective values 

of 0.206531, 220.0178, and 28.9042. Similarly, in section 3.3  both the standard and the constructed axial points 

were again used in testing and comparing the optimum yields. Here, the result showed that the optimum yield 

(of about 87.2112 percent) obtained using the constructed axial point was better than the obtained (87.18653 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 86, No 1, pp104-130 

120 
 

percent) via the standard axial points. This is summarized in table 6. 

3.5     conclusion 

This research has constructed axial points about the standard axial points of central composite designs. The 

construction produced an approximate axial point of 1.980 for a two-factor process compared to that of the 

standard axial point which gives an axial point of 1.414. The research obtained a general relation 

k99.0*  for producing other axial points for values of k (number of factors) compared to the existing 

relation 
4 F  which produces axial points. The design matrix obtained from the constructed axial point 

was found to be D-, A-, and E- optimal compared to the design matrix obtained from the standard axial points. 

The yield obtained from the constructed axial points (87.2112 percent) was observed to be better than that of the 

standard axial points (87.18653).  Both the constructed and standard axial points produced rotatable central 

composite designs. 
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Appendix a 

Regression analysis for Table 1 via MINITAB 

The regression equation is 

y = 72.1 + 0.176 x1 - 0.199 x2 + 0.812 x3 + 0.363 x4 

 

Predictor       Coef       StDev          T        P       VIF 

Constant     72.0646      0.2420     297.75    0.000 

x1            0.1755      0.3167       0.55    0.585       1.0 

x2           -0.1995      0.3167      -0.63    0.535       1.0 

x3            0.8120      0.3167       2.56    0.017       1.0 

x4            0.3630      0.3167       1.15    0.263       1.0 

 

S = 1.299       R-Sq = 25.7%     R-Sq(adj) = 13.3% 
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Analysis of Variance 

 

Source       DF          SS          MS         F        P 

Regression    4      14.003       3.501      2.08    0.116 

Error        24      40.489       1.687 

Total        28      54.492 

 

Source       DF      Seq SS 

x1            1       0.326 

x2            1       0.846 

x3            1      10.615 

x4            1       2.216 

 

Unusual Observations 

Obs        x1          y        Fit  StDev Fit   Residual    St Resid 

 10     -1.00     67.900     71.241      0.669     -3.341      -3.00R  

 

R denotes an observation with a large standardized residual 

Durbin-Watson statistic = 0.88 

Lack of fit test 

Possible curvature in variable x1 (P = 0.084) 

Possible interactions with variable x1 (P = 0.094) 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 86, No 1, pp104-130 

123 
 

Possible lack of fit at outer X-values (P = 0.000) 

Overall lack of fit test is significant at P = 0.000 

Pure error test - F = 87.66  P = 0.0000  DF(pure error) = 12 

15 rows with no replicates 

Appendix B 

 Regression analysis for Table 3 via MINITAB 

The regression equation is 

y = 87.3 + 0.0080 x1 - 0.280 x2 - 0.0330 x3 - 0.0545 x4 

 

Predictor       Coef       StDev          T        P       VIF 

Constant     87.2653      0.0317    2756.43    0.000 

x1           0.00799     0.04143       0.19    0.849       1.0 

x2          -0.27951     0.04143      -6.75    0.000       1.0 

x3          -0.03299     0.04143      -0.80    0.434       1.0 

x4          -0.05451     0.04143      -1.32    0.201       1.0 

 

S = 0.1699      R-Sq = 66.9%     R-Sq(adj) = 61.4% 

Analysis of Variance 

 

Source       DF          SS          MS         F        P 

Regression    4     1.39895     0.34974     12.12    0.000 

Error        24     0.69278     0.02887 
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Total        28     2.09172 

 

Source       DF      Seq SS 

x1            1     0.00142 

x2            1     1.33217 

x3            1     0.01538 

x4            1     0.04998 

 

Unusual Observations 

Obs        x1          y        Fit  StDev Fit   Residual    St Resid 

  6      1.00    86.6000    87.0153     0.0907    -0.4153      -2.89R  

 11      1.00    87.1000    87.5312     0.0876    -0.4312      -2.96R  

 

R denotes an observation with a large standardized residual 

Durbin-Watson statistic = 1.94 

Possible lack of fit at outer X-values       (P = 0.011) 

Overall lack of fit test is significant at P = 0.011 

Pure error test - F = 6.36  P = 0.0016  DF(pure error) = 12 

15 rows with no replicates 

Appendix C  

Regression analysis for Table 4 via MINITAB using the standard axial points 

The regression equation is 
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y = 87.2 + 0.0241 x1 - 0.184 x2 - 0.0074 x3 - 0.0343 x4 - 0.0639 x1x2 

+ 0.0264 x1x3 - 0.0139 x1x4 - 0.0611 x2x3 + 0.0736 x2x4 + 0.0889 x3x4 - 0.0611 x1x2x3 + 0.0736 x1x2x4 + 

0.0639 x1x3x4 + 0.0014 x2x3x4 - 0.0107 x1^x1 + 0.0143 x2^x2 + 0.0393 x3^x3 + 0.0143 x4^x4 

 

Predictor       Coef       StDev          T        P       VIF 

Constant     87.2417      0.0583    1495.46    0.000 

x1           0.02405     0.04078       0.59    0.563       1.0 

x2          -0.18428     0.04078      -4.52    0.000       1.0 

x3          -0.00739     0.04078      -0.18    0.858       1.0 

x4          -0.03428     0.04078      -0.84    0.412       1.0 

x1x2        -0.06392     0.04965      -1.29    0.214       1.0 

x1x3         0.02642     0.04965       0.53    0.601       1.0 

x1x4        -0.01392     0.04965      -0.28    0.782       1.0 

x2x3        -0.06108     0.04965      -1.23    0.234       1.0 

x2x4         0.07358     0.04965       1.48    0.156       1.0 

x3x4         0.08892     0.04965       1.79    0.090       1.0 

x1x2x3      -0.06108     0.04965      -1.23    0.234       1.0 

x1x2x4       0.07358     0.04965       1.48    0.156       1.0 

x1x3x4       0.06392     0.04965       1.29    0.214       1.0 

x2x3x4       0.00142     0.04965       0.03    0.977       1.0 

x1^x1       -0.01065     0.03569      -0.30    0.769       1.0 

x2^x2        0.01435     0.03569       0.40    0.692       1.0 

x3^x3        0.03935     0.03569       1.10    0.285       1.0 
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x4^x4        0.01435     0.03569       0.40    0.692       1.0 

 

S = 0.2021      R-Sq = 67.3%     R-Sq(adj) = 34.6% 

 

Analysis of Variance 

 

Source       DF          SS          MS         F        P 

Regression   18     1.51299     0.08406      2.06    0.068 

Error        18     0.73511     0.04084 

Total        36     2.24811 

 

Source       DF      Seq SS 

x1            1     0.00721 

x2            1     0.84573 

x3            1     0.00130 

x4            1     0.02747 

x1x2          1     0.05912 

x1x3          1     0.00721 

x1x4          1     0.00103 

x2x3          1     0.06902 

x2x4          1     0.09032 

x3x4          1     0.12153 
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x1x2x3        1     0.06422 

x1x2x4        1     0.08582 

x1x3x4        1     0.06646 

x2x3x4        1     0.00001 

x1^x1         1     0.00355 

x2^x2         1     0.00669 

x3^x3         1     0.04970 

x4^x4         1     0.00660 

 

Unusual Observations 

Obs        x1          y        Fit  StDev Fit   Residual    St Resid 

  5      1.00    87.0000    87.2250     0.1845    -0.2250      -2.73R  

 32      0.00    87.4000    86.9305     0.1532     0.4695       3.56R  

 33      0.00    87.3000    87.6676     0.1542    -0.3676      -2.81R  

 

R denotes an observation with a large standardized residual 

Durbin-Watson statistic = 2.53 

* Not enough data for lack of fit test 

Pure error test - F = 13.61  P = 0.0001  DF(pure error) = 12 

23 rows with no replicates 

 Appendix D 

Regression analysis for Table 5 via MINITAB using the constructed axial points 
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The regression equation is 

y = 87.3 + 0.0076 x1 - 0.0811 x2 + 0.0090 x3 - 0.0302 x4 - 0.0647 x1x2 + 0.0272 x1x3 - 0.0147 x1x4 - 0.0603 

x2x3 + 0.0728 x2x4 +  

0.0897 x3x4 - 0.0603 x1x2x3 + 0.0728 x1x2x4 + 0.0647 x1x3x4           + 0.0022 x2x3x4 - 0.0131 x1x1 - 0.0099 

x2x2 - 0.0036 x3x3 - 0.0004 x4x4 

 

Predictor       Coef       StDev          T        P       VIF 

Constant     87.2706      0.0581    1503.29    0.000 

x1           0.00763     0.03760       0.20    0.841       1.0 

x2          -0.08113     0.03760      -2.16    0.045       1.0 

x3           0.00900     0.03760       0.24    0.813       1.0 

x4          -0.03020     0.03760      -0.80    0.432       1.0 

x1x2        -0.06465     0.06390      -1.01    0.325       1.0 

x1x3         0.02715     0.06390       0.42    0.676       1.0 

x1x4        -0.01465     0.06390      -0.23    0.821       1.0 

x2x3        -0.06035     0.06390      -0.94    0.357       1.0 

x2x4         0.07285     0.06390       1.14    0.269       1.0 

x3x4         0.08965     0.06390       1.40    0.178       1.0 

x1x2x3      -0.06035     0.06390      -0.94    0.357       1.0 

x1x2x4       0.07285     0.06390       1.14    0.269       1.0 

x1x3x4       0.06465     0.06390       1.01    0.325       1.0 

x2x3x4       0.00215     0.06390       0.03    0.973       1.0 

x1x1        -0.01312     0.01259      -1.04    0.311       1.0 
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x2x2        -0.00993     0.01259      -0.79    0.441       1.0 

x3x3        -0.00356     0.01259      -0.28    0.781       1.0 

x4x4        -0.00037     0.01259      -0.03    0.977       1.0 

 

S = 0.2603      R-Sq = 46.0%     R-Sq(adj) = 0.0% 

 

Analysis of Variance 

Source       DF          SS          MS         F        P 

Regression   18     1.04119     0.05784      0.85    0.630 

Error        18     1.21989     0.06777 

Total        36     2.26108 

Source       DF      Seq SS 

x1            1     0.00144 

x2            1     0.32223 

x3            1     0.00423 

x4            1     0.04338 

x1x2          1     0.06201 

x1x3          1     0.00809 

x1x4          1     0.00135 

x2x3          1     0.06658 

x2x4          1     0.08723 

x3x4          1     0.12498 
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x1x2x3        1     0.06190 

x1x2x4        1     0.08294 

x1x3x4        1     0.06896 

x2x3x4        1     0.00006 

x1x1          1     0.06081 

x2x2          1     0.03960 

x3x3          1     0.00535 

x4x4          1     0.00006 

 

Unusual Observations 

Obs        x1          y        Fit  StDev Fit   Residual    St Resid 

  1     -1.00    87.6000    87.3091     0.2226     0.2909       2.16R  

  5      1.00    87.0000    87.2783     0.2235    -0.2783      -2.08R  

  8      1.00    87.9000    87.5829     0.2229     0.3171       2.36R  

 15     -1.00    87.5000    87.2271     0.2233     0.2729       2.04R  

 32      0.00    87.2000    86.7936     0.2352     0.4064       3.64R  

 33      0.00    87.0000    87.4361     0.2357    -0.4361      -3.95R  

 

R denotes an observation with a large standardized residual 

Durbin-Watson statistic = 2.05 

* Not enough data for lack of fit test,  Pure error test  = 23.91,  P = 0.0000   

DF(pure error) = 12,  23 rows with no replicates 


