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Abstract 

Since the purpose of many studies is to describe and summarize the relations between two or more variables, the 

correlation analysis has been become one of the most fundamental statistical concepts for many researchers. 

There are different correlation coefficients have been developed and proposed for different cases. In this stage, it 

is extremely important to aware of which correlation coefficient(s) is more appropriate to use based on the 

measurement levels, type of the variables, distribution of the variables, type of relations between the variables, 

and presence of outliers or not in dataset. In this study, nine different correlation coefficients have been 

compared in terms of Type I error rate and test power under different experimental conditions. As a result, it has 

been possible to produce information about which correlation coefficient is more appropriate to use in which 

situations. Results of this simulation study showed that the performances of these correlation coefficients are 

affected by sample size and effect size rather than the distribution shape. When both the type I error and test 

power estimates are evaluated together, the Pearson's correlation, Winsorized, Spearman Rank, and Kendall-Tau 

correlation coefficients are seem to be the most appropriate coefficients for many experimental conditions. 

Keyword: correlation coefficient; type I error; test power; simulation; robust methods. 

1. Introduction 

Since many studies carried out in practice were conducted to investigate the relationships between variables, the 

correlation has become one of the most basic terms. As a result, correlation analysis has become one of the most 

widely used statistical techniques in all branches of science [1, 2, 3, 4]. Although many different correlation 

coefficients have been proposed in literature (i.e. Pearson, Spearman, Kendall Tau, Winsorized, Permutation-

based, Distance, Sheapard, Percentage-bend, Blomquvist, etc.) the Pearson Product-Moment correlation is the 

most commonly used by scientists and researchers, despite its lack of robustness [4, 5, 6].  
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However, it should also be kept in mind that the Pearson correlation coefficient can only capture the linear 

relationship between normally distributed variables. Pearson correlation also requires some other assumptions 

namely no outliers in data set, and a homoscedasticity between the variables of interest. Therefore, the reliability 

of this correlation is dependent on whether or not these assumptions are met as well as an adequate sample size 

(n ≥ 10) [4, 7, 8, 9].  However, in practice, situations in which at least one of these assumptions is not fulfilled 

are quite common that limits the use of the Pearson correlation. One of the other conditions that limits the use of 

Pearson correlation coefficient is differences in the way of collecting data based on the aim of the study. Since 

there are so many correlation coefficients have been proposed and many of them are still not included in the 

basic statistical text books and statistical package programs, answering of the question of which coefficient is 

the most appropriate for the dataset studied is extremely important. It is because that way it will be possible to 

reveal the relationships that actually exist between variables in correct way.  

This study was mainly conducted for two purposes. The first aim of this study is to introduce the nine 

correlation coefficients that are most likely to be used in practice, to indicate the differences between them, and 

to explain which correlation coefficient is more appropriate to use in which situations. The second purpose is to 

compare the performances of the correlation coefficients which can be used for the same purpose based on 

Monte Carlo Simulation Study. 

2. Material and Methods 

The materials of this study have been consisted of simulated data from bivariate normal and bivariate lognormal 

distributions under different variance-covariance structures and sample sizes.  

2.1. Simulation study  

In this study, the Pearson, Spearman's Rank, Kendall’s Tau, Percentage Bend, Winsorized, Distance, Biweight 

Midcorrelation, Blomqvist’s, and Hoeffding’s D correlation coefficients have been compared with respect to 

type I error rate (α) and test power (1-β). For this aim, bivariate normal and bivariate lognormal variables have 

been generated for different sample size combinations (n=10, 30, 100, and 500) and true population correlations 

or effect sizes (ρ=0.0, 0.30, 0.60, and 0.90). All computations were performed by using R software [10]; R 

Studio [11]. 

2.2. Correlation coefficients 

Although many different correlation coefficients have been developed and proposed, it has only been focused on 

commonly used correlations or will promising correlations in the future.  

2.2.1. Pearson correlation coefficient 

Pearson correlation coefficient is the most widely used correlation and perhaps the most well known correlation 

by researchers and scientists to measure the linear relationship between two variables. The formula for the 

Pearson correlation coefficient is (1) 
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𝑟𝑥𝑦 =
∑(𝑋𝑖−�̅�)(𝑌𝑖−�̅�)

√∑(𝑋𝑖−�̅�)2 ∑(𝑌𝑖−�̅�)2
=

∑ 𝑑𝑥𝑑𝑦

√∑ 𝑑𝑥
2 ∑ 𝑑𝑦

2
                 (1) 

Where ∑ dx dy  product sum of squares, 

          X̅ and Y̅  are the sample means of X and Y, and 

           ∑ dx
2 and ∑ dy

2  sum of squares of X and Y, respectively [3, 4, 9]. 

2.2.2. Spearman rank correlation  

The Spearman rank correlation test is basically the nonparametric version of the Pearson correlation coefficient 

and it provides to investigate the linear relations between two variables. This correlation coefficient can also 

adapt to ordinal data. Since it is a nonparametric coefficient, it will be appropriate to use especially when the 

data have violated parametric assumptions (i.e. non-normally distributed data), sample size is small and there is 

an outlier problem in data set. It is possible to interpret this correlation in terms of explained variability of the 

ranks. It can also be used to assess the monotonic relations based on the rank of the observations. This is an 

important issue because linear relationships are monotonic, but all monotonic relationships are not needed to be 

linear. Although it is a nonparametric coefficient or distribution free test the Spearman rank correlation 

coefficient requires a few assumptions. The assumptions of this coefficient are that as the data must be at least 

ordinal and the scores on one variable must be monotonically related to the other variable. The Spearman rank 

correlation can be computed by using following formulas (2, 3): 

𝑟𝑠𝑟 =
∑(𝑅𝑖𝑥−�̅�𝑥)(𝑅𝑖𝑦−�̅�𝑦)

√∑(𝑅𝑖𝑥−�̅�𝑥)2 ∑(𝑅𝑖𝑦−�̅�𝑦)2
                 (2)  or 

𝑟𝑠𝑟 =
1−6 ∑ 𝑑𝑖

𝑛(𝑛2−1)
                 (3) 

Where Rix and Riy are the ranks of the ith X and Y values. 

 R̅x and R̅y are the means of the Rix and Riy values, 

di=Xi − Yi is the difference between the ranks of corresponding variables, 

N is the number of observations [3, 4, 12, 13, 14, 15]. 

2.2.3. Kendall’s tau correlation coefficient 

As in the Spearman rank correlation, the Kendall’s Tau correlation coefficient is a nonparametric measure of 

association and it is used to evaluate the relationship between two ordinal variables. This coefficient is based on 

the number of concordances and discordances in paired observations. When paired observations vary together 

the concordance occur, while discordance occurs when paired observations vary differently. Therefore, 
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conceptually, Kendall’s tau correlation is used for assessing the proportion of discrepancy between concordant 

and discordant pairs. Kendall and Gibbons (1990) reported that any two pairs of rank (Xi, Yi) and (Xj, Yj) are 

concordant if Yi< Yj when Xi< Xj or if Yi> Yj when Xi> Xj or if (Xi-Yi)(Xj-Yj)>0 [16]. And, any two pairs of 

rank (Xi, Yi) and (Xj, Yj) are discordant if Yi< Yj when Xi> Xj or if Yi> Yj when Xi< Xj or if (Xi-Yi)(Xj-Yj)<0. 

Let C be the number of concordant pairs, D be the number of discordant pairs, and n be the sample size, in this 

case, based on n subjects to be ranked, there will be k=n(n-1)/2 possible comparisons between any pairs of rank 

(Xi, Yi) and (Xj, Yj). Based on this information, the Kendall’s Tau correlation can be computed by using 

following formula (4).  

𝑟𝑡𝑎𝑢 =
≠𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠−≠𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑛(𝑛−1)

2

                (4) 

This correlation varies between -1 and +1 [4, 17, 18]. 

2.2.4. Winsorized correlation 

Winsorized correlation is recommended especially for the cases where outliers presence in datasets. This 

correlation is another robust alternative of the Pearson correlation in case of outlier exists. The computation of 

Winsorized correlation is quite simple. It uses Person’s correlation formula applied on the Winsorized data. 

Winsorized correlation coefficient, which is computed after the k smallest observations are replaced by the 

(k+1)st smallest observation, and the k largest observations are replaced by the (k+1)st largest observation. 

Therefore, the observations are winsorized at each end of both X and Y [4, 19, 20] 

Let ( X1,Y1), (X2,Y2),…,( Xn,Yn) be a random sample from any bivariate distribution. We winsorize Xi to Wi 

and Yi to Vi any bivariate distribution as described above. Then, the Winsorized correlation coefficient, rw, is 

computed same as the Pearson moment correlation using the Winsorized data as follows (5):  

𝑟𝑤 =
∑(𝑊𝑖−�̅�𝑤)(𝑉𝑖−�̅�𝑤)

√∑(𝑊𝑖−�̅�𝑤)2 ∑(𝑉𝑖−�̅�𝑤)2
                 (5) 

where �̅�𝑤 and �̅�𝑤 are the Winsorized means of X and Y variables, respectively. Let γ denote the Winsorized 

percent and define g =γn; then, rw is distributed as t-distribution with (n-2g-2) d.f [4, 19]. 

2.2.5. Hoeffding's measure of dependence, D 

Hoeffding’s measure of dependence, D, is a nonparametric measure of association that detects more general 

departures from independence. The statistic approximates a weighted sum over observations of chi-square 

statistics for two-by-two classification tables [13]. Each set of (X,Y) values are cut points for the classification. 

The formula for Hoeffding’s D is (6) 

𝐷 = 30
(𝑛−2)(𝑛−3)𝐷1−2(𝑛−2)𝐷3

𝑛(𝑛−1)(𝑛−2)(𝑛−3)(𝑛−4)
                (6) 
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Where 𝐷1 = ∑ (𝑄𝑖 − 1)(𝑄𝑖 − 2)𝑖  

           𝐷2 = ∑ (𝑅𝑖𝑥 − 1)(𝑅𝑖𝑥 − 2)(𝑅𝑖𝑦 − 1)(𝑅𝑖𝑦 − 2)𝑖  

          𝐷3 = ∑ (𝑅𝑖𝑥 − 1)(𝑅𝑖𝑦 − 2)(𝑄𝑖 − 1)𝑖  

Where 𝑅𝑖𝑥 and 𝑅𝑖𝑦 are the ranks of the ith X and Y values. 𝑄𝑖  is also known as bivariate rank and it represents 

the number of points with both X and Y values less than the i
th

 point. A point that is tied on only the X value or 

Y value contributes ½ to 𝑄𝑖  if the other value is less than the corresponding value for the i
th

 point. A point that is 

tied on both the X and Y valuee contribute 1/4 to 𝑄𝑖 . 

The D statistic values are between -0.5 and 1 (1 indicating complete dependence) when there is no tie in dataset. 

However, when ties occur, the D statistic may result in a smaller value. That is, for a pair of variables with 

identical values, the Hoeffding’s D statistic may be less than 1. With a large number of ties in a small data set, 

the D statistic may be less than -0.5. For more information on Hoeffding’s D [22, 23, 24]. 

2.2.6. Distance correlation 

It is well known that the relations between the variables are not always linear. In some cases, relations between 

the variables are nonlinear. Therefore, a correlation coefficient that also provides to detect nonlinear 

relationships between variables is needed. For this purpose, distance correlation coefficient has been introduced 

by Szekely and his colleagues 2007, 2009 and Szekely & Rizzo 2012 and 2013 [25, 26, 27, 28]. Since the 

distance correlation can applicable to random variables of any dimension and measures both linear and non-

linear association between two random variables or random vectors, it provides more information when 

compared to the Pearson’s correlation [34].  Due to such advantages of the distance correlation it has been 

become increasingly used in many field of sciences [29, 30, 31, 32]. In contrast to the Pearson’s correlation, it 

equals to zero if and only if the variables are independent.  

Therefore, the distance correlation provides more information than the Pearson’s correlation coefficient, and the 

number of references to the distance correlation method has increased rapidly across a wide variety of fields [30, 

31, 32]. 

2.2.7. Biweight midcorrelation  

It is well known that the Pearson correlation is very sensitive to outliers. Since the Biweight midcorrelation is 

median-based coefficient it is less sensitive to outliers and thus it can be used as a robust counterpart to the 

Pearson’s correlation [33, 34]. Biweight midcorrelation of two numeric vectors X=( 𝑥1, 𝑥2, … , 𝑥𝑚)  and Y=( 

𝑦1, 𝑦2, … , 𝑦𝑚)  is defined as (7) 

𝐵𝑖𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
∑ (𝑋𝑖−𝑀𝑒𝑑(𝑋))𝑤𝑖

(𝑋)
(𝑌𝑖−𝑀𝑒𝑑(𝑌))𝑤𝑖

(𝑌)𝑚
𝑖=1

√∑ [(𝑌𝑖−𝑀𝑒𝑑(𝑌))𝑤
𝑖
(𝑋)

]2 ∑ [(𝑌𝑘−𝑀𝑒𝑑(𝑌))𝑤𝑘
(𝑌)

]2𝑚
𝑘=1

𝑛
𝑗=1

                (7) 
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Where 𝑤𝑖
(𝑋)

 stand for weight for Xi and defined as (8) 

𝑤𝑖
(𝑋)

= (1 − 𝑢𝑖
2)2𝐼(1 − |𝑢𝑖|)                (8) 

Where the indicator  𝐼(1 − |𝑢𝑖|) take 1 if 1 − |𝑢𝑖| > 0 and 0 otherwise. 

Where Med(X) is the median of X and Med(Y) is the median of Y. 

𝑢𝑖 (9) and 𝑣𝑖 (10) are respectively defined as follow: 

𝑢𝑖 =
𝑋𝑖−𝑀𝑒𝑑(𝑋)

9𝐴𝑀𝑒𝑑(𝑋)
                (9) 

𝑣𝑖 =
𝑌𝑖−𝑀𝑒𝑑(𝑌)

9𝐴𝑀𝑒𝑑(𝑌)
                (10) 

Where AMed (X) and AMed(Y) are the median absolute deviation of X and Y (11, 12) [34, 35, 36]. 

AMed(X)=Med(|𝑋𝑖 − 𝑀𝑒𝑑(𝑋)|)                 (11) 

AMed(Y)=Med(|𝑌𝑖 − 𝑀𝑒𝑑(𝑌)|)                 (12) 

2.2.8. Blomqvist’s coefficient 

Blomqvist’s coefficient or Blomqvist’s Beta / medial correlation is one of the other median-based nonparametric 

correlation coefficients. This coefficient has several advantages over Spearman's or Kendall's [37, 38]. 

Blomqvist (1950) suggested the following formula for this coefficient (13) [37]: 

𝛽�̂� =
2𝑛1

𝑛1+𝑛2
− 1         (13) 

For a pair of continuous variables X and Y, the Blomqvist’s β can be computed as 𝛽 = {(𝑋 − �̅�)(𝑌 − �̅�) >

0} − {(𝑋 − �̅�)(𝑌 − �̅�) < 0} 

Where �̅� and �̅� are the median of X and Y, respectively [38].  

2.2.9. Percentage bend correlation coefficient 

The percentage bend correlation (ρpb) is a robust alternative to Pearson's correlation [8]. The percentage bend 

correlation estimator is both resistant and robust of efficiency. Although when the underlying data are bivariate 

normal, ρpb gives essentially the same values as Pearson’s correlation, this correlation is more robust in slightly 

changes in data that Pearson's correlation in general. The ρpb belongs to class of correlation measures which 

protect against marginal distribution (X and Y) outliers. Therefore, this correlation is similar to Spearman's  Rho, 

Kendall's Tau, and biweight midcovariance correlation. The percentage bend correlation between variables X 

and Y is computed as following computational steps given below: 
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Step 1: Set m=(1-β)n)+0.5 and round m down to the nearest integer 

Step 2: Let 𝑊𝑖 = |𝑋𝑖 − 𝑀𝑥| for 𝑖 = 1, 2, 3, … , 𝑛 where 𝑀𝑥 is the median of 𝑋 

Step 3: Sort the 𝑊𝑖 in ascending order 

Step 4: �̂�𝑥 = 𝑊(𝑚) (i.e., the m-th order statistic). W (m) is the estimation of the (1-β) quantile of W. 

Step 5: Sort X values. Compute the number of values of (𝑋𝑖 − 𝑀𝑥)/�̂�𝑥 (𝛽) that are less than -1 and the number 

that are greater than +1 and store in i1 and i2 respectively. Then it is calculated the terms below respectively 

(14, 15, 16). 

𝑆𝑥 = ∑ 𝑋𝑖
𝑛−𝑖2
𝑖=𝑖1+1          (14) 

∅̂𝑥 =
�̂�𝑥(𝑖2−𝑖1)+𝑆𝑥

𝑛−𝑖1−𝑖2
         (15) 

𝑈𝑖 =
𝑋𝑖−∅̂𝑥

�̂�𝑥
         (16) 

Step 6: Repeat the above calculations on the Y variable. Store corresponding quantities in �̂�𝑦 , ∅̂𝑦, and 𝑉𝑖. 

Step 7: Define the function (17) 

𝛾(𝑋) = 𝑚𝑎𝑥[−1, 𝑚𝑖𝑛(1, 𝑥)]         (17) 

Step 8: Compute the following terms (18, 19) 

𝐴𝑖 = 𝛾𝑖(𝑈𝑖)         (18) 

𝐵𝑖 = 𝛾𝑖(𝑉𝑖)         (19) 

Step 9: Compute the percentage bend correlation coefficient as below (20): 

𝑟𝑝𝑏𝑛 =
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2 ∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

         (20) 

The value of β is selected between 0 and 0.5. Higher values of β result in a higher breakdown point at the 

expense of lower efficiency [39, 40, 41]. 

3. Results and Discussion 

Since the purpose of many studies is to describe and summarize the relations between two or more variables, the 

correlation analysis is widely used by the researchers in practice [4, 7, 8, 42, 43, 44, 45]. As a result, the 
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correlation analysis has been one of the most fundamental statistical concepts used in almost all branches of 

sciences to assess relations between two or more variables. Although correlation analysis is one of the most 

widely used statistical techniques in practice, it is worth noting that the researchers (especially non-statisticians) 

have a difficulty in determining an appropriate coefficient for their dataset due to a large number of correlation 

coefficients have been developed and proposed. Main reason is that the majority of the proposed correlation 

coefficients (although it is possible to find information about them in different papers) is not included yet in 

statistical text books and commonly used statistical package programs (i.e. SPSS, Minitab, Statistica, SAS, etc). 

Since the correlation coefficients which will be able to use to evaluate the relation between the variables varies 

based different experimental factors like the measurement levels of the variables, type of the variables, it is 

extremely important to aware of using an appropriate correlation in assessing the relations between the 

variables. It is because; the use of various correlation coefficients for the same set of data may lead to 

significantly different conclusions.  

As a result, the researchers are confused about which results are reliable. In this case, the following questions 

might pop up on the researchers’ mind: Why there are so many correlations? What are the differences among 

them? Which one(s) is more appropriate for investigating the relations between pair of variables?  How to 

determine the most appropriate correlation(s) for our data set? Which criteria should be considered in determining 

the most appropriate on? How do we calculate? In this study, nine of correlation coefficients namely the Pearson, 

Spearman's Rank, Kendall’s Tau, Percentage Bend, Winsorized, Distance, Biweight Midcorrelation, Blomqvist’s, 

and Hoeffding’s D correlation coefficients have been  introduced then a comprehensive simulation study has been 

carried out for comparing performances of these tests. The Type I error rate and test power estimates have been 

used as performance criterias. Simulation study results have been presented in Table 1.  

Table 1: Means, standart errors, type I error rates and test powers when samples taken from µ=5:5, σ=1:1 

bivariate normal and lognormal distributions 

  Bivariate Normal Bivariate Lognormal 

n Correlation ρ=0 ρ=0.30 ρ=0.60 ρ=0.90 ρ=0 ρ=0.30 ρ=0.60 ρ=0.90 

  α  1-β  1-β 1-β α  1-β  1-β 1-β 

10 

Pearson 4.92 12.56 47.25 98.29 5.91 16.25 41.31 93.57 

Kendall 4.98 10.47 37.51 93.36 4.98 10.37 37.67 93.5 

Spearman 5.77 11.91 40.45 94.18 5.77 12.06 40.37 94.43 

Winsorize 4.92 12.56 47.25 98.29 5.91 16.25 41.31 93.57 

Distance 7.66 14.81 45.62 95.79 7.59 14.56 40.61 94.09 

Biweight 0.32 0.67 2.60 5.53 0.21 0.56 1.45 4.69 

Hoeffding 0.68 1.11 2.73 5.51 0.68 1.09 2.96 5.47 

Percentage 0.30 0.85 2.79 5.67 0.28 0.85 2.51 5.7 

Blomqvist 0.05 0.06 0.49 2.07 0.05 0.1 0.42 2.01 

30 
Pearson 5.31 37.64 95.54 100 5.5 27 76.12 100 

Kendall 5.13 32.72 92.5 100 5.13 33.22 92.2 100 
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Spearman 5.35 33.49 92.83 100 5.35 33.69 92.48 100 

Winsorize 5.33 36.15 94.83 100 4.96 29.63 84.93 100 

Distance 7.13 36.68 93.67 100 6.73 30.92 88.91 100 

Biweight 4.69 34.17 93.79 100 4.59 21.87 72.58 99.99 

Hoeffding 6.76 32.73 89.59 100 6.76 33.2 89.91 100 

Percentage 4.87 33.54 92.69 100 4.97 31.39 89.78 100 

Blomqvist 2.85 12.33 52.21 98.57 2.85 12.46 52.68 98.48 

100 

Pearson 4.76 86.62 100 100 4.43 52.97 99.37 100 

Kendall 4.70 82.78 100 100 4.7 82.47 100 100 

Spearman 4.83 83.07 100 100 4.83 82.65 100 100 

Winsorize 4.73 84.88 100 100 4.59 70.62 100 100 

Distance 6.58 84.29 100 100 6.22 74.55 100 100 

Biweight 5.06 85.39 100 100 5.36 62.33 99.89 100 

Hoeffding 5.44 78.67 99.99 100 5.44 78.41 99.99 100 

Percentage 5.08 82.73 100 100 5.15 77.25 100 100 

Blomqvist 7.14 56.14 99.31 100 7.14 55.92 99.32 100 

500 

Pearson 4.99 100 100 100 4.37 98.26 100 100 

Kendall 5.08 100 100 100 5.08 100 100 100 

Spearman 5.12 100 100 100 5.12 100 100 100 

Winsorize 5.15 100 100 100 5.03 100 100 100 

Distance 6.76 100 100 100 6.4 99.99 100 100 

Biweight 4.76 100 100 100 10.31 99.92 100 100 

Hoeffding 4.96 100 100 100 4.96 100 100 100 

Percentage 4.94 100 100 100 5.07 100 100 100 

Blomqvist 5.82 99.21 100 100 5.82 99.29 100 100 

 

Results of this simulation study showed that the performances of these correlation coefficients are affected by 

sample size and effect size rather than the distribution shape. When the type I error estimates of these correlation 

coefficients are evaluated, it is clearly seen that the Pearson's correlation, Winsorized, Spearman Rank, and 

Kendal-Tau correlation coefficients gave the most stable results in terms of protecting the Type I error rates at 

5.00 % level regardless of sample size and distribution shape. The type 1 error estimations of these correlations 

changed between 4.71 and 5.77 % in general. All these estimations are fall between both Bradly’s (1978) liberal 

criteria (0.025≤α
*
≤0.075) and Cochran’s (1954) criteria (0.045≤α

*
≤0.055) [46, 47]. On the other hand, the 

Distance, Biweight mid, Hoeffding, Percentage Bend and Blomqvist correlation coefficients are the most 

affected coefficients from the sample size regardless of distribution shape. Type I error estimates of these 

coefficients varied between 0.05 and 7.66% when samples were taken from bivariate normal populations while 

they changed between 0.05 and 10.31% when samples were taken from bivariate lognormal populations. 

However, in parallel with the increase in sample size, it has been observed that the type 1 error estimates of 
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these correlation coefficients tend to gradually approach to 5.00 %. When n=500, all tests (relatively except for 

the Distance and Blomqvist correlations) gave similar results in terms of keeping the type I error rate at 5.00 % 

level. Under these experimental conditions, all correlation coefficients kept the type 1 error rate at 5.00% level. 

Although some small differences have been observed in type I error estimates of these correlations for the 

bivariate normal and bivariate lognormal distributions, the type I error estimates for both distributions are 

generally similar. Thus, it is possible to conclude that the distribution shape is not the key factor that affect the 

type I error estimates.  

When test power estimates of these correlations are evaluated, all coefficients produced very low test power 

values (0.05 and 37.64%) when sample size is between 10 and 30 for rho=0.30. However, as the sample size and 

effect size increase the test power values increase as well for all coefficients regardless of distribution shape. On 

the other hand, when all experimental conditions are evaluated together, as in the type I error estimates, the 

Pearson's correlation, Winsorized, Spearman Rank, and Kendal-Tau correlation coefficients are seem to be the 

most powerful coefficients. Pernet and his colleagues  (2013) reported that the Pearson’s correlation was the 

best method, estimating best the true effect sizes and showing more power as long as samples were taken from 

normal distribution [44]. However,  the assumption of normality is generalley met and thus when it is not met, 

using Pearson’s or Spearman’s correlations can lead to serious errors. Tuğran and his colleagues  (2015) 

reported that the Type I error rate and power of Pearson correlation coefficient were negatively affected by the 

distribution shapes especially for small sample sizes, which was much more pronounced for Spearman Rank and 

Kendal Tau correlation coefficients [4]. In conclusion, when assumptions of Pearson correlation coefficient are 

not satisfied, Permutation-based and Winsorized correlation coefficients seem to be better alternatives. Wilcox 

(1994) reported that the percentage bend correlation gave much better results in terms of controlling type I error 

rates comparing to the Winsorized and the Pearson’s correlations when testing independence [8]. On the other 

hand, none of the three correlation coefficients dominates the other two in terms of power. However, he 

informed that no correlation coefficient was found to be dominant over the other two correlations in terms of the 

power of the test. Keskin and Mendeş (2021) in their simulation study they reported that especially the Pearson 

correlation coefficient is highly affected from outlier [42]. It was informed that when datasets contain outliers, 

on the other hand, probably more stable results will achieve especially when Biweight midcorrelation is 

preferred. They also reported that especially the Pearson, Winsorized, and Distance correlations were not affect 

from changes in sample sizes as long as outliers were not presence. When the results of our simulation study are 

compared with the literature, it can be said that our results are generally compatible with the literature, although 

there are some differences due to the differences in the experimental conditions of the studies. 
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