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Abstract

In this paper a modal superposition method is applied for the numerical modeling of aquifers. The proximity of
aquifers to populated regions requires special care in their management to avoid problems that affect the
quantity and quality of the water they supply. To contribute to the management of this type of natural resource,
we propose a humerical strategy based on modal analysis using the finite element method. This procedure assist
water production scenarios, performing the mass balance where water extraction is done through wells, in
aquifers that are subject to natural recharge. This mathematical procedure is based on the modal superposition
for transient flow in porous media. To evaluate its efficiency, this strategy was compared with the classical finite
element method. The advantage of the proposed method resides in the possibility of reusing the properties of the
global matrix of the finite element method in transient problems, for different production conditions given by
the distributed recharge and by the water extraction rate from the wells, solving the numerical problem with a
more efficient use of computational resources. This strategy is useful in studies of uncertainty quantification,
history matching and optimization of water production in aquifers, since these types of analysis are resource

intensive for the very large number of numerical simulations required for these scenarios.
Keywords: modal superposition method; finite element method; numerical simulations; aquifer.
1. Introduction

An aquifer is defined by [1] as a geological formation that contains water and allows significant amounts of
water to move through its porous structure, called porous groundwater reservoir. According to [2], groundwater
is essential to maintain life on the planet: it is part of ecosystems and maintain the discharge of rivers, lakes,

mangroves and swamps.

* Corresponding author.
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Even though this resource has been used for a long time, groundwater has not yet been used as it should, being
often relegated to the background. In recent decades, many questions have been raised about the importance of
groundwater from an environmental, social and economic point of view [2]. Many developing countries still do
not have an adequate treatment of their aquifers. Even in countries with tropical climate, high rainfall and high
supply of surface water in economically developed regions, it is highly recommended that water management

governmental agencies give proper importance to the source of groundwater.

To give an idea of the magnitude of this source of water supply, in a publication by [3], a survey of the world
water balance was presented based on data from UNESCO (1978), and it was quantified that the water on planet
Earth is 96.5% distributed in the oceans and 3.5% on the Earth's surface. These 3.5% of the water on the
continents are divided into approximately 1% composed of saline groundwater or in saline lakes, leaving only
approximately 2.5% of fresh water in the world. Of this fraction of freshwater in the world, 68.6% are in the
arctic, such as icebergs and the polar crust, and 30.1% in aquifers and 1.3% on the surface of continents. In other
words, aquifer water represents almost 96% of all water available for immediate consumption. This

demonstrates the urgent need for an adequate management of this water resource.

In order to understand the water cycle on our planet, much has been studied. This is because the water cycle or
hydrological cycle comprises all the movement of water through the continent, oceans and the atmosphere,
ranging from the evaporation of water to the formation of clouds, its precipitation, generating recharge for
rivers, lakes and oceans. Plants and soil also perform an important role in water retention, a portion of which
will return to the atmosphere through evaporation. Another portion of the water will infiltrate the soil and feed
the groundwater reservoirs in the form of recharge, forming a cycle of vital importance to the supply of all

forms of life.

In order to put into practice a sustainable management of water resources, numerical tools are needed to assess
the different exploitation scenarios of an aquifer, integrating its behavior to the hydrological cycle of a specific
region. Natural recharge, for example, is a variable that is difficult to obtain experimentally, which can be
obtained through numerical modeling with monitoring of the piezometric head of the aquifer. With information
from the scenarios accompanied by real field data, it is possible to reduce the risk of damage, especially those
caused in densely inhabited regions. One of the major challenges for the development of large cities is to
guarantee the flow of rainwater in urban contexts [4]. Aquifers where volumes of water are extracted at rates
greater than natural recharge can be damaged and may present problems such as saline intrusion (salinization of
coastal aquifers) or surface subsidence and aquifer compaction due to excessive depressurization, resulting in

damage to the region that benefits from the aquifer.

Reference [5] pointed out that computational models for groundwater flow play an important role in the
management of water resources, allowing decision-making based on flow control in wells and measurable

aquifer properties.

This article contributes with a computational model to accelerate the simulation of water flow in aquifers. In

recent years, many advances have been made with the evolution of processors and mathematical algorithms,
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allowing increasingly faster simulation, enabling studies of optimization and propagation of uncertainties.

Furthermore, many problems that people did not dream of solving two decades ago are now routinely solved. [6]

The porous media waterflow simulator proposed here has as input data the permeabilities of the geological
formations that compose the aquifer as well as the recharge data and water extraction from the wells. In this
numerical code in Matlab, the modal superposition method was used, based on discretization in finite elements
of the problem domain that allows the analysis process of one aquifer where multiple scenarios are possible for
recharge and exploitation of the aquifer be carried out in an agile and accurate way. A case study on a
hypothetical aquifer is also presented in this paper in order to demonstrate the effectiveness of the proposed

methodology.

The method proposed here contributes to the ability to quickly perform several simulations for the same domain
with different boundary conditions. According to [7], a real site study requires a series of alternative simulation
runs with different boundary and initial conditions. In analyzing an aquifer, each scenario gives a better view of
flow processes and shows data uncertainties and model limitations when model outputs are contrasted with field
observations and measurements.

THEORY
1.1. Flow in porous media

Flow through porous media is widely studied in several engineering areas, such as groundwater hydrology,
reservoir engineering, soil mechanics, chemical engineering, among others. In general, a porous medium can be
defined as a solid matrix with empty spaces [1]. Porous materials can be soil, porous or fractured rocks,
ceramics, fibrous aggregates, filter paper, sand filters, among others.

To be classified as flow in porous media, there must be a solid matrix with interconnected voids so that the fluid
can flow. When the interconnection between the pores is high, there is a high permeability of the geological
formation. Aquifers are geological formations with high capacity to transmit and store water, that is, of high

hydraulic conductivity (permeability) and porosity [8], respectively.

Starting from the macroscopic equation of water mass conservation in a transient flow regime in a three-

dimensional porous medium, already considering Darcy's law, we obtain (1) below:

o(, eh) ., .on .
6_)(I£k”aX_Jj_q_SE_O ) |,J—1,2,3 (l)

where k; is the hydraulic conductivity tensor, h is the hydraulic head, S is the specific storage and ' is the
source/sink term, which may be due to recharge and water extraction from the wells [9]. In equation (1) and in
the other equations in this paper we are using the index notation for the variables, where repeated indexes

indicate summation.
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Hydraulic conductivity is related to the volumetric flow and the imposed hydraulic gradient, that depends on the
porous medium and the viscosity of the percolating fluid, which in this case is the water. The specific storage
(S) of an aquifer indicates the relationship between changes in the amount of water stored and the corresponding

changes in hydraulic head [1].
1.2. Numerical solutions to the physical problem

To solve the physical problem represented by the equation in partial derivatives (1), based on the solution of a
system of ordinary differential equations through modal analysis, the finite element method is initially used. The
finite element method is a tool for approximating the solutions of governing equations of various physical
phenomena [10]. Reference [11] emphasizes the importance of the finite element method for solving problems
from engineering, mathematics, and physics. As well as the finite difference method, the finite element method
can also be used to obtain the solution to the problem of water flow in an aquifer. This latter is the method
adopted in this paper, without loss of generality, since the same methodology proposed here could also be

developed based on the finite difference method.

The development of the finite element method for transient flow in porous media is based on the Galerkin

procedure, where the following approximate solution is proposed:
(4. X2, X3, 1) = Ny (X1, X, Xa)y (1) 5 I =1,2,+,n (2

where N; are the shape functions of the finite element method and h; the hydraulic head at the nodal points of
the finite element mesh. n is the number of nodes in the finite element mesh. In the notation used here, the
indices i and j refer to the coordinate axes X;, X, and X; and the indices | and J refer to the nodes of the finite

element mesh, according to [9].

Following the classical procedure of the Finite Element Method, applying the Weighted Residual Method
according to Galerkin's Weak Formulation to the conservation equation (1) and substituting the approximate

solution given by equation (2), one arrives at [9]:

dh, oN, oN,
SN Ny T gR 4 [k Dot T
i N +£”axiax,-

thRz—lequ—jN,q'dR ?)
B R
where R is the flow problem domain and B its boundary (regions b1 and b2) where the boundary condition is

applied, as shown in Fig. 1. q is the outflow through the boundary, associated with the boundary condition of

oh

Neumann, q = —(kij >
i

jni , with the normal n; pointing out of the domain.
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Figure 1: Flow domain in porous medium discretized by the Finite Element Method.

The equation (3) described above can be rewritten in the matrix form [9]:

[SH¥+ [KI{h} = {Q} @

In this equation, [S] is the Specific Hydraulic Storage matrix, [K] is the conductance matrix, {Q} which is the

vector related to recharge and/or water extraction. The vector {h} and its rate over time { Hg} are the unknowns

of the problem. The matrices in equation (4) are formed by the composition of the individual elements of the

finite element mesh, according to their connectivities, [S]=§:[S]e , [K]=§:[K]e , {Q} =§:{Q}e [6].

e=1 e=1 e=1

where m is the number of elements in the discretized domain.
From equation (3) we can obtain the equations below, for each individual element [9].

The conductance matrix [K] is represented by:

oN, oN,
Ki = [k 5 o R ®
Re

The specific storage array [S] is being represented by,

H = [ SN/N,dR, ®)
Re
and finally, the recharge and sink vector {Q} can be represented by,
QF =~ [ NiqdB— [ Nyg'dR, @)
B® R®

where this term of the equation will be constant over time

From the specific storage matrix Sf; , alternatively, the concentration operation of the specific storage mass can

be carried out through diagonalization [12]:
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Sf=>Sh with SH=0 for I=J ®)
J

Being Sf, more convenient for solutions in transient problems in situations where it is necessary to invert the

global matrices. From the finite element governing equation (4), a code can be generated that will be used in the
comparison of the classical finite element method and the one proposed in the next section, with the application

of modal superposition.

In the classical finite element method, the solution applied for the time step can be approximated using finite

differences according to equation (9) [9]:

o1k 08T Jin =((0-1)[K ]+ (5T inF +o1Q)  +(1-0)(@) @

where k and k+1 are the previous and next time steps, respectively, and @ is the time weighting factor.

According to [9], {Q}*"

depends on the values of the flows g and q'.

With equation (9) defined, it is possible to have the transient part of the finite element code defined. The
solution of the system of non-homogeneous first order linear ordinary differential equations is represented by
equation (10):

b
h, (t)tJ

{h}= . (10)

b e e

hn (1)

1.3. Modal superposition

As an alternative of solution for equation (4), the modal superposition method is introduced, which will be

compared with the classical finite element method in equation (9) in terms of CPU time and accuracy.

The modal superposition is a method traditionally used in dynamic analysis of structures to obtain the shape and
natural frequency modes, the displacement, velocity and acceleration fields of the structural system under study.

In particular, it is widely used in vibration analysis of structures [13].

According to [14], in recent decades modal analysis has become one of the main technologies for optimizing the
dynamic characteristics of structures [14]. Roy R. Craig, J., & Kurdila, A. J [15] indicate the great use of this
method by the advent of computers and the extensive use of Fast Fourier Transform (FFT) that allowed a new
paradigm for the structural analysis [15]. He, J., & Fu, Z.-F. [14] comment that the first most significant
proposal of modal analysis was in 1947 by C.C. Kennedy and C.D. Pancu (1947), which only became important
after J.W. Cooley and J.W. Tukey (1965) developed an FFT algorithm in 1965.
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Due to the versatility of the modal superposition method in solving linear systems, it is possible to replicate the
technique widely used to solve systems of second-order differential equations, found in systems of dynamic
analysis of structures, for systems of first-order differential equations of other phenomena. An example is the
equation system for flow in porous media, such as the one described here, where the unknows are the hydraulic

head and its rate of change.

The advantage of the modal superposition technique is to be able to solve linear systems of differential
equations with multiple degrees of freedom and to decouple the equations in simple degrees of freedom, with
the use of orthogonalization of the matrices and the change of base, performing a transformation in the vectors

and matrices of the linear system.

As demonstrated by [16], a base transformation is achieved through the principle of modal superposition applied
to a system of multiple degrees of freedom with generalized (modal) coordinates in order to obtain an uncoupled
system. In other words, the modal superposition method can transform coupled systems of differential equations
into a system of independent or uncoupled equations, where each equation contains only the time variable [16].
The response of the multiple degrees of freedom system by modal superposition is then defined as the sum of

the responses of individual modes [13].
1.4. Mathematical representation

The governing equation of the physics of transient flow in porous media is an equation in partial derivatives
whose system of equations resulting from its discretization by the finite element method is inhomogeneous. For
the solution of this non-homogeneous system of equations, it is necessary to compose two results: a general

solution of a non-homogeneous system in any interval I, in addition to a particular solution of the system [17].

In other words, the solution of this inhomogeneous system of equation (4) is composed by h = h, + hp, where

h, is the solution for the homogeneous system (general solution) and a hp is the particular solution of the

inhomogeneous system, which gives the desired solution of the equation (5).
1.5. Homogeneous solution

To calculate the solution of a homogeneous differential system of equations, it is necessary that the

recharge/sink term is zero, that is, {Q} = 0 , which leads to a solution proposed in equation (11) [17]:
he = ahg + L+ cohg (11)

the solution for each vector h! can be represented in equation (12):
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Il'{
hi = % Lleit toi= 1.0 (12)

where 1 and | are constants in the solution for each h! . Equation (11) can be written in simplified form [17]:

‘ l{f
Mm3=4 h=3 i'if - [LE' toi=Ln 13)
Iy

Getting a simplification that leads to the formation of matrices and vectors of the system of equation. The matrix

L represents the sum of the constants of |. The time derivative is simply presented as,

{8=10 F L] (14)

to facilitate the understanding of the subsequent substitutions we can represent equation (13) and equation (14)

as,
h. = 'L and K¢=1€'L, respectively (15)

Substituting now, equation (13) and equation (14), with the simplification represented in equation (15), in
equation (4), we have [17]:

le''[STL]+ e [KL]= 0 (16)

From equation (16), through substitutions, it is possible to obtain an adequate mathematical formulation for the

eigenvalues and eigenvectors calculations. To proceed, we need to divide (16) by e'!, obtaining [17]:
(A[S]+[KD[L]=00r [K][L]=-A[S][L] an
With the manipulation of equation (17), it can be compared to the equation below [18]:
[AIG = 2{x} (18)

Which is the classical representation of an eigenvalue and eigenvector problem, where 4 is the eigenvalue and x

is the eigenvector of the matrix [A].

For the flow formulation in porous media, here represented by equation (17), the matrix [A] in equation (18) is

given according to equation (19):
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[A]=-ST[K] (19)
and so, as represented by equation (20):
~[STHKI[L]=A[L] (20)

where [L] is the modal matrix corresponding to the matrix formed by the matrices whose solution to the
equation (20) can be given by,

n
he =Y LOceAt withi=1.n (21)
i

with n being the total nhumber of equations generated in the system of equations, which coincides with the
number of nodes of the finite element mesh, represented as below [17],

he, (t) 11D W] et

1 2 Aat

N ENCTH e
: : R : (22)

he, (t) 1D 1@ M| e

modes (eigenvectors)

where the equation (22) represents the result of the system of equations for the homogeneous solution, which
will be part of the general solution.

1.6. Nonhomogeneous solution

In this step, the particular solution of the inhomogeneous system (h, ) will be deduced. It is necessary to know

the problem that is being proposed, in which the recharge and the extraction flow will be constant over the time
intervals. If the equation for the particular solution is:

[SHE+ [KI{h,} = {Q} (23)

Using the undetermined coefficient method to arrive at the value of (h, ) and knowing that the recharge vector

{Q} will also be a constant vector in the considered time interval, the solution one comes up with is [17]:

hp, (t)
hp, (t) .
h, = : constant vector over time. (24)

hp, ()
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The solution is a constant vector over time, meaning that its first derivative will be null [17]:
h, = constant vector .. h, =0 (25)
We can substitute this result in equation (23):
[SHO}+ [KI{hp}={Q} \ {hp}= KT 4{Q} (26)
Showing that the particular solution of the non-homogeneous equation can be written by equation (26).

1.7. General solution of the Differential Equation

Finally, we have the general equation of the inhomogeneous system as the sum of the homogeneous and the

particular solutions h = h, + hp, where h, is the solution for the homogeneous system (general solution) and

h= i LO¢ert + [KT4Q} (7)

the hp is the particular solution of the non-homogeneous system:

1.8. System decoupling

The modal superposition method cannot be applied directly to coupled systems, according to equation (4). Thus,
finding a coordinate system that does not exhibit any form of coupling is the essence of this procedure. Once
equation (4) is uncoupled, the system of equations can be solved independently. The coordinates that allow the

uncoupling of the system's equations are called principal bases, or normal bases [13].

{a}={a(h, .-+ )} (28)

To decouple a system of differential equations, it is necessary to introduce a set of alternative bases [13]:

where equation (4) can be transformed into a set of n uncoupled equations, that is, their solutions can be

independently determined.

{ny=[LHa} - {h}=[LH (29)

The normal or main basis {q} is defined by a transformation matrix [13]

where [L] is the modal matrix (n x n) determined by solving an eigenvalue problem.
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In order to change a system of equations from the physical base to the normal base, it is necessary to multiply
[LI (S + [KI{N} = {Q}) (30)
the modal matrices of the transformation in equation (4), according to equation (30):

where, [L] is the transpose of the modal matrix. The uncoupled system in the normal or main basis is obtained

by substituting equation (28) in equation (29) [13]:

[LT" [STILI{e+ [LT" [KI[LNa} = [LT'{Q} @3

[SH&+ [KH{a}= {Q} (32)

which can be written as

where [S], [K] and [Q] are respectively the modal matrix of specific hydraulic storage, the modal matrix of

[S1= [LT'[SI[L] (33)
[K]1= [LT'[KI]IL] (34)
[QI=[LI'[Q] (35)

conductance and the modal vector of recharge/extraction, given by [13]:

S,&+ K,q,=Q, r=12L ,n (36)

At this point, we obtain the n uncoupled equations

where:

S = {LY [SIILI @7
Ky = {L}7 [KI[LI, (38)
Qr = {LI{Q} (39)

To transform to the physical bases, it is necessary to impose the initial conditions of the problem [13]:

{h(O)}=[LHa(O} - {h(0)} = [LI{4(0)} (40)
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Multiplying equation (48) by [®]"[S] we get:

[LT[SHN(0)} = [LI" [SI[LH{a(0)}

. 41
[LI"[SHN(0)} = [LT" [SI[LH{G(0)} @
As [S]= [FT'[S][F], one can thus obtain:
[LI"[SI{h(0)} = [SHa(0)} 42)
[LI"[SHN(0)} = [SHA(0)}
In which the solution of the problem can be defined as
1
q(0) = [STJ{L}I [SI{h(0)}
r r=12,---,n (43)

q(0) = [gij{L}I [SHK(O)}

1.9. Uncoupled problem solution

The solution to the modal superposition of the proposed problem is as described below:

i _
hrz(ZI“)cre“] +[%j r=12,--,n (44)
r r

r

Where each term of the equations above is previously defined by equation (38) and equation (39) and for the

value of the constant of integration c, it is obtained according to equation (45):

G = QO - £ (45)

aQff-l-lo

This completes the formulation that was implemented in a computer program in Matlab to solve the flow
problem in porous media via modal superposition. In the next sections, applications of this program to a

hypothetical case of flow in a confined aquifer will be presented.

2. Application

2.1. Underground water system

As proposed in this paper, numerical codes were developed to compare the modal superposition method with the
conventional finite element method. The quality and computational cost of the two numerical procedures were
also compared. The computational was evaluated in terms of total CPU time and the results of the hydraulic

head at specific points of the mesh.
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For the tests, it was necessary to simulate a hypothetical aquifer, considering aquifer configurations in the
literature to guide the simulations, making the numerical experiment more realistic. In this section, the aquifer
and the details of the simulation are described and the results of the simulations are presented. The CPU time

and the discrepancies of results for meshes with different level of discretization were verified.
2.2. Simulated aquifer and meshes

The aquifer has dimensions of 6000 by 6000 meters in length and width, composed of two reservoirs separated

by a layer of low permeability (aquitard), as can be seen in Figure. 2. Its properties are shown in table 1.

The upper receives a constant recharge of 1,0‘8% . Although aquitard (material 2) has a lower
m2

permeability than aquifers (material 1), and is important, that it is not completely isolated, with the possibility of

interaction between them.

Material 2

Figure 2: Aquifer material layers showing the different materials between aquitard and aquifers.

Tabel 1: Permeability of materials.

Material Permeability
Kx=1.8e-4 m/s

1 Ky=1.8e-4 m/s
Kz=1.8e-5 m/s
Kx=1e-15 m/s

2 Ky=1e-15 m/s
Kz=3.5e-9 m/s

Discretization is a very important step in the numerical analysis of a given problem. The quality of the
approximate solution obtained by the numerical method depends on the number of nodal points and elements

that the problem domain is discretized.

For the simulation, three levels of horizontal discretization of the domain were used. In order to verify the CPU

time and the results for each type of discretization in both numerical methods presented here, as shown below:
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Tabel 2: Types of Meshes.

Mesh 1 Mesh 2 Mesh 3

Vertical discretization remained the same for all meshes, can be seen in Figure 2.

The meshes have the same dimensions, only differentiating the number of elements and nodes, as can be seen in

Table 3:

Tabel 3: Node and element values for each mesh.

Nodes Element.
Mesh 1 6.724 28.800
Mesh 2 1.764 7.200
Mesh3  3.844 16.200

2.3. Strategy adopted for the comparison of numerical solutions

A well was considered at node 1, in all meshes with coordinates at the origin (x, y, z) = (0,0,0), as illustrated in
Figure 3. Extraction rates of 30, 90 and 150 I/s were chosen so that their influence on each result can be studied.
With the flows and recharge defined, monitoring points were proposed for the numerical simulation, the points

are in Tabel 4.

Figure 3: Well Location.
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Tabel 4: Monitoring points in the domain with the coordinates and the respective nodes for each mesh.

Coordinates Chosen node data
Point X Y Z Meshl Mesh2 Mesh3
Al 3000 3000 90 4203 1103 2403
A2 3000 3000 60 2522 662 1442
A3 600 600 90 3531 927 2019
A4 600 600 60 1850 486 1058
A5 5400 5400 90 4875 1279 2787
A6 5400 5400 60 3194 838 1826

For each mesh and each proposed flow rate, the points in Tabel 4 were used to compare the results via
conventional finite elements and by using the modal superposition technique. Each point has its fixed coordinate
in the domain. As an example of the notation adopted for the results presented below, point Al in mesh 1 with a
flow rate of 30 I/s has the code 1-3Al in the conventional finite element simulation and 1-3A1S for the

simulation with modal superposition.

Figure 4 shows the evolution of the values at point A4, where it is possible to observe the influence of the mesh
discretization and the evolution of the simulations by the two methods. The values obtained in the two methods

are very close, which was repeated for all points selected and listed in Tabel 4.

Test 1
304 : -
Legend
——1-3A4
——1-3A48
205 N e 2.3A4 L
2-3A4S
g 3-3A4
E —*—3-3A4S
= 29 :
T
28.5 - i
28 1 1 1 1 1 L
0 1 2 3 4 5 6 7
Time (seconds) x10*

Figure 4: Evolution of the hydraulic head at point A4 comparing the different discretizations of the meshes.
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29 = T T

I
............ Legend
----------- B

2891 el e ——1-3A4S},
--------- 2-3A4
2-3A48

288 TN oL
- R S
G e
Sosr TS
T T e,
28.6 — -
28.5 J
| | | | | |
2 2.2 2.4 2.6 2.8 3
Time (seconds) «10*

Figure 5: Amplification of the rectangle in Figure 4 indicating the meshes used for each of the hydraulic at
point A4.

In Figure 6, for point A4, with meshes of different discretization and with different water extraction rates, the
variation of hydraulic head over time can be observed. Once again, the consistency of the results is
demonstrated, with very close solutions between the conventional finite element methods and the modal

superposition.

Test 2

32

Legend
——1-3A4
=-=-1-3A4S
----- 2-3A4

2-3A4S
—-=-3-3A4
—*—3-3A4S
1-9A4
1-9A4S
—2-9A4
——2-9A4S
3-9A4
——3-9A4S
1-15A4
——1-15A4S
—»—2-15A4
—2-15A4S
—6—3-15A4
3-15A48

Time (seconds) x10

Figure 6: Time evolution of the hydraulic head at Point A4, for different discretization and imposed flow rates.

An important variable to be observed is the total CPU time of the simulations. These values can be seen in
Figure 7, which demonstrates the CPU time for the simulations in classical finite element method and another

with modal superposition. The legend is referring to the type of mesh, (shown in Table 2), and the flow rate
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imposed on the well (30, 90 and 150 I/s)
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Figure 7: CPU time for simulations with the classical finite element method, and the modal superposition (with

eigenvalues and superposition steps).

As shown in Figure 7 the CPU time for both processes simulations used in this paper. In case of the modal

superposition code process is performed in two steps:

e The first step is the construction of matrices and the vector belonging to the domain ([S], [K] and {Q})
of the problem equation (4), and the calculation of the eigenvalue [L]. The eigenvalue matrix is an
essential component of the modal superposition formulation described in section 2.5 and also for the
system described in section 2.8. This step is represented in Figure 7 the figure legend by AV.

e The second step is the calculation of the modal superposition system and the system decoupling

procedure described in section 2.4. This step is represented in Figure 7 by SM.

In order to compare the CPU time of the two numerical methods, the sum of the two steps described above was
used as the total CPU time using the modal superposition, that is, the sum of the time spent for processing the
eigenvalue matrix (AV) plus the processing time for calculating the modal superposition and that of the system
decoupling (SM). It is observed that in meshes with greater discretization the processing time increases. This
can be explained by the rise in the dimensions of the matrices of the algebraic system, requiring more CPU time
to acquire the eigenvalues. For less discretized meshes, the CPU time was much smaller in the two processing
steps of the modal superposition.

The modal superposition method proved to be very useful for the type of problem proposed, where splitting the
processing showed an advantage of the method, in which the part of the equation where the recharge is found
can be modified in the simulation without the need to process the eigenvalue step, which is the one with the
longest CPU time. In situations where the mesh does not need to have a greater discretization, the method saves

a lot of CPU time. In cases of greater discretization (results of mesh 1, in figure 7), there is an increase in the
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processing time of the superposition method in relation to the conventional finite element method. In the

superposition method, the eigenvalue calculation step is crucial and the increase in discretization will result in

an increase in the total CPU time.

The method also allows a reduction of modes, reducing the modal matrix and consequently reducing the time in

the eigenvalue processing step, thus resulting in a better performance of the code, that is, a reduction in the order

of the problem is achieved with this step. The result of this order reduction can be shown with the results of

Figure 8 and Figure9, which demonstrate the test performed to compare the behavior of the classical finite

element method with that of modal superposition. In these figures, the discretization of mesh 1 was used, as

shown in Tabel 2, and well flow rate of 30 I/s from the point of known coordinates A4 (Tabel 4).

30 ey

29.5

28.5

28

Seconds

120
100
80
60
40
20

1-3

CPU Time

1-3S 1-3S2

Figure 8: Comparison of CPU time.
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Figure 9: Comparison of the solution of the methods.

Figure 8 presents the results for mesh 1 with a well flow of 30 I/s, with the discretization and flow already

informed previously. It compares the processing time of the methods where in the first legend bar 1-3 is the

processing time for the conventional finite element method and the other subsequent ones, with the legends bar
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1-3S and 1-3S2, are the processing time for the modal superposition method in which the normal processing of
the method is represented and the other using the order reduction with 50% of the number of eigenvalues,
respectively. It is shown that with modal superposition without order reduction, the processing time for the
simulation used is the one that takes the longest time among those compared in Figure 8. But if the results of the
first two bars are now compared with the third bar, which represents the superposition method with the order
reduction of 50% of the eigenvalues, there is a reduction of almost 40% in processing time. It is important to
note that the results found with this 50% reduction are shown in Figure 9, where the largest discrepancy found
in relation to the conventional finite element solution was 0.18%. Showing that, even with a drastic order
reduction of 50% of the system, the solution converges to the expected values, contributing to the reduction of

the processing time and consequently with the decrease of the computational cost of the method.

The codes were run on a computer with an Intel(R) Core (TM) i7-7700HQ CPU @ 2.80GHz, with 16.0GB of
RAM.

3. Conclusion

This paper was able to compare the flow solution in transient porous medium between conventional finite
element and modal superposition methods, showing the versatility of the superposition method for simulations
compatible with those demonstrated in the study carried out. The method has shown its potential for
optimization studies and uncertainty analysis, where many simulations are needed, always looking for the best
combination of parameters to maximize or minimize the design variables of a certain problem or to evaluate the

impact of the variables that control the behavior of the aquifer during the water extraction process.

In the previous sections, it has been shown that the method can be divided into two steps. Initially, it is
necessary to set up the governing equation of the problem and consequently calculate the eigenvalue. The next
step can be performed for any set of flows and recharge imposed on the aquifer and represents less than 50% of

the CPU time for the analyzed cases.

This method also allows order reduction, decreasing the number of eigenvalues needed to solve the problem,
reducing the CPU time by 50% without loss of precision in the results, as demonstrated by the comparison with

the classical finite element method.
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