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Abstract 

Discovering the association rules among the large databases is the most important feature of data mining. Many 

algorithms had been introduced by various researchers for finding association rules. Among these algorithms, 

the FP-growth method is the most proficient. It mines the frequent item set without candidate set generation. 

The setbacks of FP growth are, it requires two scans of overall database and it uses large number of conditional 

FP tree to generate frequent itemsets. To overcome these limitations a new approach has been proposed by the 

name TransTrie, it will use the reduced sorted transposed database. After this it will scan the database and 

generate a TRIE, in the same step it will also compute the occurrences of each item. Then, using Depth first 

traversal it will identify the maximal itemsets, from which all frequent itemsets are derived using apriori 

property.  It also counts the support of frequent itemsets which are used to find the valuable association rules. 
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1. Introduction  

Large databases contain numerous hidden information. Data mining is used to extract this information. It 

emphasize on finding frequent patterns[1].Data mining consists of various techniques like association rules, 

classification rules, clustering rules, and sequential rules etc [2]. Association rule mining is the most efficient 

technique to discover hidden or desired pattern among the large amount of data. An association rule [1, 3, 4] 

implies certain association relationships among a set of objects (such as “occurs together” or “one implies to 

other”) in a database. According to Agrawal, the formal statement is “Let I = {i
1
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,…..i

n
} be a set of n binary 

attributes called items. Let D = {t
1
,t
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,…..t

n
} be a set of transactions called the database. Each transaction in D 

has a unique transaction ID and contains a subset of the items in I.  

------------------------------------------------------------------------ 

* Corresponding author.  

E-mail address:ruchikaydv@gmail.com 

211 
 

http://asrjetsjournal.org/


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2015) Volume 13, No  1, pp 211-220 

 

A rule is defined as an implication of the form X→ Y where X, Y ⊆ I and X∩Y=0. The sets of items (for short 

itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side or RHS) of the 

rule”. Association rules are based on two measurements which are support and confidence. Support is the 

probability of an item’s occurrence in transaction. If an itemset appears to equal or more than the predefined 

minimum support then it is frequent. These frequent itemsets are used to generate association rules on the basis 

of confidence. Confidence is the probability of the rule’s consequent that also contain the antecedent in the 

transaction. All the frequent itemset generation algorithms are based on either with candidate set generation or 

without candidate set generation approach. This paper is organized in five sections. Section I provides 

introduction to association rules mining. Section 2 is the related work. The proposed algorithms TransTrie is 

presented in section 3. Association rule mining from frequent item sets is described in section 4. Section 5 

contains the conclusion and after that references are mention. 

2. Related Work 

To discover association rules, mining of frequent itemsets is the base of the overall process. Various algorithms 

have been presented by researchers for finding association rules. Apriori[3] is termed as the basic algorithm in 

data mining field which works on candidate set generation process.  To generate candidate sets, it scans the 

database many times. Treating Apriori as a basic approach many algorithms have been developed- AprioriTID 

[3], DHP [5], DIC [6], CARMA [7] and Pascal [8]. Apriori based approaches has the problem that they require 

large number of scans over the database to generate candidate sets and another serious drawback of these 

techniques is the management of huge amount of data in computer’s memory. To avoid these limitations a new 

approach, FP-Growth [9] was introduced. It adopts the divide and conquers approach to generate frequent 

itemsets without generation of candidate set. It uses FP-Tree to represent the database, which takes less space 

and helpful in reducing multiple scans of database. So, FP-Growth is better than Apriori algorithm, in terms of 

efficiency [10].But it also have some issues, firstly it does scanning of overall database for two times and 

secondly, it creates a large number of conditional FP tree for the generation of frequent itemsets [11]. Various 

improved procedures and algorithms have been proposed by different researchers like COFI [12], COFI* [13], 

MFI [14] and T3A [15]. A new approach is presented in this paper for mining frequent patterns which can 

reduce the bottleneck of FP-Growth algorithm by using transposition of database and representing it by an 

advanced data structure Trie [16]. 

3. Proposed Algorithm (TransTrie) 

3.1. Frequent Pattern Tree 

A Frequent Pattern Tree (FP-tree) is a data structure, which is used, to compress the huge dataset by converting 

it into FP tree. It generates frequent patterns without the candidate item set generation [17]. It is based on the 

divide and conquers strategy. FP-Tree’s construction completes in two steps. In first step, it scan database and 

count support for each item. On the basis of that support it removes the infrequent items and then it sorts 

remaining frequent items in descending. In next step, first of all, the root node is marked as “NULL” and then it 

reads one transaction at a time and places it under the root node. Shared items transactions have the same prefix. 
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Using singly linked lists, pointers are maintained between nodes containing the same item. Generally a node of 

FP tree consists of three attributes – name of Item, node link and occurrence of item.  

3.2. Key Idea 

An algorithm TransTrie is presented which creates a reduced sorted transposed database from the given large 

database. The items will be stored using Boolean values and in this way the database will take less space for 

storage. This formation will also be helpful in reduction of scanning time. Moreover it will use an efficient data 

structure, Trie, which will remove the problem of generation of large number of conditional FP tree.   

3.3. TransTrie 

The proposed algorithm consists of mainly two components - the transposed database and Trie representation of 

that database. The transposed database contains only frequent items and it will store them in binary format. So, 

it takes less space in memory and due to its structure it will take less time for scanning. After this the database 

will be represented in Trie, It is mainly suitable for generation of candidate sets because transactions that have 

similar items use the same prefix tree. Using depth first traversal, candidates can be obtained easily. 

 3.4. Example of Trans Trie 

It accomplishes its task in two steps. In step 1, it converts the original database into reduced transposed 

database. In step 2, it represents the database in Trie for frequent item set generation. 

Step 1:  

A sample transactional database is shown in Table 1. 

Table 1: Sample transactional database 

Tid Transactions 

T1 AC, LAPTOP, TV 

T2 MOUSE, REMOTE, UPS 

T3 AC, LAPTOP, UPS 

T4 AC, LAPTOP, TV 

T5 AC, LAPTOP, MOUSE, TV 

T6 KEYBOARD, STABILIZER 

T7 MOUSE, UPS 

T8 REMOTE, UPS 

T9 AC, LAPTOP, MOUSE, TV 

T10 AC, TV 
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Calculate the occurrence of each item by scanning the Table 1 and arrange them in decreasing order. If some 

items have same count, they are sorted alphabetically. This is shown in Table 2. 

Table 2: Transaction items with their frequency 

Item Frequency in Transactions 

AC 6 

LAPTOP 5 

TV 5 

MOUSE 4 

UPS 4 

REMOTE 2 

KEYBOARD 1 

STABILIZER 1 

 

The given minimum support (M_Supp) is 2. The frequency of items KEYBOARD AND STABILIZER are less 

than defined minimum support. So, these items are not considered for the transposed database. The items 

existing in a transaction are represented by 1. In this way a reduced transposed database is created which is 

shown in Table 4. 

Table 3: Reduced transposed database 

   Item T1 T2 T3 T4 T5 T7 T8 T9 T10 

AC 1 0 1 1 1 0 0 1 1 

LAPTOP 1 0 1 1 1 0 0 1 0 

TV 1 0 0 1 1 0 0 1 1 

MOUSE 0 1 0 0 1 1 0 1 0 

UPS 0 1 1 0 0 1 1 0 0 

REMOTE 0 1 0 0 0 0 1 0 0 

 

Step 2: 

In Trie, there are two kinds of nodes. The root node, which is initialize to NULL and the child nodes, which 

have three fields: Item name, Frequency of item (occurrence count of item) and link of next item of a 

transaction.  

1) Transaction T1: {AC, LAPTOP, TV}. 
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The ROOT is created and then adds AC as child of ROOT and it will contain AC as item name, Frequency of 

item as 1 and link of next item i.e. LAPTOP. Add LAPTOP as child of AC and it will contain LAPTOP as item 

name, Frequency of item as 1 and link of next item i.e. TV. Add TV as child of LAPTOP and it will contain TV 

as item name, Frequency of item as 1 and there is no link for this because TV is a leaf node for this transaction. 

This formation is shown in Figure 1. 

 

 

Figure 1: Trie after transaction T1 

 

2) Transaction T2: {MOUSE, UPS, REMOTE}. 

Add MOUSE as another child of ROOT and it will contain MOUSE as item name, Frequency of item as 1 and 

link of next item i.e. UPS. Remaining steps for this transaction are like previous one. This formation is shown in 

Figure 2. 

 

 

Figure 2: Trie after transaction T2 

 

3) Transaction T3: {AC, LAPTOP, UPS}. 

Two items of this transaction i.e. AC and LAPTOP are part of same prefix path which is already exists in Trie. 
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So, just increase their frequency by 1.UPS is not the part of this prefix path so make it child of LAPTOP with 

frequency. This formation is shown in Figure 3. 

  

Figure 3: Trie after transaction T3 

 

4) Transaction T4: {AC, LAPTOP, TV}. 

Transaction 4 has existing prefix path .So, increase the frequency of its items by 1. This formation is shown in 

Figure 4. 

 

Figure 4: Trie after transaction T3 

As there are total 10 transactions in the example so, it will be sufficient to show the precise parts of the proposed 

algorithm. 

5) Transaction T10: {AC, TV}. 

Finally, Trie is formed. All the frequent items are shown with their frequency in figure 5. 

Figure 5 shows the final representation of the database. Now, it will generate the frequent items sets. For that, 

first of all it will traverse the Trie using depth first search traversal. After traversal the Maximal itemset with 

their frequency are given below: - 

{AC, LAPTOP, TV, MOUSE: 2}, {AC, LAPTOP, UPS: 1},{AC, TV: 1}, {MOUSE, UPS, REMOTE: 

1},{UPS,REMOTE: 1} 
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Figure 5: Trie after transaction T10 

Now takeout the maximal itemset of any single path one by one and compare its frequency with M_Supp if it 

qualifies the condition then put all the subsets of maximal itemset in the Frequent Itemset Table i.e. Table 4 

otherwise, put all the subsets in the Suspected Itemset Table  i.e. Table 5. While putting the subsets in the 

concerned table, find the frequency of each subset from Trie. To find the frequency of subsets take their values 

and after confirming the minimum value from these items, assign that to the subset. As it is possible that 

different paths may contain some same itemset. So, add the frequency of same itemsets of a table. After 

completion of this step, takeout itemset from suspected table which qualifies the condition of M_Supp and put 

them in Frequent Itemset Table and add the frequency of same itemsets. 

Table 4: FrequentiItemset 

Item Frequent item Set 

AC {AC: 6} 

LAPTOP {LAPTOP: 5}, {LAPTOP, AC: 5} 

TV {TV:5}, {TV,LAPTOP: 5} ,{TV, AC: 5}, {TV, 

LAPTOP, AC: 4},  

MOUSE {MOUSE: 4},{MOUSE,TV: 2},{MOUSE, 

LAPTOP:2}, { MOUSE, AC: 2}, { MOUSE, TV, 

LAPTOP: 2}, { MOUSE, TV, AC: 2}, { MOUSE, 

LAPTOP, AC: 2},{ MOUSE, TV, LAPTOP, AC: 

2} 

UPS {UPS: 4}, {UPS, MOUSE: 2} 

REMOTE {REMOTE: 2}, {REMOTE, UPS: 2} 

Table 5: Suspected itemset 

Infrequent Itemsets 

{REMOTE, MOUSE : 1} 

{ REMOTE, MOUSE, UPS : 1} 
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4. Algorithm 

Create_Trie(Transposed Database) 

{ 

     for each transaction do 

     { 

          Insert_In_Trie(Tid) 

     } 

} 

Get_Large_Itemset(Trie, M_Supp) 

{ 

     for each path in Trie 

     { 

         Si= Create maximal itemset by DFS traversing 

         for each subset of Si 

            { 

                  if (subset.supp>= M_Supp) 

                    Union with large itemset and increment counters 

              Else  

                    Union with suspected itemset and increment counters 

         } 

         if (subset.supp>= M_Supp) 

                   Union with large itemset and increment counters 

         else 

        { 

              for each itemset in suspected table  

              { 

                    Itemset  Є FIS table.itemset 

                    Add counters 

               } 

         } 

    } 

}               

5.  Association Rule Mining  

Following are the resulting association rules with minimum confidence 50%.  

R1: AC and TV ⇒ LAPTOP 

Confidence= Supp {TV, LAPTOP, AC}/SUPP{TV,AC} = 4/5 = 80% and R1 is selected. 
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R2: MOUSE and AC⇒ TV 

Confidence=Supp{MOUSE,TV,AC}/SUPP{MOUSE,AC}= 2/2 = 100% and R2 is selected. 

R3: AC and LAPTOP⇒ MOUSE 

Confidence=SUPP{MOUSE,LAPTOP, AC}/SUPP{AC, LAPTOP}= 2/5 = 40% and R3 is rejected. 

6. Conclusion And Future Works References 

We presented TransTrie a new algorithm for mining frequent patterns. This new algorithm is based on an 

advanced data structures Trie and initiates the process by first identifying maximal patterns using a depth first 

traversal approach. This algorithm finds the set of exact maximal patterns using only two I/O scans of the 

database then generates all frequent patterns with their respective support. It also introduces a new method of 

counting the supports of candidates based on the supports of other candidate patterns.  
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