Impact of the Degrading Toxicity of Metallic Trace Elements on the Flora and Fauna of the Matete River in Kinshasa

Authors

  • Athanase N. Kusonika Laboratory of Ecotoxicology and Ecosystem Health ERGS, Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, DR Congo
  • François Xavier M. Mbuyi Laboratory of Ecotoxicology and Ecosystem Health ERGS, Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, DR Congo
  • Thierry T. Tangou Laboratory of Ecotoxicology and Ecosystem Health ERGS, Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, DR Congo
  • Shango Mutambwe Laboratory of Ecotoxicology and Ecosystem Health ERGS, Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, DR Congo
  • Dieudonné E. Musibono Laboratory of Ecotoxicology and Ecosystem Health ERGS, Department of Environmental Sciences, Faculty of Sciences, University of Kinshasa, DR Congo

Keywords:

Impact, toxicity, metallic trace elements, Flora and Fauna, Matete river, Kinshasa

Abstract

This work presents the results for which the general objective pursued in this study is to assess the impact of the degrading toxicity of metallic trace elements on the flora and fauna of the Matete river in Kinshasa. This evaluation was studied through the understanding of the accumulative power of species of flora and fauna in this same ecosystem with metallic elements. In particular: Pistia stratiotes (manganese): 10.7 ± 1.1 and 236.4 × 101 ± 248.8 mg / kg, iron: from 187.5 × 101 ± 61.9 and 500.0 × 101 ± 0, 1 mg / kg, potassium: between 314.8 ± 12.1 and 119.0 × 103 ± 6981.1 mg / kg, calcium: <10 ± <0.3 and 252200 ± 1892.8 mg / kg, cobalt: <3.0 ± <0.2, nickel: <0.5 ± <0.1 and 20.6 ± 0.5 mg / kg, zinc: 1.9 ± 0.0 and 98.7 × 101 ± 0.0 mg / kg, copper: <0.5 ± <0.1 and 79.4 ± 1.2 mg / kg, aluminum: 56.3 × 101 ± 53.1 and 5229.0 × 101 ± 583, 8 mg / kg, chromium: <1.0 ± <0.1 mg / kg and 21.6 ± 4.0 mg / kg, cadmium: 2.8 ± 0.3 and 25.6 ± 0.4 mg / kg, lead: 0.5 ± 0.4 and 86.7 ± 5.5 mg / kg and for Lemna minor (manganese): 5.10 ± 0.1 and 5.80 ± 0.3 mg / kg, iron: 49.9 × 101 ± 18.8 and 6784.0 × 101 ± 709.5 mg / kg, potassium: 113.8 ± 4.4 and 2712.0 × 101 ± 98.8 mg / kg, calcium: <10 ± <0.1 and 97830 ± 2073.9 mg / kg, cobalt: <3.0 ± <0.2 mg / kg, nickel: 0.001 ± 0.00 and 0.004 ± 0.00 mg / kg, zinc : 3.12 ± 0.17 and 4.00 ± 0.82 mg / kg, copper: 0.001 ± 0.0001 and 0.006 ± 0.0004 mg / kg, aluminum: 0.02 ± 0.00 mg / kg and 0.15 ± 0.06 mg / kg, chromium: 0.001 ± 0.0001 and 0.003 ± 0.0002 mg / kg, cadmium: 0.0004 ± 0.00002 and 0.001 ± 0.00003 mg / kg, lead: 0.001 ± 0.00 and 0.004 ± 0.0002 mg / kg. On the other hand, Oreochromis niloticus (Calcium): <0.1 × 102 ± 0.3 and 25 220.0 × 101 ± 48094.1mg / kg, Iron: 10350.7 × 101 ± 5131.7 and 102158.0 × 101 ± 27182.7,Manganese: 1.815 × 101 ± 0.931mg / kg and 7.945 × 101 ± 2.131 mg / kg, Cobalt: <6.0 ± <0.0 mg / kg, Nickel: <0.501 ± <0.049 mg / kg and 61.503 ± 1.302 mg / kg, Zinc: <0.736 ± 0.015 mg / kg and 42.923 × 101 ± 3.176 mg / kg, Copper: 1.902 ± 0.007 mg / kg and 35.302 ± 0.247 mg / kg, Aluminum: 1.414 × 103 ± 70.464mg / kg and 9.493 × 103 ± 147.214 mg / kg, Chromium: <1.0001 ± <0.0408 and <1.0003 ± <0.0105, Cadmium: 0.2002 ± 0.0718 mg / kg and 19.0001 ± 0.8981mg / kg and Lead: <1, 0002 ± <0.0051 mg / kg and 3.9004 ± 0.0895 mg / kg of dry matter. One of the serious causes of their persistence is their biomagnification in the food chain. This is why the response of  Pistia stratiotes, water lettuce and Lemna minor from the nine sampling sites of the Matete river to large and / or low concentrations of metallic elements is reflected either by an inhibition of photosynthetic processes (antagonism and effect synergistic) and the instinct of certain species. However, this ecosystem offers an ecological niche low in dissolved oxygen and a nutrient-poor and toxic diet for the species that live there. In this regard, the flora of the Matete river accumulates the metallic elements in a significant way and according to the diversity of the environments and the size of the species.

References

. Barletta, M., Barletta-Bergan, A., Saint-Paul, V. & Hubold, G, 2003, Seasonal changes in density, biomass and diversity of estuarine fishes in tidal mangrove creeks of the lower Caete Estuary (northern Brazilian coast , east Amazon). Marine Ecology Progress Series 256, 217-228.

. Barletta, M., Saint-Paul, V., Barletta-Bergan, A., Ekau, W. & Schories, D, 2000. Spatial and temporal distribution of Myrophis punctatus (Ophichthidae) and associated fish fauna in a Northern Brazilian intertidal mangrove forest. Hydrobiologia 426, 65-74.

. Berube, P, 1991. Water quality in the Bécancour river basin, 1979 to 1989, Ministry of the Environment of Quebec, Directorate of water quality, Envirodoq No. 91 0401, QEN / QE / 73 / E, 199 p, 14 .

. Blaber, S. J. M., 2000. Tropical estuarine fishes: ecology, exploitation and conservation. (Blaber, S. 1. M., ed.). Blackwell Science, Oxford, USA.

. Brient L., Raoult C., Le Rouzic B., Vezie C., Bertru G., 2001. Conditions of use of CuSO4 to limit the proliferation of cyanobacteria and reduce its effects on the environment, TSM, 9, 66 -74p.

. Chatterjee J. and Chatterjee C., 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut, 109 (1): 69-74.

. Chen J., Zhu C., Li L. P., Sun Z.Y., Pan X.B., 2007. Effects of exogenous salicylic acid on growth and H2O2, metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences 19, 44-49p.

. Dallinger R. 1993. Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger E. & Rainbow R. (eds) - Ecotoxicology of metals in Invertebrates. Lewis Publischers, Boca Raton, FL, USA, 245-289p.

. Feron, V. J. and Groten, J. P., 2002. Toxicological evaluation of chemical mixtures. Food and chemical toxicology 40, 825-839p.

. Ferreira D., 2009. Characterization of the bioavailability of copper in aquatic ecosystems by passive sampling (DGT: Diffusion Gradient in Thin films), bio-indication (aquatic bryophytes), and modeling (BLM: Biotic Ligand Model). Doctoral thesis Chemistry, Environment and Health, 220 p.

. Fraysse B., Baudin J.-P., Garnier-Laplace J., Adam C. and Boudou A., 2002. Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha). Whole organism study. Environ Pollut, 118 (3): 297-306p.

. Goyer RA, Clarkson TW, 1996. Toxic effects of metals. Casarett & Doull’s Toxicology. The Basic Science of Poisons, Fifth Edition, Klaassen, CD [Ed]. McGraw-Hill Health ProfessionsDivision, ISBN 71054766.

. Hontela, A., 1998. “Interrenal dysfunction in fish from contaminated sites: In vivo and in vitro assessment”, Environmental Toxicology and Chemistry, vol. 17, p. 44-48p.

. Hörnström E., Harbom A., Edberg F., Andrén C., 1995. The influence of pH on aluminium toxicity in the phytoplankton species Monoraphidium dybowskii and M. griffithii, Water, Airand Soil Pollution, 85, 817-822p.

. Hounkpatin Armelle S.Y, Edorh A.Patrick, Koumolou Luc, Boko Michel, 2011. Heavy metals (Pb and Cd) in the sediments of the lake city of Ganvie and toxicological quality of water and fish, 6th edition, 2iE scientific days, April 4-8, 2011-Campus 2iE ouagadougou, 1-4 p.

. Hutchinson, T.C. and H. Czyrska, Heavy metal toxicity and synergism to floating aquatic, 1975. weeds. Mitt.Int.Ver.Theor.Angew.Limnol., 19: 2102-11.

. Ineris, 2006. National Institute for the Industrial Environment and Risks. Toxicological and Environmental Data Sheet for Chemical Substances: Cobalt. (available on the internet: http://www.ineris.fr).

. Knauer K., Behra R. and Sigg L., 1997. Effects of Free Cu2 + and Zn2 + ions on growth and metal accumulation in freshwater algae, Environ. Toxicol. Chem., 16, 220-229p.

. Leveque .C, Paugy .D, Teugels .G.G, 1990. Fauna of fresh and brackish water fishes of West Africa, volume 1, Paris / France, Scientific edition of the Orstom.

. Leveque .C, Paugy .D, Teugels .G.G, 1992. Fauna of the fresh and brackish water fish of West Africa, volume 2, Paris / France, Scientific edition of the Orstom.

. Marshner H., 1986. Mineral nutrition of higher plants. Chapter 8: Function of mineral nutrients: Macronutrients. London Academic Press. pp 195-267p.

. McKnight D., 1981. Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill pond reservoir, Burlington, Massachusetts, Limnol. Oceanogr., 26 (3), 518-531p.

. McKnight D.M., Chisholm S.W., Harleman D.R.F., 1983. CuSO4 Treatment of nuisance algal blooms in drinking water reservoirs, Environ. Manag., 7 (4), 311-320.

. Musibono, 1999. Seasonal variations of hexavalent chromium (Cr IV), Copper (Cu), Lead (Pb) and Zinc (Zn) dissolved in four urban rivers of Kinshasa (DRC) and ecological impact analyzes, in Actes du 1er conference on the issue of waste in Kinshasa (Congo), Kinshasa, August 12-15, in Landbouw. MedVet. Gent (1) 1999: 81-86p.

. Panfili, 1. Thior, D., Ecoutin, J. M., Ndiaye, P. & Albaret, J. 1. 2006, Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries. Journal of Fish Biology 69, 95-113.

. Pickering, Q.H., Chronic toxicity of nickel to the fathead minnow. J.Water, 1974. Pollut.Control Fed., 46:760-5.

. Poleo A.B.S., 1995. Aluminum polymerization - a mechanism of acute toxicity of aqueous aluminum to fish, Aquatic Toxicology, 31, 347-356p;

. Poll M. et Gosse J.P., 1995. Généra des poissons d’eaux douces de l’Afrique. Classe des sciences, académie Royale de Belgique, 324p.

. Ramade F, 2007. introduction à l'écotoxicologie: fondements et application, Ed lavoisier.

. Remon E., Bouchardon, J.L., Cornier B., Guy, B., Leclerc J,C., Faure O., 2005. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration, Environmental Pollution 137, p. 316-323.

. Rojickova-Padrtova R. et Marsalek B., 1999. Selection and sensitivity comparisons of algal species for toxicity testing, Chemosphere, 38 (14), 3329-3338p.

. Sealey WM, Lim C, Klesius PH, 1997. Influence of the dietary level of iron from iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. Journal of the World Aquaculture Society 28, 142-149p.

. Stratton, C.W. and C.T. Corke, 1979. The effect of nickel on the growth, photosynthesis and nitrogenase activity of Anobaena inequalis. Can.J.Microbiol., 25:1094-9.

. Strezov,A., Nonova,T, 2005. Environnemental monitoring of heavy metals in Bulgarian blac sea green algae ; Bulgarian academy of Science, Institute for nuclear research and Nuclear energy ; environnemental Monitoring and Assessment 105 :99-110p.

. Sunda W. and Huntsman S., 1996. Antagonisms between cadmium and zinc toxicity and manganese limitations in a coastal diatom. Limnology and Oceanography 41(3):373-387p.

. Zaimeche Said, 2015. Contribution à l’étude de l’action d’agents polluants sur des végétaux bioindicateur, Thèse de doctorat, Faculté des sciences de la nature et de la vie Département de biologie et écologie végétale, République Algérienne Démocratique et populaire, 189p.

Downloads

Published

2021-02-18

How to Cite

N. Kusonika, A. ., M. Mbuyi, F. X. ., T. Tangou, T. ., Mutambwe, S. ., & E. Musibono, D. . (2021). Impact of the Degrading Toxicity of Metallic Trace Elements on the Flora and Fauna of the Matete River in Kinshasa. American Scientific Research Journal for Engineering, Technology, and Sciences, 76(1), 199–217. Retrieved from https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/6513

Issue

Section

Articles