Gas Chromatography-Spectrometric Analysis of An African Mistletoe Leaf Extract


  • Dr Ajibola Monisola Umarudeen Department of Pharmacology & Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Federal Capital Territory, Nigeria


Azardirachta indica, GCMS, leaf extract, methanol, Tapinanthus globiferus


The high prevalence of mood disorders and the failings of the current drugs for the treatment of these disorders call for renewed efforts to discover novel chemical entities to meet the disease demand of these clinical conditions. Methanol Tapianthus globiferus leaf extract has demonstrated anxiolytic activity in mice. However, reports on specific chemical components of the medicinal plant that may account for the anxiolytic and other biological effects are few. Thus, gas chromatography-mass spectrometric analysis was carried out on methanol Tapianthus globiferus leaf extract. The results include acetic acid, oxalic acid, isobutyl amine, N-ethyl formamide, ethanamine, o-allyl hydroxylamine, N, N-dimethyl ethanamine, dimethyl silane, 1-propanol, 2-propenenitrile, carbonyl sulfide, [3, 4-b] pyrazin-5 (4H)-one, 6-(1-pyrrolidinyl)-furanone, thiirane, urea and propenamide. These phytoconstituents are associated with important biological activities and may be responsible for the anxiolytic activity of the extract under investigation and some other pharmacological activities reported for extracts of Tapinanthus globiferus and its congeners. These findings are a justification for the traditional uses of Tapianthus globiferus for the management of diverse chronic diseases.


Carvalho A. F., Sharma M. S., Brunoni A. R., Vieta E. & Fava G. A. (2016): The Safety, Tolerability and Risks Associated with the Use of Newer Generation Antidepressant Drugs: A Critical Review of the Literature. Psychother Psychosom; 85 (5):270-288.

Kulikov A. V., Gainetdinov R. R., Ponimaskin E., Kalueff A. V., Naumenko V. S & Popova N. (2018): Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opinion on Therapeutic Targets: Volume 22, Issue 4; Pages 319-330.

Lader M. (2014). Benzodiazepine harm: How can it be reduced? British Journal of Clinical Pharmacology. 77 (2): 295–301.

Coupland C., Hill T., Morriss R., Moore M., Arthur A. & Hippisley-Co J. (2018): Antidepressant use and risk of adverse outcomes in people aged 20–64 years: cohort study using a primary care database. BMC Med 16 (1): 36. doi: 10.1186/s12916-018-1022-x.

Cartwright, C., Gibson, K., Read, J., Cowan, O., & Dehar, T. (2016). Long-term antidepressant use: patient perspectives of benefits and adverse effects. Patient preference and adherence, 10 (1): 1401–1407.

Zeki O. C., Eylem C. C., Reçber T., K?r S. & Nemutlu E. (2020): Integration of GC–MS and LC–MS for untargeted metabolomics profiling, Journal of Pharmaceutical and Biomedical Analysis, Volume 190 (4): 113509.

Delazar, A., Nazifi, E., Movafeghi, A., Nahar, L., Nazemiyeh, H., Moghadam, S.B., 1Asnaashari S., Sarker S.D. (2009). GC-MS analysis of Ornithogalum procerum. Daru 17 (1): 33–36.

Thomas E., Aneesh T. P., Thomas D. G., and Anandan R. (2013). GC-MS analysis of phytochemical compounds present in the rhizomes of Nervilia aragoana GAUD. Asian Journal of Pharmaceutical and Clinical Research 6, Suppl. 3: 68–74.

Muthulakshmi A., Joshibhi M. R., Mohan V. R. (2012): GC-MS analysis of Feronia elephantum correa [Rutaceae]. App.Pharmac. sci. 2 (2): 69-74.

Gomathi D., Kalaiselvi M., Ravikumar G., Devaki K. & Uma C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J Food Sci Technol 52 (2): 1212–1217.

Kanthal L. K., Dey A., Satyavathi K., & Bhojaraju P. (2014). GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy research, 6(1), 58–61.

Akash M.S.H. & Rehman K. (2020). Gas Chromatography. In: Essentials of Pharmaceutical Analysis. pp 185–193.

Adesina S. K., Illoh H. C., Johnny I. I., Jacobs I. E. (2013): African mistletoes (Loranthaceae); ethnopharmacology, chemistry and medicinal values: an update. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM; 10 (4): 161–170.

Ogbonnia S. O., Anyika E. N., Mbaka G. O., Utah P., Ugwu D., Nwakakwa N., Ota D. A. (2012): Antihyperglycaemic and antihyperlipidaemic effects of aqueous ethanol extract of Tapinanthus globiferus leaves and Treculia africana root bark and their mixture on alloxan diabetic rats: J. N. Am., 3(6): 237-246.

Deliorman D., Calis I. & Ergun F. (2000): Studies on the vascular effects of the fractions and phenolic compounds isolated from Viscum album ssp album. J Ethnopharmacol. 72 (1-2): 323–329.

Abubakar K., Adebisi I. M., Ugwah-Oguejiofor J. C., Idris G.O., Idris B. & Mshelia H.E. (2016): Phytochemical Screening and Anticonvulsant Activity of the Residual Aqueous Fraction of Tapinanthus globiferus Growing on Ficus glums. Herb Med. Vol. 2, No 2. 7.

Shehu A., Magaji M. G., Yau J., Abubakar A. (2017): Ethno-botanical survey of medicinal plants used for the management of depression by Hausa tribes of Kaduna State, Nigeria. Journal of Medicinal Plants Research; 11(36): 562–567.

Harquin Simplice F, David Emery T. & Hervé Hervé N. A. (2014): Enhancing spatial memory: Anxiolytic and antidepressant effects of Tapinanthus dodoneifolius (DC) Danser in mice. Neurology Research International. 9. Article ID: 974308.

A. M. Umarudeen, M. G. Magaji, S. O. Shaibu, C. Aminu & A. I. Musa (2019): Acute anxiolytic activity of aqueous Ampelocissus africana wholeplant, Ficus sycomorus stem bark and Tapinanthus globiferus leaf extracts in Swiss Albino mice. International Archives of Medical and Health Research. 1(3): 75-81.

A. M. Umarudeen & M. G. Magaji (2019): Comparative in-vivo anxiolytic efficacy of aqueous and methanol Tapinanthus globiferus leaf extracts. International Archives of Medical and Health Research. 1(3):89-93.

A. M. Umarudeen & C. Aminu (2020): Acute toxicological and in-vivo anxiolytic activity screening of aqueous and chloroform fractions of hydroalcoholic Tapinanthus globiferus leaf extracts. World Journal of Innovative Research. 8(5):9-12.

A. M. Umarudeen & C. Aminu (2019): Phytochemical, elemental and in-vitro antioxidant activity screening of crude methanol Tapinanthus globiferus leaf extract. Int. Arch. Med. Med. Sci. 1(3): 29-34.

Amaechi N. C. (2021). Evaluation of Bioactive Compounds in Moringa oleifera Flower Using Gas hromatography Mass Spectrometry/Fourier Transform Infrared Spectroscopy: The Need for Good Postharvest Handling". Acta Scientific Nutritional Health 5 (12): 112-122.

Singh R., Singh S. K., Maharia R. S. & Garg A. N. (2015). Identification of new phytoconstituents and antimicrobial activity in stem bark of Mangifera indica extract (L.). J Pharm Biomed Anal. 105C:150-155.

Kommalage M. & Höglund A. U. (2005). Involvement of spinal serotonin receptors in the regulation of intraspinal acetylcholine release. Eur J Pharmacol. 509 (2-3):127-34.

Haefely W., Martin J. R. and Schoch P. (1990). Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends in Pharmacological Sciences. Vol. 11(11): 452–456.

David D. J., Klemenhagen K. C., Holick K. A., Saxe M. D., Mendez I., Santarelli L., Craig D. A., Zhong H., Swanson C. J., Hegde L. G., Ping XI., Dong D., Marzabadi M. R., Gerald C. P., Hen R. (2007). Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy) phenyl] methyl} (4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther. 321(1): 237-48.

Dembitsky V. M. (2006). Natural neo acids and neo alkanes: Their analogs and derivatives. Lipids 41 (4): 309–340.

Deka, B., Manna, P., Borah, J. C., & Talukdar, N. C. (2022). A review on phytochemical, pharmacological attributes, and therapeutic uses of Allium hookeri. Phytomedicine Plus, Vol. 2 (2) 100262.

L. Bayan, P. H. Koulivand & A. Gorji (2014). Garlic: a review of potential therapeutic effects. Avicenna journal of phytomedicine, 4 (1), 1–14.

Singla P. and G. Kaur (2018): Traditional Health Boosters: Onion, Ginger and Garlic. Chem Sci Rev Lett. 7 (25): 42-47. ISSN 2278-6783.

Asif M. (2014): Biological Overview on Thiirane Derivatives. SOP TRANSACTIONS ON APPLIED CHEMISTRY. 1 (1): 1–10.

X. Yang, S. Huang, Z. Jia, Z. Xiao, Z. Jiang, Q. Zhang, L. Gan, B. Zheng, G. Yuan, and S. Zhang (2008). “Reactivity of fullerene epoxide: Preparation of fullerene-fused thiirane, tetrahydrothiazolidin-2-one, and 1, 3-dioxolane,” The Journal of organic chemistry, vol. 73, no. 7, pp. 2518–2526.

Q. Peng, C. Hu, J. Cheng, Z. Zhong, and R. Zhuo, “Influence of disulfide density and molecular weight on cross-linked polyethylenimine as gene vectors,” Bioconjugate chemistry, vol. 20, no. 2, pp. 340–346, 2009. 9 Biological Overview on Thiirane Derivatives

Stolte W. C. and Ohrwall G. (2010). “Sulfur k-edge photofragmentation of ethylene sulfide,” ¨ The Journal of chemical physics, vol. 133, no. 1, p. 014306.

Lee, M., Bernardo, M.M., Meroueh, S.O., Brown, S., Fridman, R., and Mobashery, S. (2005). Synthesis of chiral 2-(4-phenoxyphenylsulfonylmethyl) thiiranes as selective gelatinase inhibitors. Organic Letters 7 (20): 4463–4465.

Block E. (1985). The chemistry of garlic and onions. Scientific American 252 (3): 114–119.

Kaiser E. A., Kuburas A., Recober A., and Russo A. F. (2012). Modulation of CGRP-induced light aversion in wild-type mice by a 5-HT1B/D agonist. Journal of Neuroscience 32 (44): 15439–15449.

Mason B. N., Kaiser E. A., Kuburas A., Loomis M. C. M., Latham, J. A., Garcia-Martinez L. F. & Russo A. F. (2017). Induction of migraine-like photophobic behavior in mice by both peripheral and central CGRP mechanisms. Journal of Neuroscience 37 (1): 204–216.

Glennon, R.A., Lee, M., Rangisetty, J.B., Dukat, M., Roth, B.L., Savage, J.E. McBride A., Rauser L., Hufeisen S. & Lee D. K. (2000). 2-Substituted tryptamines: Agents with selectivity for 5-HT6 serotonin receptors. Journal of Medicinal Chemistry 43 (5): 1011–1018.

Svenningsson P., Tzavara E. T., Qi H., Carruthers R., Witkin J. M., Nomikos G. G. & Greengard P. (2007). Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. Journal of Neuroscience 27 (5): 4201–4209.

Kenwood B.M., Calderone J. A., Taddeo E. P., Hoehn K. L. & Santos W. L. (2015). Structure-activity relationships of furazano[3,4-b] pyrazines as mitochondrial uncouplers. Bioorg Med Chem Lett. 25(21):4858-4861.

Bhalla N., Ingle N., Patri S. V. & Haranath D. (2021). Phytochemical analysis of Moringa Oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi Journal of Biological Sciences. Volume 28, Issue 12, Pages 6915-692.

Alexopoulos S. J., Chen S., Brandon A. E., Salamoun J. M., Byrne F. L., Garcia C. J., Beretta M., Olzomer E. M., Shah D. P., Philp A. M., Hargett S., Lawrence R. T., Lee B., Sligar J., Carrive P., Tucker S. P., Philp A., Lackner C., Turner N., Cooney G. J., Santos W. L., & Hoehn K. L. (2020). Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice. Nature Communications,11(1): 2397.


Balamurugan K., Nishanthini A., Veerabahu Ramasamy Mohan V. R. (2012). GC–MS analysis of Polycarpaea corymbosa (L.) Lam whole plant, Asian Pacific Journal of Tropical Biomedicine,Volume 2, Issue 3, Supplement; Pages S1289-S1292,ISSN 2221-1691.

Hukkeri V. I. & Kenganora M. (2007). ANTIOXIDANT AND ANTIRADICAL ACTIVITY OF LEAVES OF POLYCARPAEA CORYMBOSA IN VITRO. ISHS Acta Horticulturae 841 (841): 523-528).

Benson S., Downey L. A., Stough C., Wetherell M., Zangara A., Scholey A. (2014). An acute double-blind, placebo-controlled cross-over study of 320 mg and 640 mg doses of Bacopa monnieri (CDRI 08) on multitasking stress reactivity and mood. Phytother Res. 28 (4): 551-9. doi:10.1002/ptr.5029

Konappa, N., Udayashankar, A.C., Krishnamurthy, S., Pradeep C. K., Chowdappa S. & Jogaiah S. (2020). GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep 10, 16438.

Nan L., Nam H.H., Choo B.K., Park J.C., Kim D.G., Lee J.H. & Moon K.H. (2018). An ethanolic extract of Allium hookeri root alleviates reflux esophagitis and modulates NF-?B signaling. Evidence-Based Complementary and Alternative Medicine. Volume 2018 (1):1-8. Article ID 1834681.

Duarte D.B., Vasko M.R., Fehrenbacher J.C. (2012). Models of inflammation: carrageenan air pouch. Current protocols in Pharmacology. Chapter 5, Unit 5.6.

Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2005, pp. 17624/28029.

Rahman M. M., Abdullah R. B. and Wan Khadijah W. E. (2013). A review of oxalate poisoning in domestic animals: tolerance and performance aspects. J. Anim. Physiol. Anim. Nutr. 97(4), 605–614.

Calistan M. (2000). The metabolism of oxalic acid. Turk. J. Zool. Vol. 24, No 1, 103–106.

Franceschi V. R. and Nakata P. A. (2005). Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol., 56 (1): 41– 71.

Libert, B. and Franceschi V. R. (1987). Oxalate in crop plants. J. Agric. Food Chem., 35 (6): 926–938.

Prasad R. & Shivay Y.S. (2017). Oxalic Acid/Oxalates in Plants: From Self-Defence to Phytoremediation. Current Science, 112 (8): 1665-1667.

Chinnasamy P. S., Parimala S. & Kandhasamy M. (2018). PHYTOCHEMICAL EVALUATION OF SEED AND FRUIT PULP EXTRACTS OF PASSIFLORA FOETIDA L. World Journal of Pharmaceutical Research. Volume 7, Issue 7, 1924-1932.

Ezeonu C. S. & Ejikeme C. M. (2016). Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. New Journal of Science, Volume 2016 | Article ID 5601327. Pp. 1–9.

Baky M. H., Shawky E. M., Elgindi M. R. Haitham A. & Ibrahim A. H. (2021). ComparativeVolatile Profiling of Ludwigia stolonifera Aerial Parts and Roots Using VSE-GC-MS/MS and screening of Antioxidant andMetal Chelation Activities. ACSOmega 6 (38): 24788-24794.

Vetter, J. (2000). Plant cyanogenic glycosides. Toxicon, 38 (1), 11-36.

Rabizadeh F, Mirian MS, Doosti R, Kiani-Anbouhi R, Eftekhari E. (2022). Phytochemical Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional Persian Medicine. Evid Based Complement Alternat Med.2022 (5): 1-13.

Saleh H. M., Aglan R. F. & Mahmoud H. H. (2019). Ludwigia stolonifera for remediation of toxic metals from simulated wastewater. Chem. Ecol. 35 (2): 164-178.

Lin W. S., Lo J. H. Yang J. H., Wang H. W., Fan S. Z., Yen J. H. & Wang P. Y. (2017). Ludwigia octovlvis extract improves glycemic control and memory performance in diabetic mice. J. Ethnopharmacol. 207, 211-219.DOI: 10.1016/j.jep.2017.06.044.

Smida I., Sweidan A., Souissi Y., Rouaud I., Sauvager A., Torre F., Calvert V., Le Pett J. & Thomas S (2018). Anti-acne, Antioxidant, Cytotoxic Properties of Lugwigia peploides Leaf extract. Int. J. Pharmacogn. Phytochem. Res. 10 (7): 271-278.

Praneetha P., Reddy Y. & Kumar B. (2018). In vitro and in-vivo hepatoprotective studies on methanolic extract of aerial parts of Ludwigia hyssopifolia G. Don Excell. Pharmacogn. Mag. 14 (59): 546-553.

Yugandhar P. & Savithramma N. (2017). Spectroscopic and chromatographic exploration of different phytochemical and mineral contents from Syzygium alternifolim (Wt.) Walp. an endemic, endangered medicinal tree taxon. -. journal of applied pharmaceutical science, 7 (1): 073-085.

Imo C. (2020). Chemical constituents of olive oil commonly sold in Wukari, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 7(6), 37-44.

Prado-Prado, F.J., García-Mera, X., González-Díaz, H. (2010). Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorg Med Chem., 18(6): 2225-2231.

Eyya S. M., Anthony D. J., Muhammad Y., Timothy W. (2017). Preliminary Phytochemical Analysis and In vivo Antimalarial Activity of the Crude Extracts of the Leaf of African Mistletoe Tapinanthus dodoneifolius Against Plasmodium berghei in Mice. J Microbiol Exp 5(6): 00165.

Qadir A., Khan N., Arif M., Ullah S. N. M. N., Khan S. A., Ali A. & Imran M. (2022). Identification of phytobioconstituents present in Simmondsia chinensis L. seeds extract by GC-MS analysis. Journal of the Indian Chemical Society. Volume 99, Issue 2, 100354.


Al-Qizwini, H., Ekbal, A., Mhaidat, N., & Maraqa, A. (2014). Antioxidant and antimicrobial activities of Jordanian Simmondsia chinensis. European Scientific Journal, Vol. 10, No 27, 229-241.

Ganatra T. H., Joshi U. H., Desai V. T., Desai T. R. & Tirgar P. R. (2012). Investigation of Cardiotonic Activity of Moringa Oleifera Roots in Doxorubicin Induced Congestive Heart Failure. Journal of Pharmacy Research. 5(7),3687-3691.

Rajendar B., Bhavana K., Divya Ch., Swarna M. & Anvesh K. (2017). EVALUTION OF CARDIAC TONIC ACTIVITY OF METHANOLIC LEAF EXTRACT OF MORINGA OLEIFERA. International Journal of Pharma Sciences and Research. Vol. 8 No. 06, 152-156.

Amy B., Deanna M. and Christy W. (2006). Hawthorn (online).

Hoffman D. L. (2006). Hawthorn (online).


Gescher A, Gibson NW, Hickman JA, Langdon SP, Ross D, Atassi G (1982) N-methylformamide: antitumour activity and metabolism in mice. Br J Cancer 45(6):843–850.

Enemor V. H. A., Oguazu E., A.Odiakosa U. and Okafor S. C. (2019). Evaluation of the Medicinal Properties and Possible Nutrient Composition of Citrullus lanatus (Watermelon) Seeds. Research Journal of Medicinal Plants, 13: 129-135.

Sharma, P., Shri, R., Ntie-Kang, F., & Kumar, S. (2021). Phytochemical and ethnopharmacological perspectives of Ehretia laevis. Molecules, 26 (12), 3489.

Ullah R. & Alqahtani A. S. (2022). GC-MS Analysis, Heavy Metals, Biological, and Toxicological Evaluation of Reseda muricata and Marrubium vulgare Methanol Extracts. Evid Based Complement Alternat Med. Article ID 2284328, Volume 2022, 9 pages.

Muthulakshmi A. R. J. M., & Mohan V. R. (2012). GC-MS analysis of bioactive components of Feronia elephantum Correa (Rutaceae). Journal of Applied Pharmaceutical Science, 02 (02): 69-74.

Zerin T., Kim Y. S., Hong S. Y., Song H. Y. (2013). Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. J. Appl. Toxicol. 33 (12): 1460–1.

Rosy, B.A., & Rosakutty, P.J. (2012). GC-MS analysis of methanol wild plant and callus extracts from three Cissus species, Family Vitaceae. Journal of Chemical and Pharmaceutical Research. 4 (7): 3420-3426.

Anusuya M., Princy V., Nagaveni A., Suganthi M., Poonkodi K. & Jayanthi E. (2021). Investigation of Phytochemical Constituents of Tobacco (Nicotiana Tabacum L.) Methanol Extract.Mol Biol. Volume 10 (2):277.

Khan F., Magaji M. G., Abdu-Aguye I., Hussaini I. M., Hamza A., Olarukooba A.B., Sani M. A. and Maje, I. M. (2021). Phytochemical pro?ling of the bioactive principles of Alysicarpus glumaceus (Vahl) DC. aerial parts. ?stanbul Journal of Pharmacy, 51 (2), 228-238.

Alam R., Imon R. R., Kabir Talukder M. E., Akhter S., Hossain M. A., Ahammad F., Rahman M. M. (2021). GC-MS analysis of phytoconstituents from Ruellia prostrata and Senna tora and identification of potential anti-viral activity against SARS-CoV-2. RSC Adv. 11 (63): 40120-40135.

Ads E. N., Rajendrasozhan S., Hassan S.I., Sharawy S. M., & Humaidi J. (2018). Phytochemical screening of different organic crude extracts from the stem bark of Ziziphus spina-christi (L.). Biomedical Research-tokyo, 29 (8), 1645-1652.

WHO (1990). International Programme on Chemical safety. Environmental health criteria 102.

Laddu R. (1970). Antiarrhythmic activity of 1-(di-2,6-xylylmethoxy)-3-(isopropylamino) propanol-2-hydrochloride (BS-7977-d) in the dog heart lung preparation. Eur J Pharmacol. 9(2):129-35.

Dkhil M. A., Kassab R. B., Al-Quraishy S., Abdel-Daim M. M., Zrieq R. and Abdel Moneim A. E. (2018). Ziziphus spina-christi (L.) leaf extract alleviates myocardial and renal dysfunction associated with sepsis in mice. Biomed Pharmacother. 102 (3): 64-75.

Kavitha K., Kavitha T., Fathima K. R. (2018) Preparation and evaluation of herbal gel formulation of Cissus vitiginea leaf. Journal of Pharma Research, 7 (7): 179-181.

Adeleye A., Conubogu C., Ayolabi. C. I., Isawumi A. O. and Nshiogu M. E. (2008). Screening of crude extracts of twelve medicinal plants and “wondercure” concoction used in Nigeria unorthodox medicine for activity against mycobacterium tuberculosis from tuverculosis patients’ sputum. African journal of Biotichnolog. 7 (18): 3182-3187.

Hussain A. Z. & Kumaresan S. (2014). GC-MS analysis and antimicrobial evaluation of Oldenlandia corymbosa. Journal of Environmental Nanotechnology, 3(2): 161-167.

Schaschke N. Miraziridine A (2004): natures blueprint towards protease class-spanning inhibitors. Bioorg Med Chem Lett. 14 (4): 855-7.

Tabares P., Degel B., Schaschke N., Hentschel U. & Schirmeister T. (2012). Identification of the protease Inhibitor Miraziridine A in the Red Sea Sponge Theonella Swinhoei.. Pharmacognosy Research. 4(1):63-66.

Frlan R. & Gobec S. (2006). Inhibitors of cathepsin B. Curr Med Chem.13(19):2309-27.

Li C., Chen L., Wang J., Zhang L., Tang P., Zhai S., Guo W., Yu N., Zhao L., Liu M. & Yang S. (2011). Expression and clinical significance of cathepsin B and stefin A in laryngeal cancer. ONCOLOGY REPORTS 26, No 4: 869-875.

Steiger A. K., Zhao Y. & Pluth M. D. (2018). Emerging Roles of Carbonyl Sulfide in Chemical Biology: Sulfide Transporter or Gasotransmitter?. Antioxidants & redox signaling, 28 (16): 1516–1532.

Li M., Zhang S. & Yang B. (2020). Urea Transporters Identified as Novel Diuretic Drug Targets. Curr Drug Targets. 21(3): 279-287.

Cil O., Esteva-Font C., Tas ST., Su T., Lee S., Anderson M. O., Ertunc M., Verkman A. S. (2015). Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int. 88 (2):311-20.

Decaux G., Andres C., Gankam K. F., Soupart A. (2010). Treatment of euvolemic hyponatremia in the intensive care unit by urea. Critical Care, 14 (5): R184.

Cil O., Ertunc M. & Onur R. (2012). The diuretic effect of urea analog dimethylthiourea in female Wistar rats. Hum Exp Toxicol. 31(10): 1050–1055.

Verma R., Satsangi G. P. and Shrivastava J. N. (2013). Analysis of phytochemical constituents of the ethanolic and chloroform extracts of Calotropis procera using gas chromatography-mass spectroscopy (GC-MS) technique. Journal of Medicinal Plants Research. Vol. 7(40), pp. 2986 – 2991.

Mathkoor, M. M., Alkhfaji, E. N., & Abd-Ulamer Oda, N. (2023). Using GC-MS Technology to Identify the Compounds Resulting from Mixing of Alcoholic Extracts of Some Medicinal Plants. Journal of Medicinal and Chemical Sciences, 6 (3), 486-499.

Amirav A., Gordin A., Poliak M. & Fialkov A. B. (2008). Gas chromatography-mass spectrometry with supersonic molecular beams. J Mass Spectrom. 43 (2):141-63.

Kopka J., Fernie A., Weckwerth W., Gibon Y. & Stitt M. (2005). Metabolite profiling in plant biology: platforms and destinations. Genome Biol. 5(6):109.




How to Cite

Dr Ajibola Monisola Umarudeen. (2023). Gas Chromatography-Spectrometric Analysis of An African Mistletoe Leaf Extract. American Scientific Research Journal for Engineering, Technology, and Sciences, 91(1), 36–54. Retrieved from