Analysis of Geomechanical Parameters of a Non-Typical Sandy Soil

Authors

  • Fellipe José Reis Brandão Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos s/n Cidade Universitária, Recife 50740-530, Brazil
  • Nayara Torres Belfort Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos s/n Cidade Universitária, Recife 50740-530, Brazil
  • Lucas Eduardo dos Santos Lima Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos s/n Cidade Universitária, Recife 50740-530, Brazil
  • Ana Karine Santos Dantas Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos s/n Cidade Universitária, Recife 50740-530, Brazil
  • José Fernando Thomé Jucá Department of Civil Engineering, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos s/n Cidade Universitária, Recife 50740-530, Brazil

Keywords:

Environmental geotechnics, Slope stability, Shear strength, Numerical modeling

Abstract

Municipal solid waste (MSW) landfill must have the stability of its slopes ensured. In this sense, it is necessary to investigate the stability of MSW landfills’ slopes in different scenarios. Therefore, in this paper, shear strength of a soil from a landfill cover layer, which was compacted with different moistures, was evaluated to obtain the needed parameters for numerical analysis. The methodology applied was experimental and numerical.  Experimental tests comprise particle size analysis, compaction to determine optimal water content, compaction in optimal water content ±4 %, and direct shear tests with the compacted samples. Numerical analyses were performed once soil parameters for each direct shear test scenario were obtained. These analyses were developed by a software applying the limit equilibrium method improved by Morgenstern & Price aiming to evaluate the geomechanical behavior of the landfill slopes concerning different soil moistures. It was observed that the soil presented similar cohesion and factor of safety (FS) evolution for the different moistures. In contrast, friction angle and soil friction reduced as the water content increased. In conclusion, it was observed that the soil presented a higher shear strength when it was compacted at the optimal water content.

References

. J. F. T. Jucá. “Comportamiento de suelos parcialmente saturados,” Doctoral dissertation, Universidad Politécnica de Madrid, Espanha, 1990.

. M. O. H. Mariano and J. F. T. Jucá, “Field tests for biogas emissions determination in cover layers of municipal solid waste landfills.” Engenharia Sanitária e Ambiental, vol. 15, pp. 223-28, Sep. 2010.

. Y. Chen, J. Li, C. Yang, B. Zhu, L. Zhan, “Centrifuge modeling of municipal solid waste landfill failures induced by rising water levels.” Canadian Geotechnical Journal, vol. 54, pp. 1739-51, Dec. 2017.

. A. Jahanfar, M. Amirmojahedi, B. Gharabaghi, B. Dubey, E. McBean, and D. Kumar. “A novel risk assessment method for landfill slope failure: Case study application for Bhalswa Dumpsite, India.” Waste Management & Research, vol. 35, pp. 220-27, Mar. 2017.

. C. Benvenuto, M. Moretti, M. A. Cipriano, M. Benvenuto, and D. de Souza, “Instrumentação Geotécnica e Monitoramento da Estabilidade de Aterros Sanitários.” Limpeza Pública, vol. 101, pp. 22-31, 2019.

. N. T. Belfort, D. dos S. Santana, D. A. Santos Filho, and J. F. T. Jucá. “Permeabilidade de um Solo de Comportamento Anômalo Utilizado para Cobertura do Aterro Sanitário de Altinho/PE.” in Proc. IX REGEO, 2019, pp. 443-52.

. B. R. Soares and C. B. C. Araújo. “Análise Probabilística da Estabilidade de Taludes em uma Barragem de Terra no Estado do Ceará.” in Proc. XIX COBRAMSEG, 2018.

. G. Sun, S. Cheng, S.; W. Jiang, H. Zheng. “A global procedure for stability analysis of slopes based on the Morgenstern-Price assumption and its applications.” Computers and Geotechnics, vol. 80, pp. 97-106, 2016.

. L. X. Jin, Q. X. Feng, Z. F. Pan. “Slope Stability Analysis Based on Morgenstern-Price Method and Improved Radial Movement Optimization Algorithm.” Journal of Highway and Transport, vol. 31, pp. 39-47, 2018.

. J. F. Zhu, C. F. Chen, H. Y. Zhao. “An Approach to Assess the Stability of Unsaturated Multilayered Coastal-Embankment Slope during Rainfall Infiltration.” Journal of Marine Science and Engineering, vol. 7, pp. 165-85, May. 2019.

. N. R. Morgenstern, V. E. Price. “The Analysis of the Stability of General Slip Surfaces.” Géotechnique, vol. 15, pp. 79-93, 1965.

. C. E. T. Aguilera. “Aplicação de Métodos de Análise de Estabilidade de Taludes de Grande Altura em Mineração”, Masters Thesis, Pontifícia Universidade Católica do Rio de Janeiro, Brasil, 2009.

. M. Guo, C. Li, S. Wang, S. Yin, S. Liu, X. Ge. “Vector-Sum Method for 2D Slope Stability Analysis Considering Vector Characteristics of Force.” International Journal of Geomechanics, vol. 19, Jun. 2019.

. B. Leshchinsky, S. Ambauen, JG&GE. “Limit Equilibrium and Limit Analysis: Comparison of Benchmark Slope Stability Problems.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 141, Oct. 2015.

. D. Dong-ping, Z. Lian-heng, L Liang, L. “Limit-Equilibrium Analysis on Stability of a Reinforced Slope with a Grid Beam Anchored by Cables.” International Journal of Geomechanics, vol. 17, Sep. 2017.

. D. Deng, L. Li, L. Zhao. “Stability Analysis of a Layered Slope with Failure Mechanism of a Composite Slip Surface.” International Journal of Geomechanics, vol 19, Jun. 2019.

. Associação Brasileira de Normas Técnicas. “NBR 7181: Versão Corrigida 2: 2018: Solo – Análise

Granulométrica.” Brasil, 2016.

. Associação Brasileira de Normas Técnicas. “NBR 7182: Solo – Ensaios de Compactação” Brasil, 2016.

. American Society for Testing and Materials. “D3080 / D3080M-11, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.” USA, 2011.

. F. J. R. Brandão, N. T. Belfort, R. P. L. Bezerra, J. F. T. Jucá. “Mechanical Investigation of an Anomalous Clayey Sand Soil Used as Landfill Cover Layer.” in Proc. XL CILAMCE, 2019.

Downloads

Published

2020-12-05

How to Cite

Brandão, F. J. R. ., Belfort , N. T. ., Lima, L. E. dos S. ., Dantas, A. K. S. ., & Jucá, J. F. T. . (2020). Analysis of Geomechanical Parameters of a Non-Typical Sandy Soil. American Scientific Research Journal for Engineering, Technology, and Sciences, 74(2), 38–47. Retrieved from https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/6460

Issue

Section

Articles