Chia Biofortification With Lithium Sources Applied by Foliar Fertilization

  • Guillermo Arturo Herrera Chan PhD student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Gil Rodrigues dos Santos Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Marilene Alves Ramos Dias Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Damiana Beatriz da Silva Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Danilo Pereira Ramos PhD student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Larissa Urzêdo Rodrigues Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Juliana Barilli Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Patrícia Sumara Moreira Master’s Degree student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Daniel Fernando Salas Mendez Master’s Degree student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Juliana Marques Ferrari Master’s Degree student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Dayara Vieira Silva PhD student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
  • Nivaldo Ribeiro Mascena Jr Graduation student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocanstins, Brazil
  • Thiago Henrick Viana Leal Graduation student, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocanstins, Brazil
  • Rodrigo Ribeiro Fidelis Doctorate, Federal University of Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Zona Rural, Gurupi, 77404-970, Tocantins, Brazil
Keywords: Salvia hispanica, lithium hydroxide, lithium sulfate, dosages

Abstract

Lithium (Li) is an element considered essential for humans, however, low concentrations in soil, water and food have caused low consumption by the world population. Consequently, fertilization via lithium leaf to increase its concentration in food employing biofortification is an alternative, given the growing health problems in the population caused by low intakes of this trace element.  Thus, the objective was to evaluate doses and sources of lithium, applied by foliar fertilization in the development and productivity of chia, in the south of the state of Tocantins. The experiment was carried out at the Federal University of Tocantins, Campus de Gurupi, in the agricultural year 2016/17 in pots with 8dm3 containing a dystrophic red-yellow Latosol, with a clay texture, in a randomized block design, in a factorial scheme 5x2, with four replicates. The first factor was constituted by five doses (0, 10, 20, 30 and 40 g ha-1) and the second factor by two sources of Li (lithium hydroxide - LiOH and lithium sulfate - Li2SO4). Two applications were carried out by foliar fertilization, the first at 75 and the second at 95 days after transplanting. At 120 days, the characteristics of plant height, the height of the upper stem, stem diameter, bunch length, number of bunches and after harvest (145 days), the weight of a thousand grains, grain yield and Li content were evaluated in the grains. The supply via Li leaf through LiOH and Li2SO4 sources promoted the biofortification of chia grains. The highest concentrations of Li in the grains were obtained with the application of 29.2 and 31.8 g ha-1 of LiOH and Li2SO4, respectively. The best responses in cluster length, thousand-grain mass, and pH were obtained using LiOH. Regardless of the source, doses of lithium above 35 g ha-1 promote a reduction in the morphological and agronomic characteristics evaluated in the culture of chia. 

References

. SIEGEL, F. R. An Example of Coastal Cities Hazard Exposure and Economics. In: Adaptations of Coastal Cities to Global Warming, Sea Level Rise, Climate Change and Endemic Hazards. Springer, Cham, 2020. p. 63-69. DOI: https://doi.org/10.1007/978-3-030-22669-5_7.

. WALDORF, B. S. Inhabitants of Earth. In: How to Feed the World. Island Press, Washington, DC, 2018. p. 5-23. DOI: https://doi.org/10.5822/978-1- RAY et al., 201361091-885-5_2.

. RAY, D. K.; MUELLER, N. D.; WEST, P. C.; FOLEY, J. A. Yield trends are insufficient to double global crop production by 2050. PloS one, v. 8, n. 6, p. e66428, 2013. DOI: https://doi.org/10.1371/journal.pone.0066428.

. ABE-MATSUMOTO L. T.; SAMPAIO G. R.; D. H. M. Vitamin and mineral supplements: regulation, consumption, and health implications. Cad. Saúde Pública, v. 31, n. 7, p. 1371-1380, 2015. DOI: 10.1590/0102-311X00177814.

. GODFRAY, H. C. J.; BEDDINGTON, J. R.; CRUTE, I. R.; HADDAD, L.; LAWRENCE, D.; MUIR, J. F.; PRETTY, J.; ROBINSON, S.; THOMAS, S. M.; TOULMIN, C. Food Security: The Challenge of Feeding 9 Billion People. Science. v. 327, n. 1, p. 812-818, 2010. DOI: 10.1126 / science.1185383.

. GUÉRIN, T.; CHEKRI, R.; VASTEL, C.; SIROT, V.; VOLATIER, J.L.; LEBLANC, J. C.; NOËL, L. Determination of 20 trace elements in fish and other seafood from the French market. Food Chemistry, v. 127, n. 1, p. 934–942, 2011. DOI: 10.1016/j.foodchem.2011.01.061.

. YUYAMA, L. K. O.; AGUIAR, J. P. L.; MACEDO, S. H. M.; GIOIA, T.; YUYAMA, K.; FAVARO, D. I. T.; AFONSO, C.; VASCONCELLOS, M. B. A.; COZZOLINO, S. M. F. Determinação dos teores de elementos minerais em alimentos convencionais e não convencionais da região amazônica pela técnica de analise por ativação com nêutrons instrumental. Acta amazônica, v. 27, n. 3, p. 183-196, 1997. DOI: 10.1590/1809-43921997273196.

. TELES, V. L. G. T.; CIDADE, M. J. A.; BACCAN, N.; CADORE, S.; MENDES, T. M. F. F. Quantificação de lítio em polpas de frutas. 32a reunião anual da sociedade brasileira de química. 2009.

. SZKLARSKA, D.; RZYMSKI, P. Is Lithium a Micronutrient? From biological activity and epidemiological observation to food fortification. Biological trace element research, v. 189, n. 1, p. 18-27, 2019. DOI: https://doi.org/10.1007/s12011-018-1455-2.

. DEMLING, J. H.; EGLAU, M. C.; AUTENRIET, T. On the physiological function of lithium from a psychiatric viewpoint. Medical Hypotheses, v. 57, n. 4, p. 506-509, 2001. DOI: 10.1054/mehy.2001.1375.

. NORRA, C. H.; FEILHAUER J.; WIESMUELLER, G. A.; KUNET, H. J. Lithium and other mood stabilisers psychophysiological and neurobehavioral effects of endogenous lithium. European Psychiatry, v. 23 n. 2, p. 289–290, 2008. DOI: 10.1016/j.eurpsy.2008.01.620.

. LIMA, T. Z.; BLANCO, M. M.; JUNIOR, J. G. S.; COELHO.; C.T. EUGÊNIO L. Staying at the crossroads: assessment of the potential of serum lithium monitoring in predicting an ideal lithium dose. Revista Brasileira de Psiquiatria, v. 30, n. 3, p. 215-21, 2008. DOI: 10.1590/S1516-44462008000300007.

. MORENO, R. A.; MORENO, D. H.; RATZKE, R. Diagnóstico, tratamento e prevenção da mania e da hipomania no transtorno bipolar. Archives of Clinical Psychiatry, v. 32, n. 1 p. 39-48, 2005. DOI: 10.1590/S0101-60832005000700007.

. MARSHALL T. M. Lithium as a nutrient. Journal of American Physicians and Surgeons, v. 20, n. 4, p. 104–109, 2015.

. SCHRAUZER, G, N. Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality. Journal of the American College of Nutrition, v. 21, n. 1, p.14–21, 2002. DOI: 10.1080/07315724.2002.10719188.

. ARAL H. VECCHIO-SADUS A. Toxicity of lithium to humans and the environment--a literature review. Ecotoxicol Environ Saf, v. 70, n. 3, p. 349-356, 2008. DOI: 10.1016/j.ecoenv.2008.02.026.

. JIANG, L.; WANG, L.; TANVEER M.; TIAN C. Lithium biofortification of medicinal tea Apocynum venetum. Scientific Reports, v. 9, n. 8182, p. 1-8, 2019. DOI: 10.1038/s41598-019-44623-3.

. ROBINSON, B. H.; YALAMANCHALI, R.; REISER, R.; DICKINSON, N. M. Lithium as an emerging environmental contaminant: mobility in the soil-plant system. Chemosphere, v. 197, n. 1 p. 1–6, 2018. DOI: 10.1016/j.chemosphere.2018.01.012.

. SHAHZAD, B.; TANVEER, M.; HASSAN, W.; SHAH, A. N.; ANJUM, S. A.; SARDAR ALAM CHEEMA, S. A.; ALI, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities e a review. Plant physiology and biochemistry, v. 107, n.1, p. 104-115, 2016. DOI: 10.1016/j.plaphy.2016.05.034.

. PROCHNOW, T. R.; PROCHNOW, E. A.; LIBERMAN B. Efeitos antrópicos sobre concentrações de metais alcalinos na região da microbacia do Arroio Araçá, Canoas – Rio Grande do Sul. Quimica Nova, v. 32, n. 7, p. 1782-1786, 2009. DOI: 10.1590/S0100-40422009000700019.

. HAWRYLAK-NOWAK, B.; KALINOWSKA, M.; SZYMAŃSKA, M. A study on selected physiological parameters of plants grown under lithium supplementation. Biological trace element research, v. 149, n. 3, p. 425–430, 2012. DOI:10.1007/s12011-012-9435-4.

. KALINOWSKA, M.; HAWRYLAK-NOWAK, B.; SZYMAŃSKA, B. The influence of two lithium forms on the growth, L-Ascorbic acid content and lithium accumulation in lettuce plants. Biological trace element research, v. 152, n. 2, p. 251–257, 2013. DOI: 10.1007/s12011-013-9606-y.

. DÍAZ-GÓMEZ, J.; TWYMAN, R. M.; CHANGFU, Z.; FARRÉ, G.; SERRANO, J. C. E.; OTIN, M. P. Biofortification of crops with nutrients: factors affecting utilization and storage. Current Opinion in Biotechnology, v. 44, n. 1, p. 115-123, 2017. DOI: 10.1016/j.copbio.2016.12.002.

. RAWAT, N.; NEELAM, K.; TIWARI, V. K.; DHALIWA, H. S. Biofortification of cereals to overcome hidden. Plant Breed, v.132, n. 5 p. 437-445, 2013. DOI: 10.1111/pbr.12040.

. SANTOS, A. C. M.; MARQUES, K. R.; RODRIGUES, L. U.; FARIA, A. J. G.; NASCIMENTO, V. L.; FIDÉLIS R. R. Biofortification of soybean grains with foliar application of Li sources. Journal of Plant Nutrition, p. 1532-4087, 2019. DOI: 10.1080/01904167.2019.1659339.

. SILVA, R. R.; FARIA, A. J. G.; ALEXANDRINO, G. C.; RIBEIRO, E. A.; SANTOS, A. C. M.; DEUSDARA, T. T. Enrichment of lithium in lettuce plants through agronomic biofortification. Journal of Plant Nutrition, v. 32, p. 2102-2113, 2019. DOI: 10.1080/01904167.2019.1648671.

. ALI, N. M. A.; YEAP, S.; KONG, W. Y.; BEHN, B. K.; TAN, S. W. The promising future of Chia, Salvia hispanica. Journal of Biomedicine and Biotechnology, Cairo, v. 2012 n. 1, p. 1-9, 2012. DOI: 10.1155/2012/171956.

. ROLDÃO, F. A.; FERREIRA, O. V. Climatologia do Estado do Tocantins-Brasil. Caderno de Geografia, v. 29, n. 59, p. 1161-1181, 2019. DOI: https://doi.org/10.5752/P.2318-2962.2019v29n59p1161.

. EMBRAPA. Centro nacional de pesquisa em solo. Sistema brasileiro de classificação de solos. 3. ed. Brasília: Centro Nacional de Pesquisa de Solos, 2013. p. 353.

. MIRANDA, F. Guia Tecnica para el Manejo del Cultivo de Chia (Salvia hispanica L.) en Nicaragua. Sébaco: Central de Cooperativas de Servicios Multiples Exportacion e Importacion Del Norte (Cecoopsemein RL.), 2012. 14p. Disponível em: http://cecoopsemein.com/Manual_de_poduccion_de_CHIA_SALVIA_HISPANICA.pdf. Acesso em: 18 Ago. 2019.

. FALCO, B.; INCERTI, G.; BOCHICCHIO, R.; PHILLIPS, T. D.; Amato, M.; Lanzotti, V. Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Industrial crops and products, v. 99, p. 86-96, 2017.

. MALAVOLTA, E; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas. Princípios e aplicações. 2ª ed. Piracicaba: POTAFOS, 1997, 319p.

. FERREIRA, D. F. SISVAR: um programa para análises e ensino de estatística. Revista Symposium, Lavras, v.6, p.36-41, 2008.

. ZELLER, S.; FULLER, U. Long-distance transport of alkali metals in maturing wheat. Biologia Plantarum, v. 43, n. 4, p. 523–528, 2000. DOI: 10.1023/A:1002806522138.

. QIAO, L.; TANVEER, M.; WANG, L.; TIAN, C. Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant physiology and biochemistry, v. 132, n. 1, p. 341–344, 2018. DOI: 10.1016/j.plaphy.2018.09.022.

. KABATA-PENDIAS, A. MUKHERJEE, A. B. 17 Trace elements from soil to human. 1. Ed. Berlin, Springer-Verlag, 2007, p. 87–93.

. FRANZARING, J.; SCHLOSSER, S.; DAMSOHN, W.; FANGMEIER, A. Regional differences in plant levels and investigations on the phytotoxicity of lithium. Environmental pollution, v. 216, p. 858–865, 2016. DOI: 10.1016/j.envpol.2016.06.059.

. FIDELIS R. R.; CHAN G. A. H.; RAUBER, W. A.; TAVARES, T. C. O. LOPES, M. B. S.; MARQUES, K. R.; OSORIO, P. R. A.; BURIN, L. X.; VELOSO, D. A.; OLIVEIRA L. B.; FERNANDES, P. S M. DIAS, M. A. R. SANTOS, M. M.; AGUIAR R. W. S. Response curve of Salvia hispanica L. to different dosages of phosphorus in soils of the cerrado. International Journal of Advanced Engineering Research and Science, v. 6, n. 8, p. 2349-6495, 2019. DOI: 10.22161/ijaers.68.4.

. GRIMES, S. J.; PHILLIPS T. D.; CAPEZZONE F.; GRAEFF-HÖNNINGER S. Impact of Row Spacing, Sowing Density and Nitrogen Fertilization on Yield and Quality Traits of chia (Salvia hispanica L.) Cultivated in southwestern Germany. Agronomy, v. 9, n.3 p. 1-21, 2019. DOI: 10.3390/agronomy9030136.

. SOUZA, R. S. & CHAVES, L. H. G. Initial growth of chia (Salvia hispanica L.) submitted to nitrogen, phosphorus and potassium fertilization. Australian Journal of Crop Science, v. 11, n. 5, p. 610-615, 2017. Disponivel em: https://search.informit.com.au/documentSummary;dn=957807698316448;res=IELHS.

. ALLENDER, W. J.; CRESSWELL, G. C.; KALDOR, J.; KENNEDY, I. R. Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically‐grown cotton and corn. Journal of Plant Nutrition, v. 20, n. 1, p. 81-95, 1997. DOI: 10.1080/01904169709365235.

. FORBES, V. E. Is hormesis an evolutionary expectation. Functional Ecology, v. 14, n. 1, p. 14–24, 2000. DOI:10.1046/j.1365-2435.2000.00392. x.

. ANTONKIEWICZ, J.; JASIEWICZ, C.; KONCEWICZ-BARAN, M.; BĄCZEK-KWINTA, R. Determination of lithium bioretention by maize under hydroponic conditions. Archives of environmental protection, v. 43, n. 4, p. 94-104, 2017. DOI 10.1515/aep-2017-0036.

. ANDERSON, M. A.; BERTSCH, P. M.; Miller, W. P. (1988). The distribution of lithium in selected soils and surface waters of the southeastern. Applied Geochemistry, v. 3, n. 2 p. 2205-212, 1988. DOI: 10.1016/0883-2927(88)90008-X.

. SOBOLEV, O. I.; GUTYJ, B. V.; DARMOHRAY, L. M.; SOBOLIEVA, S. V.; IVANINA, V. V.; KUZMENKO, O. A.; KARKACH P. M.; FESENKO V. F.; BILKEVYCH V. V.; MASHKIN Y. O.; TROFYMCHUK A. M.; STAVETSKA R. V.; TKACHENKO S. V.; BABENKO O. I.; KLOPENKO N. I.; CHERNYUK S. V. Lithium in the natural environment and its migration in the trophic chain. Ukrainian Journal of Ecology, v. 9, n. 2, p. 195-203, 2019. Disponivel em: http://rep.btsau.edu.ua/handle/BNAU/2489.

. JIANG, L. I.; WANG, L. E. I.; MU, S. H. U. Y.; TIAN, C. Apocynum venetum: a newly found lithium accumulator. Flora, v. 209, n.1 p. 285-289, 2014. DOI: 10.1016/j.flora.2014.03.007.

. BAKHAT, H. F.; RASUL, K.; FAROOQ, A. B. U.; ZIA, Z.; FAHAD, S.; ABBAS, S.; HAMMAD, H. M. Growth and physiological response of spinach to various lithium concentrations in soil. Environmental Science and Pollution Research, v. 124, n. 1 p. 1-9, 2019. DOI: 10.1007/s11356-019-06877-2.

. DI SAPIO, O.; BUENO; M.; BUSILACHI; H.; QUIROGA; M.; SEVERIN; C. Caracterización Marofoanatómica de Hoja, Tallo, Fruto y Semillha de Salvia hispanica L. (Lamiaceae). Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, v. 11, n. 3, p. 249–268, 2012. Disponível em: http://www.redalyc.org/articulo.oa?id=85622739007.

. JURKOWSKA, H. & ROGÓŻ, A. Influence of high doses of Cu, Zn, Pb and Cd on lithium content in oat plants. Polish Journal of Soil Science. v.26, n. 1, p. 77–80, 1993. [49]

. KENT, N. L. Absorption, translocation and ultimate fate of lithium in the wheat plant. New Phytol, v. 40, n. 4, p. 291–298, 1941. Disponível em: https://www.jstor.org/stable/2428853

. KASHIN, V. K. Lithium in Soils and Plants of Western Transbaikalia. Eurasian Soil Science, v. 52, n. 4, p. 359-369, 2019. DOI: 10.1134/S1064229319040094.

. TANVEER, M.; HASANUZZAMAN, M.; WANG, L. Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants. Journal of Plant Growth Regulation, v. 38, n. 4, p. 1574-1586, 2019. Disponível em: https://pubag.nal.usda.gov/catalog/6763117.

. MARTINEZ, N. E.; SHARP, J. L.; JOHNSON, T. E.; KUHNE, W. W.; STAFFORD, C. T.; DUFF, M. C. Reflectance-Based Vegetation Index Assessment of Four Plant Species Exposed to Lithium Chloride. Sensors, v.18, n. 9, p. 2750, 2018. DOI: 10.3390/s18092750.

. STEVENSON, J. M.; PERERA, I. Y.; HEILMANN, I.; PERSSON, S.; BOSS, W. F. Inositol signaling and plant growth. Trends in plant science, v. 5, n. 6, p. 252-258, 2000. DOI: https://doi.org/10.1016/S1360-1385(00)01652-6.

. HAWKESFORD, M.; HORST, W.; KICHEY, T.; LAMBERS, H.; SCHJOERRING, J.; MØLLER, I. S.; WHITE, P. Functions of macronutrients. In: Marschner's Mineral Nutrition of Higher Plants (third ed.), Academic Pres, 2012. p. 135-189. DOI: 10.1016/B978-0-12-384905-2.00006-6.

. LANZA, M. G. D. B.; SILVA, V. M.; MONTANHA, G. S.; LAVRES, J.; de CARVALHO, H. W. P.; DOS REIS, A. R. Assessment of selenium spatial distribution using μ-XFR in cowpea (Vigna unguiculata (L.) Walp.) plants: Integration of physiological and biochemical responses. Ecotoxicology and Environmental Safety, v. 207, p. 111216, 2020. DOI: https://doi.org/10.1016/j.ecoenv.2020.111216.

. EMAMVERDIAN, A.; DING, Y.; MOKHBERDORAN, F.; XIE, Y. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, v. 2015, p. 1-19, 2015. DOI: https://doi.org/10.1155/2015/756120.

. MOHANA, M.; PITTMAN JR, C. U. Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, v. 137, n. 2, p. 762–811, 2006. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.060.

. TIAN, L.; WEI, M.; MEI, H. Adsorption behavior of Li+ onto nano-lithium-ion sieve from hybrid magnesium/lithium manganese oxide. Chemical Engineering Journal, v. 156, n. 1, p. 134-140, 2010. DOI: https://doi.org/10.1016/j.cej.2009.10.008.

. NETO, E. B.; MENDONÇA, I. F.; MARROCOS, N. R. M.; BARRETO, L. P. Teores de micronutrientes em plantas de alface, em função do pH da solução nutritiva. Horticultura Brasileira, v. 21, n. 1, p. 1-4, 2003. Disponível em: http://www.abhorticultura.com.br/.

. FORBES, E. A.; POSNER, A. M.; QUIRK, J. P. The Specific adsorption of divalent Cd, Cu, Pb and Zn on goethite. Journal of Soil Science, v.27, n. 2, p.154-166, 1976. DOI: https://doi.org/10.1111/j.1365-2389.1976.tb01986.x

. GOLDSTEIN M. R. MASCITELLI L. Is violence in part a lithium deficiency state? Med Hypotheses v. 89, n.1, p. 40–42, 2016. DOI: 10.1016/j.mehy.2016.02.002.

. CHICCO, A. G.; D’ALESSANDRO, M. E.; HEIN, G. J.; OLIVA, M. E.; LOMBARDO, Y. B. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. British Journal of Nutrition, v. 101, n. 1, p. 41-50, 2009. DOI: 10.1017/S000711450899053X.

. JIN, F.; NIEMAN, D. C.; SHA, W.; XIE, G.; QIU, Y.; JIA, W. Suplementation of Milled Chia Seeds Increases Plasma ALA and EPA in Postmenopausal Women. Plasts Food for Human Nutrition, v. 67, n. 2, p. 105-110, 2012. DOI: 10.1007 / s11130-012-0286-0.

. BOLDRIN, P. F.; FAQUIN, V.; RAMOS, S. J.; GUILHERME, L. R. G.; BASTOS, C. E. A.; CARVALHO, G. S.; COSTA, E. T. de S. Selenato e selenito na produção e biofortificação agronômica com selênio em arroz. Pesquisa Agropecuária Brasileira, v. 47, n. 6, p. 831-837, 2012. DOI: 10.1590/S0100-204X2012000600014.

. SIWELA, M.; PILLAY, K.; GOVENDER, L.; LOTTERING, S.; MUDAU, F. N.; MODI, A. T.; MABHAUDHI, T. Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods, v. 9, n. 6, p. 815, 2020. DOI: https://doi.org/10.3390/foods9060815.

Published
2021-01-17
Section
Articles