A Review of Emerging Photovoltaic Construction Technologies to Increase Efficiencies in Solar as a Renewable Energy Source
Keywords:
renewable energy, photovoltaic cells, semiconductor material, crystalline silicon, solar radiation, power conversion efficiencyAbstract
The need to reduce photovoltaic cell manufacturing and project development costs while focusing on providing cheap and highly efficient photovoltaic cells has led to the emergence of innovative technological advances in the photovoltaic cell materials and fabrication. This study carries out a systematic overview of the latest design technologies in the solar cell materials, shape and layout that have emerged and recorded high efficiencies. For each emerging solar cell technology, the most recent advances are outlined with their respective achieved theoretical efficiencies. Besides the silicon-based solar cells that have been highly commercialized with less than 20% theoretical power conversion efficiency (PCE) and currently having the largest market share, it has been found that the emerging technologies in solar cell materials and fabrication have recorded significantly improved efficiencies of up to 47%. Based on the ongoing research and developments in the engineering of photovoltaic cell materials, renewable solar energy promises a huge potential and growth towards global energy sustainability and this paper provides a guide in the policy making, commercialization and future investments in solar energy.
References
S. Diwania, S. Agrawal, A. Siddiqui and S. Singh, "Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement", International Journal of Energy and Environmental Engineering, vol. 11, no. 1, pp. 33-54, 2019. Available: 10.1007/s40095-019-00327-y.
IRENA, “IRENA RE Capacity Highlights 2020”, Irena.org, 2021. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Highlights_2020.pdf?la=en&hash=B6BDF8C3306D271327729B9F9C9AF5F1274FE30B. [Accessed: 13- Apr- 2021].
REN21, "Renewables 2019 Global Status Report", Ren21.net, 2019. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf. [Accessed: 13- Apr- 2021].
T. Ibn-Mohammed et al., "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies", Renewable and Sustainable Energy Reviews, vol. 80, pp. 1321-1344, 2017. Available: 10.1016/j.rser.2017.05.095.
G. Wilson et al., "The 2020 photovoltaic technologies roadmap", Journal of Physics D: Applied Physics, vol. 53, no. 49, p. 493001, 2020. Available: 10.1088/1361-6463/ab9c6a.
M. Rabaia et al., "Environmental impacts of solar energy systems: A review", Science of The Total Environment, vol. 754, p. 141989, 2021. Available: 10.1016/j.scitotenv.2020.141989.
E. Bellini, "Africa added 556 MW of on-grid solar in Q1 2019", pv magazine International, 2021. [Online]. Available: https://www.pv-magazine.com/2019/07/15/africa-added-556-mw-of-on-grid-solar-in-q1-2019/. [Accessed: 07- Apr- 2021].
"Global Solar Atlas", Globalsolaratlas.info, 2021. [Online]. Available: https://globalsolaratlas.info. [Accessed: 07- Apr- 2021].
O. Ogunmodimu and E. Okoroigwe, "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review", Renewable and Sustainable Energy Reviews, vol. 90, pp. 104-119, 2018. Available: 10.1016/j.rser.2018.03.029.
B. Mahadevan, S. Naghibi, F. Kargar and A. Balandin, "Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells", C — Journal of Carbon Research, vol. 6, no. 1, p. 2, 2019. Available: 10.3390/c6010002
R. Preu, E. Lohmüller, S. Lohmüller, P. Saint-Cast and J. Greulich, "Passivated emitter and rear cell—Devices, technology, and modeling", Applied Physics Reviews, vol. 7, no. 4, p. 041315, 2020. Available: 10.1063/5.0005090.
Y. Zhang, L. Wang, D. Chen, M. Kim and B. Hallam, "Pathway towards 24% efficiency for fully screen-printed passivated emitter and rear contact solar cells", Journal of Physics D: Applied Physics, vol. 54, no. 21, p. 214003, 2021. Available: 10.1088/1361-6463/abe900.
Y. Cui, L. Hong and J. Hou, "Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges", ACS Applied Materials & Interfaces, vol. 12, no. 35, pp. 38815-38828, 2020. Available: 10.1021/acsami.0c10444.
N. Mariotti, M. Bonomo and C. Barolo, "Emerging Photovoltaic Technologies and Eco-Design—Criticisms and Potential Improvements", Reliability and Ecological Aspects of Photovoltaic Modules, 2020. Available: 10.5772/intechopen.88327.
K. Weng et al., "Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells", Nature Communications, vol. 11, no. 1, 2020. Available: 10.1038/s41467-020-16621-x.
H. Yao, J. Wang, Y. Xu, S. Zhang and J. Hou, "Recent Progress in Chlorinated Organic Photovoltaic Materials", Accounts of Chemical Research, vol. 53, no. 4, pp. 822-832, 2020. Available: 10.1021/acs.accounts.0c00009.
Q. An et al., "Alloy-like ternary polymer solar cells with over 17.2% efficiency", Science Bulletin, vol. 65, no. 7, pp. 538-545, 2020. Available: 10.1016/j.scib.2020.01.012.
Y. Cui et al., "Single‐Junction Organic Photovoltaic Cells with Approaching 18% Efficiency", Advanced Materials, vol. 32, no. 19, p. 1908205, 2020. Available: 10.1002/adma.201908205.
A. Aslam et al., "Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications", Solar Energy, vol. 207, pp. 874-892, 2020. Available: 10.1016/j.solener.2020.07.029.
J. Ji, H. Zhou, Y. Eom, C. Kim and H. Kim, "14.2% Efficiency Dye‐Sensitized Solar Cells by Co‐sensitizing Novel Thieno[3,2‐ b ]indole‐Based Organic Dyes with a Promising Porphyrin Sensitizer", Advanced Energy Materials, vol. 10, no. 15, p. 2000124, 2020. Available: 10.1002/aenm.202000124.
H. Michaels et al., "Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things", Chemical Science, vol. 11, no. 11, pp. 2895-2906, 2020. Available: 10.1039/c9sc06145b.
M. Biondi et al., "A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells", Advanced Materials, vol. 32, no. 17, p. 1906199, 2020. Available: 10.1002/adma.201906199.
B. Hou et al., "Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance", Advanced Functional Materials, vol. 30, no. 39, p. 2004563, 2020. Available: 10.1002/adfm.202004563
H. Kim et al., "Efficient and Stable Colloidal Quantum Dot Solar Cells with a Green‐Solvent Hole‐Transport Layer", Advanced Energy Materials, vol. 10, no. 39, p. 2002084, 2020. Available: 10.1002/aenm.202002084.
J. Gan and L. Qiao, "Colloidal Quantum Dots for Highly Efficient Photovoltaics", Quantum Dot Optoelectronic Devices, pp. 49-82, 2020. Available: 10.1007/978-3-030-35813-6_2.
J. Geisz et al., "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration", Nature Energy, vol. 5, no. 4, pp. 326-335, 2020. Available: 10.1038/s41560-020-0598-5.
K. VanSant, A. Tamboli and E. Warren, "III-V-on-Si Tandem Solar Cells", Joule, vol. 5, no. 3, pp. 514-518, 2021. Available: 10.1016/j.joule.2021.01.010.
K. Makita et al., "III‐V//Si multijunction solar cells with 30% efficiency using smart stack technology with Pd nanoparticle array", Progress in Photovoltaics: Research and Applications, vol. 28, no. 1, pp. 16-24, 2019. Available: 10.1002/pip.3200.
E. Korzeniewska et al., "Efficiency of Laser-Shaped Photovoltaic Cells", Energies, vol. 13, no. 18, p. 4747, 2020. Available: 10.3390/en13184747.
R. Hendel, "Laser Applications in Solar Cell Manufacturing", Laser Technik Journal, vol. 5, no. 1, pp. 32-35, 2008. Available: 10.1002/latj.200790203.
Y. Lu et al., "Effect of grid and optimization on improving the electrical performance of compound parabolic concentrator photovoltaic cells", Solar Energy, vol. 196, pp. 607-615, 2020. Available: 10.1016/j.solener.2019.12.065.
E. Warmann et al., "An ultralight concentrator photovoltaic system for space solar power harvesting", Acta Astronautica, vol. 170, pp. 443-451, 2020. Available: 10.1016/j.actaastro.2019.12.032.
S. Sripadmanabhan Indira et al., "A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system", Solar Energy, vol. 201, pp. 122-148, 2020. Available: 10.1016/j.solener.2020.02.090.
W. Gu, T. Ma, S. Ahmed, Y. Zhang and J. Peng, "A comprehensive review and outlook of bifacial photovoltaic (bPV) technology", Energy Conversion and Management, vol. 223, p. 113283, 2020. Available: 10.1016/j.enconman.2020.113283.
E. Pulli, E. Rozzi and F. Bella, "Transparent photovoltaic technologies: Current trends towards upscaling", Energy Conversion and Management, vol. 219, p. 112982, 2020. Available: 10.1016/j.enconman.2020.112982.
H. Park, "Transparent Electrode Techniques for Semitransparent and Tandem Perovskite Solar Cells", Electronic Materials Letters, vol. 17, no. 1, pp. 18-32, 2021. Available: 10.1007/s13391-020-00259-4
S. An et al., "Cerium-doped indium oxide transparent electrode for semi-transparent perovskite and perovskite/silicon tandem solar cells", Solar Energy, vol. 196, pp. 409-418, 2020. Available: 10.1016/j.solener.2019.12.040
D. Yang et al., "28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell", Nano Energy, vol. 84, p. 105934, 2021. Available: 10.1016/j.nanoen.2021.105934
W. Song et al., "Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis", Advanced Energy Materials, vol. 10, no. 15, p. 2000136, 2020. Available: 10.1002/aenm.202000136
D. Kim et al., "Flexible and Semi‐Transparent Ultra‐Thin CIGSe Solar Cells Prepared on Ultra‐Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications", Advanced Functional Materials, vol. 30, no. 36, p. 2001775, 2020. Available: 10.1002/adfm.202001775
K. Lee et al., "The Development of Transparent Photovoltaics", Cell Reports Physical Science, vol. 1, no. 8, p. 100143, 2020. Available: 10.1016/j.xcrp.2020.100143.
W. Song et al., "Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Eco-friendly Acid-Processed Electrodes", iScience, vol. 23, no. 4, p. 100981, 2020. Available: 10.1016/j.isci.2020.100981
P. Li et al., "Foldable solar cells: Structure design and flexible materials", Nano Select, 2021. Available: 10.1002/nano.202000163
J. Yoon et al., "Foldable Perovskite Solar Cells Using Carbon Nanotube‐Embedded Ultrathin Polyimide Conductor", Advanced Science, vol. 8, no. 7, p. 2004092, 2021. Available: 10.1002/advs.202004092.
M. Kumar, "Social, Economic, and Environmental Impacts of Renewable Energy Resources", Wind Solar Hybrid Renewable Energy System, 2020. Available: 10.5772/intechopen.89494.
Suman, P. Sharma and P. Goyal, "Analysing the effects of solar insolation and temperature on PV cell characteristics", Materials Today: Proceedings, 2021. Available: 10.1016/j.matpr.2021.02.301.
S. Yadav, S. Panda and C. Hachem-Vermette, "Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions", Applied Energy, vol. 266, p. 114881, 2020. Available: 10.1016/j.apenergy.2020.114881
E. Buitrago, A. Novello and T. Meyer, "Third‐Generation Solar Cells: Toxicity and Risk of Exposure", Helvetica Chimica Acta, vol. 103, no. 9, 2020. Available: 10.1002/hlca.202000074.
A. Zahedi, "A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid", Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4775-4779, 2011. Available: 10.1016/j.rser.2011.07.074.
A. Muhammad, U. Muhammad and Z. Abid, "Potential of floating photovoltaic technology in Pakistan", Sustainable Energy Technologies and Assessments, vol. 43, p. 100976, 2021. Available: 10.1016/j.seta.2020.100976.
D. Chaudhary, P. Dhawan, S. Patel and H. Bhasker, "Large area semitransparent inverted organic solar cells with enhanced operational stability using TiO2 electron transport layer for building integrated photovoltaic devices", Materials Letters, vol. 283, p. 128725, 2021. Available: 10.1016/j.matlet.2020.128725.
A. Karthick, K. Kalidasa Murugavel, A. Ghosh, K. Sudhakar and P. Ramanan, "Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system", Solar Energy Materials and Solar Cells, vol. 207, p. 110360, 2020. Available: 10.1016/j.solmat.2019.110360.
G. Li, Q. Xuan, M. Akram, Y. Golizadeh Akhlaghi, H. Liu and S. Shittu, "Building integrated solar concentrating systems: A review", Applied Energy, vol. 260, p. 114288, 2020. Available: 10.1016/j.apenergy.2019.114288.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers with this journal agree to the following terms.