Finite Element Modal Analysis of Transient Water Flow in Aquifers

Authors

  • Ricardo Pereira Guedes Dept. of Civil Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego,1235, Cidade Universitária, Recife, 50670-901, Pernambuco, Brazil
  • Leonardo José Do Nascimento Dept. of Civil Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego,1235, Cidade Universitária, Recife, 50670-901, Pernambuco, Brazil
  • Paulo Marcelo Vieira Ribeiro Dept. of Civil Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego,1235, Cidade Universitária, Recife, 50670-901, Pernambuco, Brazil
  • Cicero Vitor Chaves Junior Dept. of Civil Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego,1235, Cidade Universitária, Recife, 50670-901, Pernambuco, Brazil
  • Jean Baptiste Joseph Dept. of Civil Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego,1235, Cidade Universitária, Recife, 50670-901, Pernambuco, Brazil

Keywords:

modal superposition method, finite element method, numerical simulations, aquifer

Abstract

In this paper a modal superposition method is applied for the numerical modeling of aquifers. The proximity of aquifers to populated regions requires special care in their management to avoid problems that affect the quantity and quality of the water they supply. To contribute to the management of this type of natural resource, we propose a numerical strategy based on modal analysis using the finite element method. This procedure assist water production scenarios, performing the mass balance where water extraction is done through wells, in aquifers that are subject to natural recharge. This mathematical procedure is based on the modal superposition for transient flow in porous media. To evaluate its efficiency, this strategy was compared with the classical finite element method. The advantage of the proposed method resides in the possibility of reusing the properties of the global matrix of the finite element method in transient problems, for different production conditions given by the distributed recharge and by the water extraction rate from the wells, solving the numerical problem with a more efficient use of computational resources. This strategy is useful in studies of uncertainty quantification, history matching and optimization of water production in aquifers, since these types of analysis are resource intensive for the very large number of numerical simulations required for these scenarios.

References

. Bear, J. (1972). Dynamics of Fluids in Porous Media. Dover Publications.

. Castilho-Barbosa, I. N., Carvalho, A. M., Miguel, G. F., & Carneiro, C. D. (2020). Conhecer para conservar aquíferos: como torná-los visíveis? Terrae didatica, 16, 1-12.

. Maidment, D. R. (1993). Handbook of Hydrology. McGraw-Hill.

. Guedes, R. P., de Araújo, M. P., & de Andrade, A. G. (2021). Necessidade do gerenciamento dos recursos hídricos em grandes cidades como Recife. Architecton - Revista de Arquitetura e Urbanismo, 06, 107-117.

. S. F. R. Khadri e C. Pande, “Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India,” Model. Earth Syst. Environ., pp. 2-17, 2016.

. W. H. Schilders, H. A. van der Vorst e J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications, Berlin: Springer-Verlag Berlin Heidelberg, 2008.

. H.-j. G. Diersch, “Interactive , graphics-based finite element simulation of groundwater contamination processes,” Advances in Engineering Software, vol. 15, pp. 1-13, 1992.

. BEAR, J., & VERRUIJT, A. (1987). Modeling Groundwater Flow and Pollution. Springer Netherlands.

. HUYAKORN, P. S., & PINDER, G. F. (1983). Computational Methods in Subsurface Flow. ACADEMIC PRESS.

. Zienkiewicz, O. C., & Morgan, K. (1983). Finite Elements & Approximation .

. Logan, D. L. (2016). A First Course in the Finite Element Method - Sixth Edition. Cengage Learning.

. Zienkiewicz, O., & Taylor, R. (2000). The Finite Element Method (5 ª Ed. ed., Vol. 1 ). Butterworth Heinemann.

. Tedesco, J. W., McDougal, W. G., & Ross, C. A. (1998). Structure Dynamic : Theory and Applications. Prentice Hall.

. He, J., & Fu, Z.-F. (2001). Modal Analysis. Butterworth-Heinemann.

. Roy R. Craig, J., & Kurdila, A. J. (2006). Fundamentals of Structural Dynamics. John Wiley & Sons. Inc.

. Paz, M., & Kim, Y. H. (2019). Structural Dynamics. doi:https://doi.org/10.1007/978-3-319-94743-3

. Zill, D. G. (2018). A First Course in Differential Equation with Modeling Applications (11th ed.). Boston: Cengage Learning.

. Greengerg, M. D. (1998). Advanced Engenieering Mathematics (2nd ed.). Prentice Hall.

Downloads

Published

2023-01-02

How to Cite

Pereira Guedes, R., José Do Nascimento , L. ., Vieira Ribeiro, P. M. ., Vitor Chaves Junior , C. ., & Baptiste Joseph , J. . (2023). Finite Element Modal Analysis of Transient Water Flow in Aquifers. American Scientific Research Journal for Engineering, Technology, and Sciences, 90(1), 548–567. Retrieved from https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/8290

Issue

Section

Articles