Recent Advances of ZnO-Based Perovskite Solar Cell


  • Shihan Zhang School of Physical Science and Technology, Tiangong University, Tianjin 300387,China
  • Yizhi Wu School of Physical Science and Technology, Tiangong University, Tianjin 300387,China
  • Youming Huang School of Physical Science and Technology, Tiangong University, Tianjin 300387,China
  • Jiakai An School of Physical Science and Technology, Tiangong University, Tianjin 300387,China


Perovskite solar cells , ZnO, ETM, Power conversion efficiency, Stability


Perovskite solar cells (PSCs) have developed rapidly over the past few years, and the power conversion efficiency (PCE) of PSCs has exceeded 25%. It has the characteristics of low cost, high efficiency, simple process and so on, and hence has a good development prospect. Due to the difference in electrons and holes diffusion lengths, electron transporting materials (ETMs) play a crucial role in the performance of PSCs. ZnO electron transport layer (ETL) has the advantages of high electron mobility, high transmittance, suitable energy level matching with neighbor layer in PSCs, low temperature preparation and environmental friendliness, so it has become the main application material of electron transport layer in perovskite solar cells. In this review, the application of ZnO-ETMs in PSCs in recent years is reviewed, and the effect of ZnO-ETMs on the performance of PSCs is also introduced. Finally, the limitations of ZnO-ETMs based PSCs and the methods to solve these problems are discussed, and the development prospect of PSCs is prospected.


Wang W, Xu X, Zhou W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci, 4,1600371,2017.

Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. Appl Phys, 25: 676-677,1954.

Green M, Dunlop E, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 57). Prog Photovolt Res Appl, 29: 3-15,2020.

W. Shockley and H.J. Queisser, J. Appl. Phys. 32: 510-519,1961.

Li C, Wang F, Chen Y, et al. Characterization of sputtered Cd Se thin films as the window layer for Cd Te solar cells. Materials Science in Semiconductor Processing, 83: 89-95,2018.

Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25,668–676,2017.

L. E. Oikkonen, M. G. Ganchenkova et al. Redirecting focus in CuInSe2 research towards selenium-related defects. Physical review B 86, 165115,2012.

Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov , T.K.; Zhu, Y .et al. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Adv. Energy Mater. 4, 1301465,2014.

Jeon, N.J., Na, H., Jung, E.H. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3, 682-689,2018.

Jiang, Q., Zhao, Y., Zhang, X. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460-466,2019.

Zhang, P. et al. Perovskite Solar Cells with ZnO Electron-Transporting Materials. Adv Mater 30(3),1703737,2018.

Song, T.-B. et al. Perovskite solar cells: film formation and properties. Materials Chemistry A 3, 9032-9050,2015.

Jung, H. S. & Park, N.-G. Perovskite Solar Cells: From Materials to Devices. Small 11, 10-25,2015.

Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photonics 8, 506-514,2014.

Graetzel, M. The light and shade of perovskite solar cells. Nature Materials 13, 838-842,2014.

Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials 13, 897-903,2014.

Hong, F. et al. Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Physical Chemistry C 120, 6435-6441,2016.

Saparov, B. et al. Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6. Chemistry of Materials 28, 2315-2322,2016.

Xiao, Z., Meng, W., Wang, J. & Yan, Y. Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites. Chemsuschem 9, 2628-2633,2016.

Bae, S., Jo, J. W., Lee, P. & Ko, M. J. Controlling the Morphology of Organic-Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. Acs Applied Materials & Interfaces 11, 17452-17458,2019.

Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 9, 1989-1997,2016.

Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photonics 6, 153-161,2012.

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643-647,2012.

Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. the Chemical Society-Dalton Transactions, 1-12,2001.

Li, S. et al. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. Power Sources 342, 990-997,2017.

Hoque, M. N. F. et al. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition. Chemsuschem 9, 2692-2698,2016.

Stranks, S. D. et al. Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Phys Rev. Applied 2, 034007,2014.

Collavini, S., Voelker, S. F. & Luis Delgado, J. et al. Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. Angewandte Chemie-International Edition 54, 9757-9759,2015.

Tu, Y. et al. TiO2 quantum dots as superb compact block layers for high-performance CH3NH3PbI3 perovskite solar cells with an efficiency of 16.97%. Nanoscale 7, 20539-20546,2015.

Yang, G., Tao, H., Qin, P., Ke, W. & Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. Materials Chemistry A 4, 3970-3990,2016.

Yongzhen Wu et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express 7, 052301,2014.

Wojciechowski, K., Saliba, M., Leijtens, T. et al. Sub-150 degrees C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy & Environmental Science 7, 1142-1147,2014.

Chueh, C.-C., Li, C.-Z. & Jen, A. K. Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science 8, 1160-1189,2015.

Hong, S. et al. A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells. Curr Appl Phys 15, 574-579,2015.

Kavan, L., Tetreault, N., Moehl, T. & Graetzel, M. Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. Physical Chemistry C 118, 16408-16418,2014.

Xia, J., Masaki, N., Jiang, K. & Yanagida, S. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells. Physical Chemistry B 110, 25222-25228,2006.

Kim, H.-S. & Park, N.-G. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. Physical Chemistry Letters 5, 2927-2934,2014.

Ke, W. et al. Perovskite Solar Cell with an Efficient TiO2 Compact Film. Acs Applied Materials & Interfaces 6, 15959-15965,2014.

Liu, M., Johnston, M. & Snaith, H. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398,2013.

Im, J.-H., Jang, I.-H., Pellet, N., Graetzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology 9, 927-932,2014.

Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546,2014.

Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234-1237,2015.

Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2(1),1501170,2016.

Pang, S. et al. Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Sol Energ Mat Sol C 170, 278-286,2017.

Yu, W. et al. Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Power Sources 358, 29-38,2017.

Sandoval-Torrientes, R. et al. Modified Fullerenes for Efficient Electron Transport Layer-Free Perovskite/Fullerene Blend-Based Solar Cells. Chemsuschem 10, 2023-2029,2017.

You, J. et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. Acs Nano 8, 1674-1680,2014.

Tao Zhang, Qingquan He, JiewenYu et al. Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy, 104,107918,2022.

Thi Tuyen, N., Barea, E. M., Tena-Zaera, R. & Mora-Sero, I. Spray-Pyrolyzed ZnO as Electron Selective Contact for Long-Term Stable Planar CH3NH3PbI3 Perovskite Solar Cells. Acs Applied Energy Materials 1, 4057-4064,2018.

Chang, C.-Y., Huang, W.-K., Chang, Y.-C., Lee, K.-T. & Siao, H.-Y. High-Performance Flexible Tandem Polymer Solar Cell Employing a Novel Cross-Linked Conductive Fullerene as an Electron Transport Layer. Chemistry of Materials 27, 1869-1875,2015.

Yang, Z. et al. Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells. Solar Energy 204, 223-230,2020.

Cao, J. et al. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation. Advanced Materials 30(11),1705596,2018.

Wang, Z. L. Zinc oxide nanostructures: growth, properties and applications. Phys-Condens Mat 16, 829-858,2004.

Zhang, Q., Dandeneau, C. S., Zhou, X. & Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 21, 4087-4108,2009.

Liu, H. et al. Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 8, 6209-6221,2016.

Tseng, Z.-L., Chiang, C.-H., Chang, S.-H. & Wu, C.-G. Surface engineering of ZnO electron transporting layer via Al doping for high efficiency planar perovskite solar cells. Nano Energy 28, 311-318,2016.

Ozgur, U. et al. A comprehensive review of ZnO materials and devices. Applied Physics 98,041301,2005.

Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 8, 133-138,2014.

Son, D.-Y., Im, J.-H., Kim, H.-S. & Park, N.-G. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. Physical Chemistry C 118, 16567-16573,2014.

Tseng, Z.-L., Chiang, C.-H. & Wu, C.-G. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports 5,2015.

Zhao, X. et al. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. Acs Applied Materials & Interfaces 8, 7826-7833,2016.

Lee, K.-M. et al. Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics. Solar Energy 120, 117-122,2015.

X. Dong, H. Hu, B. lin, J. Ding and N. Yuan. The effect of ALD-ZnO layer on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures. Chem. Commun. 50, 14405-14408,2014.

Si, H. et al. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223-231,2016.

Qiu, Z. et al. The Influence of Physical Properties of ZnO Films on the Efficiency of Planar ZnO/Perovskite/P3HT Solar Cell. American Ceramic Society 100, 176-184,2017.

Liang, L. et al. Magnetron Sputtered Zinc Oxide Nanorods as Thickness-Insensitive Cathode Inter layer for Perovskite Planar-Heterojunction Solar Cells. Acs Applied Materials & Interfaces 6, 20585-20589,2014.

Shi, Z. et al. High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure. Nano Letters 17, 313-321,2017.

Anwar, F., Mahbub, R., Satter, S. S. & Ullah, S. M. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. International Journal of Photoenergy 9, 9846310,2017.

Ronning, C., Gao, P. X., Ding, Y., Wang, Z. L. & Schwen, D. Manganese-doped ZnO nanobelts for spintronics. Applied Physics Letters 84, 783-785,2004.

Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947-1949,2001.

Bai, X. D., Gao, P. X., Wang, Z. L. & Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters 82, 4806-4808,2003.

Xing, Y. J. et al. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Applied Physics Letters 83, 1689-1691,2003.

Sun, Y., Fuge, G. M., Fox, N. A., Riley, D. J. & Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Advanced Materials 17, 2477-2481,2005.

Jae Min Park, Seung Hwan Oh, and Yong Kim. ZnS-ZnO Heterostructure Nanorings Grown under a Possible Early Earth Atmosphere. Cryst. Growth Des. 20,1196-1202,2020.

Ding, Y., Kong, X. Y. & Wang, Z. L. Doping and planar defects in the formation of single-crystal ZnO nanorings. Physical Review B 70,2004.

Hughes, W. L. & Wang, Z. L. Controlled synthesis and manipulation of ZnO nanorings and nanobows. Applied Physics Letters 86,043106,2005.

Saheed MSM, Mohamed NM, Singh BSM et al. Optoelectronic Enhancement of Perovskite Solar Cells through the Incorporation of Plasmonic Particles. Micromachines, 13(7), 999,2022.

Fang, B., Zhang, C., Zhang, W. & Wang, G. A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim Acta 55, 178-182,2009.

Wang, Y., Li, X., Wang, N., Quan, X. & Chen, Y. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Separation and Purification Technology 62, 727-732,2008.

Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials 15, 464-466,2003.

Li, Y., Meng, G. W., Zhang, L. D. & Phillipp, F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters 76, 2011-2013,2000.

Kong, Y. C., Yu, D. P., Zhang, B., Fang, W. & Feng, S. Q. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters 78, 407-409,2001.

Wang, X. D., Summers, C. J. & Wang, Z. L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters 4, 423-426,2004.

Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: From nanodots, to nanorods. Angewandte Chemie-International Edition 41(7), 1188-1191,2002.

Kim, K., Sim, K. M., Yoon, S., Jang, M. S. & Chung, D. S. Defect Restoration of Low-Temperature Sol-Gel-Derived ZnO via Sulfur Doping for Advancing Polymeric Schottky Photodiodes. Advanced Functional Materials 28 1802582,2018.

Deng, W. et al. Plasmonic enhancement for high-efficiency planar heterojunction perovskite solar cells. Power Sources 432, 112-118,2019.

Yang, M. et al. High efficient and long-time stable planar heterojunction perovskite solar cells with doctor-bladed carbon electrode. Power Sources 424, 61-67,2019.

Zhang, W. et al. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation. Acs Applied Materials & Interfaces 9, 38467-38476,2017.

Zheng, D. et al. Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials 29,1900265,2019.

Bi, D. et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5, 11686-11691,2013.

Kumar, M. H. et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications 49, 11089-11091,2013.

Son, D.-Y., Bae, K.-H., Kim, H.-S. & Park, N.-G. Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell. Physical Chemistry C 119, 10321-10328,2015.

Zhang, J., Jose Juarez-Perez, E., Mora-Sero, I., Viana, B. & Pauporte, T. Fast and low temperature growth of electron transport layers for efficient perovskite solar cells. Materials Chemistry A 3, 4909-4915,2015.

Zhang, J., Barboux, P. & Pauporte, T. Electrochemical Design of Nanostructured ZnO Charge Carrier Layers for Efficient Solid-State Perovskite-Sensitized Solar Cells. Advanced Energy Materials 4,1400932,2014.

Zhang, J. & Pauporte, T. Effects of Oxide Contact Layer on the Preparation and Properties of CH3NH3Pbl3 for Perovskite Solar Cell Application. Physical Chemistry C 119, 14919-14928,2015.

Mahmood, K., Swain, B. S. & Amassian, A. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials 5,1500568,2015.

Ahn Joonsub, Song Jaegwan, Han Eunmi. Characteristics of Perovskite Solar Cells with ZnO Coated on Mesoporous TiO2 as an Electron Transfer Layer. Korean J. Mater. Res. 32(2),94-97,2022.

Zhao, Y. et al. Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V. Solar Rrl 3,1800284,2019.

Bag, S. & Durstock, M. F. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition. Acs Applied Materials & Interfaces 8, 5053-5057,2016.

Kim, H., Lim, K.-G. & Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science 9, 12-30,2016.

]Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722-726,2017.

Chandiran, A. K., Abdi-Jalebi, M., Nazeeruddin, M. K. & Graetzel, M. Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells. Acs Nano 8, 2261-2268,2014.

Gonzalez-Valls, I. & Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy & Environmental Science 2, 19-34,2009.

Heo, J. H. et al. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. Materials Chemistry A 4, 1572-1578,2016.

Kim, J. et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. Journal of Materials Chemistry A 2, 17291-17296,2014.

Zhou, H. et al. Low-Temperature Processed and Carbon-Based ZnO/CH3NH3Pbl3/C Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C 119, 4600-4605,2015.

Oba, F., Nishitani, S. R., Isotani, S., Adachi, H. & Tanaka, I. Energetics of native defects in ZnO. Applied Physics 90,824-828,2001.

Kohan, A. F., Ceder, G., Morgan, D. & Van de Walle, C. G. First-principles study of native point defects in ZnO. Physical Review B 61,15019-15027,2000.

Yang, J., Siempelkamp, B. D., Mosconi, E., De Angelis, F. & Kelly, T. L. Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chemistry of Materials 27, 4229-4236,2015.

Chen, S. et al. Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials 2, 1333-1337,2012.

Brillson, L. J. & Lu, Y. ZnO Schottky barriers and Ohmic contacts. Journal of Applied Physics 109,2011.

Brillson, L. J. et al. Dominant effect of near-interface native point defects on ZnO Schottky barriers. Applied Physics Letters 90,102116,2007.

Yang, L. L. et al. Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 256, 3592-3597,2010.

Zhao, Q. X., Yang, L. L., Willander, M., Sernelius, B. E. & Holtz, P. O. Surface recombination in ZnO nanorods grown by chemical bath deposition. Journal of Applied Physics 104,073526,2008.

Aberle, A. G. Surface passivation of crystalline silicon solar cells: A review. Progress in Photovoltaics 8, 473-487,2000.

Dong, J. et al. Suppressing Charge Recombination in ZnO-Nanorod-Based Perovskite Solar Cells with Atomic-Layer-Deposition TiO2. Chinese Phys Lett. 32,078401,2015.

Chen, P., Yin, X., Que, M., Yang, Y. & Que, W. TiO2 passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. Rsc Advances 6,57996-58002,2016.

Shibin Li et al. The Defects of ZnO Nanorods Passivated By Ultra-Thin Al2O3 Film. ECS Trans. 72, 275-285,2016.

Li, S. et al. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Research 10, 1092-1103,2017.

Cheng, Y. et al. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. Acs Applied Materials & Interfaces 7, 19986-19993,2015.

Law, M. et al. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. Journal of Physical Chemistry B 110, 22652-22663,2006.

Dong, J. et al. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chemical Communications 50, 13381-13384,2014.

Song, J. et al. Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. Chemsuschem 9,2640-2647,2016.

Dong, J., Shi, J., Li, D., Luo, Y. & Meng, Q. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Applied Physics Letters 107,073507,2015.

Ahmed, M. I. et al. Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells. Aip Advances 6,065303,2016.

Oh, L. S. et al. Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. Journal of Physical Chemistry C 118,22991-22994,2014.

Shin, S. S. et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C. Nature Communications 6,7410,2015.

Mali, S. S., Shim, C. S., Kim, H. & Hong, C. K. Reduced graphene oxide (rGO) grafted zinc stannate (Zn2SnO4) nanofiber scaffolds for highly efficient mixed-halide perovskite solar cells. Materials Chemistry A 4,12158-12169,2016.

Werner, J. et al. Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol Energ Mat Sol C 141,407-413,2015.

Chen, P.-Y. & Yang, S.-H. Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection. Optical Materials Express 6,3651-3669,2016.

Chiang, C.-H., Nazeeruddin, M. K., Gratzel, M. & Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science 10,808-817,2017.

Zhang, P. et al. Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition. Materials Chemistry A 5,17368-17378,2017.

Mekki-Berrada, A., Grondin, D., Bennici, S. & Auroux, A. Design of amphoteric mixed oxides of zinc and Group 3 elements (Al, Ga, In): migration effects on basic features. Physical Chemistry Chemical Physics 14, 4155-4161,2012.

Meng, L. et al. Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. American Chemical Society 140, 17255-17262,2018.

Meng, R. et al. Cerium-Oxide-Modified Anodes for Efficient and UV-Stable ZnO-Based Perovskite Solar Cells. Acs Applied Materials & Interfaces 11,13273-13278,2019.

Song, J., Zheng, E., Wang, X.-F., Tian, W. & Miyasaka, T. Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells. Sol Energ Mat Sol C 144,623-630,2016.

You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology 11,75-81,2016.




How to Cite

Zhang, S., Wu, Y., Youming Huang, & Jiakai An. (2023). Recent Advances of ZnO-Based Perovskite Solar Cell. American Scientific Research Journal for Engineering, Technology, and Sciences, 91(1), 55–77. Retrieved from